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Chapter 1: Overview 
This Chapter provides an introduction to both the Viper package itself, as well as this 
manual.  In addition, the Getting Started guide describes what is required to begin 
using Viper. 
Background theory behind the numerical algorithms implemented by Viper is 
described in Chapter 2.  In Chapter 3, mesh generation and conversion is described.  
In Chapter 4, the configuration of simulations is described, and Chapter 5 details the 
execution of simulations and the solution methods employed by the solver.  Chapter 6 
treats the visualization and post-processing of data, and Chapter 7 describes each of 
the commands available to use within Viper.  A bibliography for further reading is 
provided in Chapter 8. 

About Viper 
Viper is a Computational Fluid Dynamics (CFD) package that solves the time-
dependent incompressible Navier—Stokes equations in either two or three 
dimensions. 
Viper uses a spectral-element method to discretize the Navier—Stokes equations in 
space, and employs a third-order accurate backwards multistep method to evolve the 
solutions in time. 
 

Audience for this Manual 
This manual is intended for users of the Viper software – it contains descriptions of 
the commands and functionality of the Viper package, as well as information on how 
to generate and convert meshes for simulation, and how to extract and process useful 
data from the computed solutions. 
Readers are assumed to have an Undergraduate-level background in fluid mechanics. 
This is not a Developer’s Manual – no information about the underlying source code 
is provided.  Readers will not find details about the subroutines, variables and 
modules behind the package, but they will find information about third-party source 
code contributions and libraries that Viper employs. 
 

Getting Started 
To run simulations, users will need the Viper executable (the latest executable files 
compiled for various platforms are available from 
http://www.flair.monash.edu.au/viper/).  Windows users will also require the Tecplot 
Dynamically Linked Library tecio.dll, also available from the same URL. 
By default, Viper searches for a configuration file viper.cfg, and if this file is not 
located in the current directory, the user is prompted to supply an alternative path/file 
name.  The contents of the configuration file are described in Chapter 4. 
Once the configuration file is found, Viper processes the commands given in the file 
to establish the conditions for the simulation.  The configuration supplies the mesh 
file name, and it establishes parameter values, initial and boundary conditions for the 
simulation.  Once the configuration phase is complete, the user is prompted to supply 
input commands. 
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An example of a simple list of commands to execute a simulation is as follows: 
 

init 
step 100 
save 
tecp 
stop 

 
These commands do the following: Initialise a simulation to allow time integration to 
proceed (init), integrate forward in time by 100 time steps (step 100), save the 
flow field solution to a default file ff_out.dat (save), output a binary file for 
post-processing and plotting using the Tecplot visualization package (tecp), and exit 
Viper (stop).  A detailed description of all of the available commands recognised by 
Viper is given in Chapter 7. 
 

Rules for inputting text into Viper 
Viper employs text input and processing routines that allow for comments, and permit 
numerical values to be entered in any format recognised by FORTRAN.  The same 
rules apply for command line input as well as macro and configuration file input: 
 
• Commented lines:  If a line begins with a “#” followed by a space, it is regarded 

as a comment, and is ignored by Viper.  Note: The blank space following the hash 
is essential.  E.g., 

# This is a comment 
#This is not a comment 

 
• Comments within a line:  If the user wishes to add a comment within a line, then 

they can do so by enclosing text in round brackets: “(” and “)”.  E.g., The 
following text would be read as “Viper reads this, but not this.” 

Viper reads this, but (Viper ignores this)not 
this. 

 
• Numerical input:  If users wish to enter an integer, it can be entered with or 

without a negative sign, but can only contain numbers (no decimal points, 
alphabetical characters, etc.).  E.g., The following are valid integers: 

1 
34 
796954 
-343 

The following are invalid as integers: and may either be rounded by the code, or 
cause an error, so should be avoided.  If floating-point numbers were required, 
then the following are all valid: 

.1 
3. 
-4.5 
4.1e-10 

 
• Case sensitivity:  Linux systems are case sensitive, whereas Windows systems are 

not, allowing upper- and lower-case characters to be substituted at will.  
Therefore, when processing input and output filenames, Viper preserves the 
capitalization specified by the user.  If a user wishes to load a file “Macro.txt” 
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and enters “mACRO.TXT”, the file will not be found under Linux, resulting in an 
error, whereas under Windows the file will be located and input without an error.  
Internally, Viper converts all input variable names to lower case, so users should 
be aware that under Linux, Viper makes no distinction between variables with the 
same name, but different capitalisation: i.e., “DT” is treated as “dt”. 

 
• Verbatim text:  To input a string of characters as a single entry, the text should be 

enclosed by single quotes.  This is especially important to avoid brackets in 
mathematical expressions being confused with an in-line comment, or blanks 
being confused for the end of the function.  E.g. 1: Viper would misread 
sin(23*x) as sin, ignoring the bracketed component, whereas it would be 
input in full if expressed as ’sin(23*x)’.  E.g. 2: Viper would misread 
y*t + x^2 as y*t, ignoring the component after the blank, whereas it would be 
input in full if expressed as ’y*t + x^2’. 

 

Rules for inputting mathematical expressions into Viper 
A powerful feature of Viper is the ability to read mathematical expressions input by 
the user at run time, and evaluate them.  Viper employs this capability for the 
processing of user-defined boundary conditions, functions, initial conditions, 
integrands for L2 norms, etc. 
Important: If a function is incorrectly structured, or is evaluated incorrectly 
(e.g., due to an incorrect variable name being supplied), it MAY NOT return an 
error, and the output will be incorrect.  Care must be taken to ensure that 
functions are input correctly. 
The following information outlines the allowable components of mathematical 
expressions: 
 
Mathematical operators: 
 

Operator Function 

+ Addition 
E.g., 11+24.5 

- Subtraction 
E.g., 58.5 – 1e3 

* Multiplication 
E.g., 7.5*t 

/ Division 
E.g., 23/4 

^ Power 
E.g., for x2, type x^2 

 
 
Parentheses: 
Users may enclose parts of their expressions in pairs of round, square, or curly 
brackets:  All opening brackets must have a corresponding closing pair.  E.g., (…), 
[…], {…}. 
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Mathematical functions: 
A large number of mathematical functions are available, which form a superset of the 
intrinsic mathematical functions available in Fortran. 
 

Class Function Syntax 

Trigonometry 

Sine of x sin(x) 
Cosine of x cos(x) 
Tangent of x tan(x) 

Inverse sine of x, |x| ≤ 1 asin(x) 
Inverse cosine of x acos(x) 
Inverse tangent of x atan(x) 

Hyperbolic 

Hyperbolic sine of x sinh(x) 
Hyperbolic cosine of x cosh(x) 
Hyperbolic tangent of x tanh(x) 

Hyperbolic cosecant (1/sinh) of x csch(x) 
Hyperbolic secant (1/cosh) of x sech(x) 

Hyperbolic cotangent (1/tanh) of x coth(x) 

Logarithms and 
exponentials 

Base 10 logarithm of x, where x > 0 log10(x) 
Natural logarithm of x, where x > 0 log(x) 

Logarithm of x (base n, where n > 0 and x > 0) logn(x,n) 
Exponential number raised to the power x exp(x) 

Other 

Square root of x, x ≥ 0 sqrt(x) 
Absolute value of x abs(x) 

Maximum value of x or y max(x,y) 
Minimum value of x or y min(x,y) 

Delta function (1 if x = 0, 0 otherwise) delta(x) 
Step function (0 if x < 0, 1 otherwise) step(x) 

Hat function (1 if |x| ≤ 0.5, 0 otherwise) hat(x) 
Round to nearest whole number anint(…) 

Random number in the range [0, x) 
Note: The result of this function is treated as 

always time- and space-varying 
rand(x) 

 
The code also facilitates a number of Bessel, Gamma and Error functions, though 
these are not presently fully implemented in the code.  See Dr Greg Sheard if you 
require these functions. 
 
Finally, conditional statements can be input using the function 
 

if( condition, then, else ), 
 
which evaluates the conditional statement condition, and then evaluates the 
expression then or else, when conditional statement is true or false, respectively.  
The conditional statement can be constructed using the following relations: 
 

Condition Symbol 
Less than (<) < 

Less than or equal to (≤) <= 
Greater than (>) > 
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Greater than or equal to (≥) >= 
Equal to (=) = or == 

Not equal to (≠) != 
 

Implicit and user-defined variables 
A number of variable and parameter names are reserved by Viper.  These include the 
spatial coordinates x, y and z, time t and time step dt, velocity components u, v and 
w, the kinematic static pressure p, the reciprocal kinematic viscosity RKV, and the 
shear rate SR.  These variables can be used in mathematical expressions input into 
Viper either on the command line (such as during the int or l2 commands), or in 
the configuration file (such as in btag statements).  Users should consult the specific 
entries for each command to see which of the implicit variables are allowed. 
In addition to the implicit variables, Viper also facilitates the creation of “user-defined 
variables”.  User-defined variables are defined using the gvar_usrvar statement in 
the configuration file, and assign a user-specified name to a number or mathematical 
expression to be evaluated at run-time.  User-defined variables can appear in 
subsequent mathematical expressions, including within subsequent gvar_usrvar 
statements. 
 

Unresolved Bugs 
Memory leak during init routine: 
Platforms: All 
Symptoms: Each call to init adds a small amount of memory to the overall 
memory used by Viper.  Not usually a problem, as it is small, and init is typically 
only called once per simulation.  However, if users wish to run a macro with many 
calls to init, this issue will eventually lead to an exhaustion of available RAM. 
Workaround: Limit the number of calls to init in each Viper session. 
 

Resolved Bugs 
Segmentation fault during save or tecp calls with large meshes – FIXED 15 
AUGUST 2007: 
Platforms: ia32 linux 
Symptoms: If meshes have a very large number of elements (numbering in the 
thousands), then segmentation faults can occur during calls to save or tecp.  This 
appears to be a compiler or O/S-related issue, as it cannot be reproduced on either 
ia64 linux or the ia32 Windows platforms. 
Workaround: Use either the ia32 Windows or ia64 linux version of Viper to generate 
the simulation or Tecplot data. 
Resolution: 
This bug was actually caused by the code exceeding the available stack size on 
the Linux systems the code was running on.  These segmentation faults can be 
avoided by increasing the size of the stack.  On the Linux command line, type 
 

\> limit stacksize unlimited 
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or if the user is running a job from a script file, add this line to the script file 
prior to the command used to invoke Viper. 
 
Crashing during tecp or getminmax -e calls – WORKAROUND 12 
AUGUST 2007; FIXED 26 SEPTEMBER 2007 
Platforms: ia64 linux 
Symptoms: The tecp and getminmax -e commands call a routine to evaluate 
the strain rate magnitude.  This routine uses eigenvalue/eigenvector routines to 
determine the rate-of-strain field.  The problem appears to lie in the ia64 linux 
implementation of the Intel Math Kernel Library functions being called.  The error 
does not always occur – it is flow-dependent somehow.   
Workaround: Use either the ia32 linux or ia32 Windows versions of Viper. 
Resolution (26 September 2007): 
Consultation with APAC verified that this bug was caused by the Intel MKL 
routines performing IEEE arithmetic checking which were causing floating-
point exceptions in the code.  These have since been avoided by compiling with 
the –fpe3 compiler option, which was being overridden by the APAC system. 
 



Chapter 2: Background 
This Chapter provides background theory for the fluid flow solvers and analysis tools 
implemented within Viper. 
 

The Navier—Stokes Equations 
The motion of all fluids is described by the Navier—Stokes equations.  Applying a 
conservation-of-momentum principle yields 
 

,
D
D

t
p ij

uτg ρρ =⋅∇+∇−  

 
where g is the gravity acceleration vector, p is a scalar pressure field, ∇  is the 
gradient operator, τij is the viscous stress tensor, u is a velocity vector, and t is time. 
The velocity time derivative is sometimes referred to as the substantial derivative, 
which is defined  
 

( ) .
D
D uuuu

∇⋅+
∂
∂

=
tt

 

 
The fluid must also satisfy a conservation-of-mass argument, which can be expressed 
as 
 

( ) .0=⋅∇+
∂
∂ uρρ

t
 

 

Newtonian and non-Newtonian Fluids 
A significant simplification to the momentum equation of the general Navier—Stokes 
equations is possible, if viscous stresses are assumed proportional to strain rates and 
the coefficient of viscosity, μ.  For a simple shear flow, this can be written 
 

.
d
d

y
uμτ =  

 
Fluids that satisfy this assumption are classified as Newtonian fluids, and a 
remarkably large number of fluids are well-described by this relationship, including 
air and water.  Fluids that do not satisfy this relationship are classified as non-
Newtonian, and include many polymers, emulsions and suspension fluids, including 
blood. 
 

Incompressible Flow 
If the flow has constant density in space and time, it can be regarded as 
incompressible.  If there is no fluid interface (such as a free surface), the gravity term 
can be omitted, as its action is constant everywhere in the flow.  Combining this 
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simplification with the incompressibility condition yields momentum and continuity 
for a Newtonian fluid 
 

( ) ,2uuuu
∇+−∇=∇⋅+

∂
∂ νP

t
    (1a) 

.0=⋅∇ u      (1b) 
 
where we introduce a kinematic pressure and kinematic viscosity 
 

.,
ρ
μν

ρ
==

pP  

 
Finally, equation (1a) can be used to reveal the single most important parameter 
describing the viscous behaviour of Newtonian fluids, the Reynolds number.  The 
Reynolds number can be written 
 

,
ν

DURe ∞=  

 
where U∞ is a reference speed, and D is a reference length scale. 
Equation (1a) comprises several terms, which from left to right are the velocity time 
derivative term, the advection term, the pressure term, and the viscous diffusion term.  
Viper solves this equation using an operator-splitting technique (Karniadakis, Israeli 
& Orszag 1991), where the advection, pressure, and diffusion terms are solved 
individually at each time step.  This procedure will be described in more detail later. 
 

The Spectral-Element Method and Spatial Discretization 
The spectral-element method is a class of finite element methods, which is used to 
solve partial differential equations by discretizing a spatial domain into small regions 
(elements), over which a high-degree polynomial basis is employed.  This is an 
improvement over the traditional finite element method, which employs a piecewise 
linear basis. 
The partial differential equations being solved are recast in weak form by applying the 
Galerkin method (a form of the method of weighted residuals).  The Galerkin method 
replaces the continuous partial differential equation with an integral equation, which 
when approximated by numerical quadrature techniques, produces a set of ordinary 
differential equations which may be solved in a standard fashion. 
Integration is performed within each element using highly efficient Gaussian 
quadrature methods, and the global solution is coupled between elements by enforcing 
a continuous solution across element interfaces. 
The spectral-element method differs from the finite-element method in that higher-
order functions are used as basis functions within each element, and efficient 
Gaussian quadrature rules can be employed within each element to approximate the 
integral contributions.  Viper employs a nodal formulation, in which Lagrangian 
tensor-product polynomial basis functions are employed within each element.  These 
functions are interpolated over a grid of points on each element, which correspond to 
the quadrature points for Gauss-Legendre-Lobatto (GLL) quadrature.  The GLL 
quadrature points include points fixed at the element edges/faces to facilitate a 
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continuous solution between adjacent elements.  In one dimension, GLL quadrature is 
exact for polynomials of degree 2n-3, where n is the number of quadrature points.  
Illustrations of the nodal polynomial expansion basis employed by Viper are shown 
below. 
 

 
One-dimensional nodal expansion modes for a polynomial of degree 6 (from Karniadakis & Sherwin 

2005). 
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Construction of a two-dimensional nodal expansion basis from the product of two one-dimensional 

expansions of degree 5 (from Karniadakis & Sherwin 2005). 
 
Viper accepts quadrilateral (four-sided) elements in two dimensions, and hexahedral 
(six-faced) elements in three dimensions.  General curvilinear elements are mapped 
onto a bi-unit square for implementation of the standard GLL quadrature rules, as 
illustrated below. 
 

 
Mapping of a bi-unit square onto a general curvilinear quadrilateral element (from Karniadakis & 

Sherwin 2005).  An analogous mapping onto a bi-unit cube is conducted for three dimensional 
hexahedral elements. 

 
A result of the mapping procedure is a restriction on the allowable distortion of 
elements.  No element corner is permitted to have an inner angle equal to, or greater 
than, 180°.  Examples of valid and invalid quadrilateral elements are shown below.  
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Examples of (a) valid and (b) invalid quadrilateral elements (from Karniadakis & Sherwin 2005).  

 
The use of element mapping permits geometries of considerable complexity to be 
modelled using a spectral-element discretization, and the combination of a high-
degree basis and the highly accurate Gauss-Legendre-Lobatto quadrature rules 
provides excellent spatial convergence properties.  Exponential convergence (an 
increasing rate of error reduction with increasing resolution) is often achieved in 
practical spectral-element computations (Karniadakis, Israeli & Orszag 1991; 
Blackburn & Sherwin 2004; Karniadakis & Sherwin 2005; Sheard & Ryan 2007). 
To illustrate the flexibility of curvilinear quadrilateral and hexahedral elements in 
discretizing sometimes complicated geometries, meshes are reproduced below from 
Sheard & Ryan (2007). 
 

 

 

Left: Meshes employed for two- (top) and three- (bottom) dimensional computations of the 
axisymmetric and three-dimensional pressure-driven flows past spheres moving through a tube, 

respectively (Sheard & Ryan 2007).  The upper half of the three-dimensional mesh has been removed 
to reveal the meshed surface of the sphere.  Right: An isosurface plot showing streamwise vorticity in 

the flow, which demonstrates the existence of non-axisymmetric flow. 
 

Time Integration 
The Navier—Stokes equations are integrated forward in time using an operator 
splitting scheme referred to as a stiffly-stable scheme when first proposed for high-
order computation of incompressible fluid flows by Karniadakis, Israeli & Orszag 
(1991), and later recognised as a class of backwards-multistep schemes by Blackburn 
& Sherwin (2004). 
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Operator splitting schemes employ the basic idea that if some equation of the form 
 

uu L
t
=

∂
∂  

 
where L is some operator that can be written as a sum of m pieces,  
 

uuuu mL...LLL +++= 21 , 
 
then the solution that updates the variable u from time step n to n + 1 can be 
calculated by summing the contribution of each operator on u separately (Press et al. 
2002). 
Backwards-multistep methods are based on backwards differentiation: that is, the time 
derivative is evaluated at time n + 1 (or approximated at time n + 1 by a combination 
of sufficient values at previous times to achieve the desired order of accuracy), and 
the appropriate-order backwards difference scheme dictates the combination of u 
values at previous times required to find un+1. 
For the incompressible Navier—Stokes equations, Karniadakis, Israeli & Orszag 
(1991) propose a three-step time splitting scheme 
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where  is the non-linear advection operator, and for third-order accuracy in time 
(J = 3), the required coefficients are: 

( )uN

 
Coefficient Value 

γ  11/6 
0α  3 

1α  -3/2 

2α  1/3 

0β  3 

1β  -3 

2β  1 
Table: Third-order backwards-multistep scheme coefficients. 

 
The first substep involves solving the advection term explicitly.  The second substep 
first requires evaluation of the kinematic pressure, P.  We first take the divergence of 
both sides, and enforce the incompressibility constraint on the intermediate velocity 
field û̂  as 
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The intermediate velocity field û  is calculated during the first substep, so this 
equation can be solved as a Poisson equation for the kinematic pressure P, where 
appropriate high-order Neumann boundary conditions for pressure are imposed on 
homogeneous boundaries, and Dirichlet pressure boundary conditions are imposed in 
the standard fashion.  This pressure field can then be used to find the second 
intermediate velocity field . û̂
The third substep involves solving a Helmholtz equation for the final velocity field 

, where boundary conditions for the velocity field are imposed. 1+nu
 

Coordinate Systems 
The preceding equations are presented in vector form for generality.  The component 
forms of these equations vary depending on the coordinate system being employed.  
Viper has the capability to compute flows in either a Cartesian (x, y, z) or a cylindrical 
(z, r, θ) coordinate system.  These are illustrated below: 
 

 
http://en.wikipedia.org/wiki/Image:Rectangular_coordinates.svg,  http://en.wikipedia.org/wiki/Image:Cylindrical_coordinates2.svg  

 
In three dimensions, the derivative operators acting on a scalar field are written in 
Cartesian coordinates as 
 

,,,, 2

2

2

2

2

2
2

zyxzyx ∂
∂

+
∂
∂

+
∂
∂

=∇
∂
∂

∂
∂

∂
∂

=∇  

 
and divergence of a vector field is written as 
 

( ) ( ) ( ) ( ).
zyx ∂
∂

+
∂
∂

+
∂
∂

=⋅∇  
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In cylindrical coordinates, the derivative operators are written 
 

,11,1,, 2
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and the divergence operator is written 
 

( ) ( ) ( )( ) ( ).11
θ∂
∂

+
∂
∂

+
∂
∂

=⋅∇
r

r
rrz

 

 

Discrete forms of the Advection Operator 
The advection operator for the incompressible Navier—Stokes equations can be 
expressed in several forms by applying vector identities.  These include the 
convection form ( ), the rotation form (( )uu ∇⋅ ( )uu×∇ ), and the skew-symmetric 
form ( ( ) (uu∇2

1 )uu +∇⋅2
1 ).  These forms are exactly equivalent in a continuous sense, 

but are not precisely equivalent in a discrete sense.  Zang (1991) describes the 
implications of using each of these forms in numerical computations, and the 
following table summarises the conservation properties of, and the number of 
derivative operations required to compute, each of these terms. 
 

Form of advection 
operator 

Conserves (in 
inviscid limit) 

Number of derivative 
operations (2D / 3D) 

Convective Nothing 4 / 9 

Rotation Momentum and 
kinetic energy 4 / 6 

Skew-symmetric Momentum and 
kinetic energy 8 / 18 

 
Viper implements all three of these forms of the advection operator (though the 
rotation form is replaced by the convection form in cylindrical coordinates) with the 
advect command.  By default, the skew-symmetric form is employed, which is 
considered to reduce aliasing errors, though users might consider employing the 
convection form instead, which was shown by Blackburn & Sherwin (2004) to 
produce results that converged slightly more rapidly than the skew-symmetric form 
with increasing spatial resolution. 
 

Stability Analysis 
Broadly, stability analysis is the study of the state of systems, and their stability.  
Many canonical fluid flows develop as a result of instabilities, which often emerge 
through the solution becoming dependent on an additional dimension.  For instance, 
below a Reynolds number Re ≈ 46, the flow past a straight circular cylinder is two-
dimensional and time-independent.  As the Reynolds number is increased beyond this 
Reynolds number, the flow becomes unstable to temporal disturbances, and the wake 
alters to the classical von Kármán vortex street, which is again two-dimensional, but 
is now time dependent (being periodic in time). 
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A subsequent transition occurs at Re ≈ 190, where the two-dimensional Kármán 
vortex street becomes unstable to three-dimensional sinuous disturbances in the 
spanwise direction along the cylinder.  The image below shows the various wake 
states through these transitions. 
 
   (a)    (b)             (c) 

       
Instabilities developing in the wake of a circular cylinder.  (a) The steady two-dimensional wake below 
Re = 46 (Van Dyke 1982), (b) the periodic two-dimensional Kármán vortex street above Re = 46, and 
(c) the three-dimensional “Mode A” wake above Re ≈ 190 (Thompson, Hourigan & Sheridan 1996). 

 

Absolute and Convective Instabilities 
Instabilities can be categorised as being either local or global, depending on whether 
the instability develops on a local velocity profile, or the whole flow field, 
respectively.  The terms absolute and convective are then used to further describe the 
evolution behaviour of the instability.  An absolutely unstable disturbance will spread 
in all directions and contaminate the entire flow, whereas in a convectively unstable 
flow the disturbances are washed (convected) away from their point of origin. 
Given some control parameter R, and considering two critical values, Rc (transition 
from stable to convectively unstable flow), and Rt (point at which the flow becomes 
absolutely unstable), the sketches in the subsequent figure outline the various 
responses of systems, depending on their stability. 
 

 
Instability responses.  (a-c) Single travelling wave: (a) stable, (b) convectively unstable, (c) absolutely 
unstable.  (d-e) Stationary mode: (d) stable, (e) absolutely unstable.  (f-h) Conterpropagating travelling 
waves: (f) stable, (g) convectively unstable, (h) absolutely unstable.  Figure reproduced from Huerre & 

Monkewitz (1990). 
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Some exciting work is currently underway in the field of numerical convective linear 
stability analysis (e.g., Blackburn, Barkley & Sherwin 2008), but currently the 
stability analysis capabilities of Viper are restricted to global instabilities, as described 
in the next section. 
 

Global Stability Analysis 
Numerically, a global stability analysis inspects the evolution of a small disturbance 
to an underlying base flow.  The formulation of this technique begins by decomposing 
the velocity and pressure fields (u, p) into a two-dimensional base flow ( p,U ) and a 
three-dimensional disturbance ( ), p′′,u
 

.
,

ppp ′+=

′+= uUu
 

 
Substituting these into equation (1), cancelling the base flow terms, and neglecting 
products of the (small) perturbation field yields the linearised Navier—Stokes 
equations 
 

( ) ( ) ,2uUuuUu ′∇+′−∇=∇⋅+∇⋅+
∂
′∂ νP

t
   (2a) 

.0=′⋅∇ u      (2b) 
 
Equation (2) differs from equation (1) only in the advection term, and thus an almost 
identical solution algorithm can be efficiently employed to integrate the disturbance 
field forward in time. 
A further simplification is possible by decomposing the disturbance field into a 
Fourier series expansion in the spanwise direction,  
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which then allows us to decouple modes with a different spanwise mode number, β. 
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The stability behaviour has then been reduced to a two-parameter problem in Re and 
β.  An important note in terms of the numerical implementation, is that perturbation 
fields with different wavelengths only couple with the base flow, so each can be 
computed independently. 
Simplistically, the stability properties for a particular pair of values of Re and β is 
determined by integrating the perturbation field forward in time, and monitoring the 
growth or decay of the field.  Strictly, for T-periodic base flows (for steady base 
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flows, the same technique applies, but the time period T can be arbitrarily selected), 
the perturbation field evolves over one period subject to an operator A as 
 

( ).1 nn uAu ′=′ +  
 
The eigenvalues of A correspond to the Floquet multipliers of the system, 

( T )σμ exp= , where σ  is the growth rate of the instability.  The stability of the base 
flow ( p,U ) is determined by the magnitude of the Floquet multiplier, μ .  If 1>μ , 
then the flow is unstable to perturbations of the chosen spanwise wavelength at the 
prescribed Reynolds number, and is stable if 1<μ . 
A number of methods are available to determine the eigenvalues (and corresponding 
eigenvectors) of A, though due to the size of the systems typically under investigation, 
A is not constructed explicitly.  Instead, the base flow and perturbation field are 
integrated in time, and the perturbation field after successive periods is inspected to 
determine the eigenspectrum of the system.  Barkley & Henderson (1996) and others 
propose a block-power method based on modified Arnoldi iteration to determine the 
leading eigenvalue of the system, and Sheard, Thompson & Hourigan (2003) 
employed a power method to resolve the magnitude of the Floquet multiplier of the 
fastest-growing mode.  
Viper facilitates both Arnoldi and power methods to solve the large-scale eigenvalue 
problems presented by a global linear stability analysis.  An implicitly restarted 
Arnoldi method (Sorensen 1995; Lehoucq, Sorensen & Yang 1996) is implemented in 
the ARPACK package, which is called by Viper using the arnoldi command. 
The power method (used in Sheard, Thompson & Hourigan 2003; Sheard & Ryan 
2007) isolates the fastest-growing mode, and subsequently computes the magnitude of 
the Floquet multiplier, by evolving the perturbation field over sufficient periods to 
allow the modes with smaller growth rates to wash out of the solution.  The 
perturbation field is normalised at each period (permitted due to the linearity of the 
solution) to avoid the solution diverging as a result of its exponential behaviour.  
Ultimately, the perturbation field comprises only the fastest-growing mode, and the 
amplification factor applied to this mode from one period to the next corresponds to 
the magnitude of the Floquet multiplier, μ .  The main limitations of the power 
method are that it cannot resolve the complex components of the leading Floquet 
multiplier, and it can only find the eigenvalue corresponding to the fastest-growing 
mode. 
The linear Floquet stability analysis technique implemented by Viper is capable of 
determining the global stability of two-dimensional (or axisymmetric) flows to three-
dimensional (non-axisymmetric) linear disturbances that are spanwise (azimuthal)-
periodic.  This facility is implemented using the floq command, and calculations 
employing either an implicitly restarted Arnoldi method, or the power method, are 
invoked using the arnoldi or stab commands, (described in Chapter 7), 
respectively. 
 

Scalar Transport & the Boussinesq Approximation for 
Buoyancy-Driven Flows 
It is sometimes useful to follow the propagation of a scalar quantity through a 
transient or steady flow field, either for the purposes of flow visualization, or to 
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simulate the transport of scalar quantities in a flow (such as the transport of oxygen in 
a bioreactor, for instance). 
Viper facilitates two mechanisms for scalar transport: one method introduces a scalar 
field, which is evolved subject to an advection-diffusion transport equation, and the 
other method seeds the flow with passive tracer particles, whose positions are updated 
along with the flow solution. 
The advection-diffusion approach is also employed by a facility for computing 
buoyancy-driven flows by means of a Boussinesq approximation (see command 
bouss).  For computations employing this facility, the scalar field acts as a 
normalised temperature field, and the diffusion coefficient represents a thermal 
diffusion coefficient. 
 

Advection-Diffusion 
The transport of a passive scalar field s on an evolving flow field u is described by 
 

( ) ,
D
D 2φυφφφ

∇=∇⋅+
∂
∂

= stt
u     (3) 

 
where sυ  is the coefficient of diffusion for the scalar field.  This equation can be 
solved in a number of ways.  Physically, this equation describes the movement of the 
scalar field in time with the flow field, plus diffusion of the scalar field.  The 
numerical solution of this equation can be problematic, as the value of the scalar field 
at locations in the flow that do not necessarily correspond to grid points can be 
required.  However, in the Auxiliary Semi-Lagrangian technique employed by Viper, 
no interpolation is required. 
The technique first proceeds by integrating an auxiliary advection equation 
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where 
 

( ) ( ),,,,,,, nn tzyxtzyx φφ =  
 
and finally, a diffusion step is performed to complete the solution of equation (3). 
This method is best suited for problems involving continuously varying scalar fields 
present throughout the flow.  In Viper, advection-diffusion of a scalar field is initiated 
by specifying boundary conditions for a scalar field (see viper.cfg commands 
btag and gvar_scalar_diff), and the command scalar. 
The image sequence below demonstrates the capability of this scalar transport 
function.  Shown are contours of scalar field concentration, and the scalar field is 
advected on a periodic wake behind a square cylinder in a channel, with a low 
diffusion specified. 
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Contours of scalar field concentration, demonstrating fluid mixing behind a square cylinder at Re = 90 

in a channel with blockage ratio 1/8.   
 

Passive Tracer Particle Tracking 
The simulated evolution of passive tracer particles is facilitated by means of a nearly-
4th-order Runge—Kutta technique proposed by Coppola, Sherwin & Peiró (2001).  
This tool is extremely adept at simulating the planar laser-induced fluorescence 
(PLIF) technique of dye visualization used to great effect by Williamson (1996); 
Leweke, Thompson & Hourigan (2004).  The image below compares experimental 
dye visualization of an arresting sphere with a numerical simulation produced using 
Viper, and visualised using the Tecplot package. 
 

 19



 
 

A time sequence (from left to right) comparing simulated particle tracking computations (top) and 
experimental dye visualization (bottom) for an arresting cylinder at Re = 500 with a translation distance 

of two cylinder diameters (Sheard, Leweke, Thompson & Hourigan 2007). 
 

The particle tracking algorithm updates particle positions within each element in 
parametric space using a 4th-order Runge—Kutta time integration scheme.  When a 
particle crosses an element boundary, a series of first-order sub-steps is employed to 
step to and across the element interface(s).  As the step size is typically small 
compared to the size of the elements, the technique nearly preserves the 4th-order 
temporal accuracy of the Runge—Kutta scheme. 
Particles can either be injected at a single point or at several points within the flow, or 
the entire flow field can be seeded with a uniform distribution of particles.  
Visualization of particles can be performed either by outputting the discrete particle 
locations in physical space to a text file, or by plotting the particle concentration using 
the Tecplot package as per the image reproduced here.  For Tecplot output, a particle 
concentration is calculated based on a localised summation of particles subject to a 
Gaussian mask about each data point.  The variance of the Gaussian mask used varies 
based on the local mesh refinement. 

 

Viper Solvers 
Viper provides several solvers for computing a range of fluid flow problems.  To 
compute flow in two-dimensional domains (either in Cartesian or cylindrical 
coordinate systems, computations are performed on a two-dimensional mesh 
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comprising quadrilateral (four-sided) spectral elements.  The stability of two-
dimensional flows to three-dimensional instability modes can be determined by means 
of the global linear stability analysis capabilities of the code.  In these computations, 
the base flow, and individual Fourier modes of three-dimensional perturbation fields 
are each computed on a two-dimensional mesh. 
Three-dimensional computations may be performed either using hexahedral (six-
faced) spectral elements for general geometries, or a Fourier expansion of a two-
dimensional domain for geometries which have a symmetry in the out-of-plane 
direction (either z for Cartesian or θ for cylindrical coordinate system computations). 

 

Running Simulations in Parallel 
When running Viper on shared-memory systems with multiple available processors or 
threads, faster compute times are achievable with some of the solvers, which have 
been parallelized using the OpenMP application programming interface 
(http://OpenMP.org/).  In the OpenMP model of parallelization, one thread is 
designated the “Master” thread, and this thread controls the computation.  Any serial 
segments of the programme are computed on this thread.  When a parallel region of 
the code is reached, the Master thread spawns additional threads on available 
processors, and distributes the computational work among these threads as dictated by 
the OpenMP commands included in the code.   
Speedup is a measure of the benefit available from parallel computing, and is defined 
as a ratio of the time taken to run a simulation over a single processor to the time 
taken to run the same simulation over multiple processors.  Optimal speedup would 
equal the number of available processors, though unfortunately there are practical 
limitations to how much speedup is available in real computations.  There is an 
increasing memory and processor overhead involved with the establishment of 
parallel threads when more threads are available, so to gain a good benefit from 
parallel computing, the amount of work to be done in parallel must be significant to 
overcome the performance degradation due to overhead.   
To gain the most benefit from parallel computations, care is required to ensure that an 
appropriate number of parallel threads are used.  For instance, if the number of 
parallel tasks in a parallel region is 5, and the computation is run over two threads, 
then one thread must perform three of the tasks, and the other will compute only two.  
Thus one of the threads will sit idle waiting for the other to finish the additional 
computation.  In terms of speedup, this means that even if the computation was ideal 
(no overhead), the maximum available speedup would be 5/3 = 1.667, not 2 as may 
have been hoped.  Avoiding idle threads is the only technique available for end-users 
to maximise their speedup and efficiency in parallel computations using Viper.  The 
sections below provide advice on how to best select the number of threads for their 
computations. 

Parallel base flow simulations 
Currently only a limited speedup is achievable when running two-dimensional 
quadrilateral and three-dimensional hexahedral simulations.  This is due to the 
substantial time spent computing global operations such as coupled boundary system 
matrix solutions.  For these simulations, a small speedup is achieved when running 
over two processors as compared to one, though computations are found to actually 
slow down beyond that number. 
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Parallel linear stability analysis computations 
The global linear stability analysis algorithm operates by computing the base flow and 
each of the perturbation fields separately.  Each of the perturbation fields is 
completely decoupled from the others, depending only on the base flow velocity fields 
from previous time steps.  Therefore, a significant performance gain can be achieved 
by running these simulations in parallel, with the computation of the required fields 
being shared between available processors.  The total number of time integration 
solutions required at each time step is Np + 1, where Np is the number of active 
perturbation fields (as we also need to evolve the base flow1).   
The maximum number of threads that should be used when computing linear stability 
analysis computations is Np + 1.  To avoid idle threads, users should compute with 
either this number of threads, or whole factors of this number.  For example, if a 
linear stability analysis computation was analysing 7 perturbation fields, then the total 
number of fields being computed is 8, and computations should employ 8, 4, 2, or 1 
thread.  Less efficient speedup would be achieved for computations using 7, 6, 5, or 3 
threads. 
The figure below plots the speedup achieved for a linear stability analysis test case.  
The test case featured a spectral-element mesh featuring 343 elements of polynomial 
degree 8, and 15 perturbation fields were active. 
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A plot of the speedup for a linear stability analysis test case in which 15 perturbation fields were being 
evolved in conjunction with the base flow.  The dotted line indicates ideal (linear) speedup. 

 

Parallel spectral-element/Fourier computations 
The spectral-element/Fourier algorithm computes a three-dimensional solution where 
the variation in the flow in the out-of-plane direction is represented by a Fourier 
series.  In the formulation employed in Viper, the Fourier modes are only coupled 
during the advection step: the pressure and diffusion steps can be computed in a 
decoupled fashion.  Therefore a substantial speedup is available as each Fourier mode 
can be computed on a separate thread. 
Spectral-element/Fourier computations are initialised using the fourier command, 
and the number of Fourier planes is specified at this time.  The number of Fourier 
planes corresponds to the number of sample points in the Discrete Fourier Transform.  
Any number of planes greater than 2 is permitted.  Viper uses the Discrete Fourier 
Transform code supplied with the Intel Math Kernel Library, so users are not 
                                                 
1 Note that if users are performing stability analysis on a frozen base flow (using the freeze 
command), then there are effectively only Np fields to be computed to complete each time step. 
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restricted to numbers of planes in powers of two.  Due to the conjugate symmetry 
property of discrete Fourier transforms of real data (no imaginary component), the 
negative frequency modes need not be explicitly computed.  With a number of planes 
Nf, the number of Fourier modes being computed is Nf/2 + 1, where integer division is 
used (round down to the nearest whole number).  For example, if a user wishes to 
compute a spectral-element/Fourier computation with 31 planes, this corresponds to 
16 modes, and therefore simulations would best be performed on 16, 8, 4, 2, or 1 
thread.  As with linear stability analysis calculations, poorer performance will result if 
the number of threads was not a factor of 16. 
The figure below plots the speedup achieved for a spectral-element/Fourier test case.  
The test case was computed in cylindrical coordinates, and contained 30 Fourier 
planes.  The mesh had 385 elements of polynomial degree 5. 
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A plot of the speedup for a spectral-element/Fourier three-dimensional test case with 30 Fourier planes.  
The dotted line indicates ideal (linear) speedup. 

 

Important OpenMP environment variables 
Viper is compiled using the Intel Fortran compiler version 10.1, which implements 
extensions to the default set of OpenMP environment variables. 
By default, OpenMP implementations specify a small stack for each thread, which is 
often exceeded during simulations using Viper.  The OpenMP per-thread stack size is 
restricted in size even if an unlimited stack size is specified on the system.  The 
defaults are 2 Mb on 32-bit systems, and 4 Mb on 64-bit systems.  The environment 
variable KMP_STACKSIZE can be established to specify a non-default size of the 
stack.  For example, under Linux the user could type 
 
\> setenv KMP_STACKSIZE 100m 
 
to establish a per-thread stack size of 100 megabytes.  Suffixes b (bytes), k 
(kilobytes), m (megabytes), g (gigabytes), or t (terabytes) are used to specify the 
units. 
 
Most modern desktop machines have either multi-threaded or multi-core processors.  
Running large simulations on these platforms can produce unexpected crashes due to 
a limited per-thread stack size.  This can be overcome by creating the environment 
variable KMP_STACKSIZE, and setting its value as required.  To do this, go to 
Control Panel  System  System Properties.  From the Advanced 

 23



 24

tab, click Environment Variables.  Then under System variables, click 
New, and enter the details as required.  You may also use this procedure to explicitly 
set the OMP_NUM_THREADS environment variable if parallel computation is 
performing strangely.  
 
On shared-memory systems with Non-Uniform Memory Architecture (NUMA) 
configurations, such as the Altix Cluster (AC) at the Australian Partnership for 
Advanced Computing (APAC) National Facility, a performance boost may be 
achieved if threads are assigned to specific physical threads, cores, or processors on 
the system.  This occurs because there is a significant difference in the time taken to 
access memory located near different processors on such systems.  The environment 
variable KMP_AFFINITY can be used to bind threads to physical processing units.  
Experimentation has found that a small speedup is achieved if users set the 
KMP_AFFINITY environment variable in the following fashion: 
 
\> setenv KMP_AFFINITY granularity=fine,compact 
 
On Linux systems this can either be set in the users’ .login file, or for specific jobs 
by including this line in their queue script file.  The following example shows a queue 
script file used to launch a Viper job using 16 threads on the AC machine at APAC: 
 
#!/bin/csh 
#PBS -P h66 
#PBS -q normal 
#PBS -l walltime=2:00:00,vmem=2024MB,ncpus=16:16 
#PBS -wd 
setenv OMP_NUM_THREADS 16 
setenv KMP_AFFINITY granularity=fine,compact 
cd /short/hxx/user/job1/ 
../viper < macro.txt > /short/hxx/user/job1/output.txt 
 



Chapter 3: Pre-Processing 
To conduct a CFD computation, some pre-processing is usually required.  For 
simulations performed using Viper, the pre-processing phase entails the construction 
of meshes using a mesh generation package, and if necessary, converting these 
meshes into a format accepted by Viper. 
 

Accepted Mesh Formats 
Viper currently accepts conforming meshes comprising quadrilateral (4-sided) or 
hexahedral (6-faced) elements.  Quadrilateral meshes are employed for two-
dimensional, axisymmetric, or three-dimensional spectral-element/Fourier 
computations.  Hexahedral meshes are employed for three-dimensional computations 
in general geometries.  Conforming meshes require that adjacent elements meet edge-
to-edge or face-to-face. 
The format for mesh files used by Viper is a text-based format which first lists the 
vertex coordinates, and then describes the elements, their connectivity, and the 
boundary numbers of each edge/face. 
The following outlines the required mesh format: 
 

Nvert 
x1, y1, [z1,] 1 
x2, y2, [z2,] 2 
: 
: 
xNvert, yNvert, [zNvert,] Nvert 
Nelem 
1, N1, N2, N3, N4, [N5, N6, N7, N8,] B1, B2, B3, B4, 

[B5, B6,] 1 
2, N1,...,N4/N8 (2D/3D), B1,...,B4/B6 (2D/3D), 1 
: 
: 
Nelem, <Vertex numbers of element corners>, <Boundary 

numbers of element edges>, Region 
 
The following definitions apply: 

• Nvert Number of mesh vertices 
• Nelem Number of mesh elements 
• Region Fluid region (currently not used) 
• xn, yn, zn Spatial (x, y, z) coordinates of mesh vertices 
• N1-N8 Ordered numbering of vertices at element corners 
• B1-B6 Ordered numbering of boundaries on element edges/faces 
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The numbering convention employed when constructing elements from mesh vertices 
is outlined below for quadrilateral (left) and hexahedral (right) elements.  The 
corresponding numbering of boundary edges/faces is also shown. 
 

 
 

Converting from Gambit 
The Gambit mesh generation package can be used to generate meshes for use in 
Viper.  Conversion utilities available from the FLAIR Intranet 
(http://www.flair.monash.edu.au/intranet/) convert Gambit mesh files exported in the 
FIDAP format (.FDNEUT files) to the Viper text-based mesh format.  
From Gambit, the conversion process is as follows: 

1. Create a mesh comprising either quadrilateral (4-sided 2D) or hexahedral (6-
faced 3D brick) elements.  

2. Set the Solver type to FIDAP  
3. Define boundary conditions, using different names for each uniquely 

numbered boundary.  
4. Save mesh: Select FILE > EXPORT > MESH to save mesh with .FDNEUT 

extension.  
5. Exit Gambit.  
6. Rename file to default mesh_in.FDNEUT for conversion.  
7. Invoke the appropriate conversion tool (2D or 3D).  
8. A new text file is created containing mesh information readable by Viper. 
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Chapter 4: Configuring Simulations 
Prior to running a simulation, a configuration file must be created to provide Viper 
with the necessary information to establish and solve the flow correctly.  This 
information must be contained in a text file named viper.cfg, which should be 
located in the directory in which Viper is invoked. 
The viper.cfg file contains the following information: 

• Location of the mesh file, 
• Values for simulation parameters (e.g., dt, RKV, N), 
• User-defined functions, 
• Initial and boundary conditions. 

The commands used to supply these details to Viper are described in the following 
section. 
 

Commands recognised in the viper.cfg file 

btag 
Syntax: btag <tag_num> <var> <boundary_type_ID> 

[<param1> <param2> <param3>] 
Function: Defines the condition to be imposed on a particular boundary. 
Description: 
The btag command is used to link boundary tag numbers in the mesh file 
<tag_num> with a type of boundary (defined by an ID number 
<boundary_type_ID> recognised by Viper.  Currently, Viper accepts the 
following boundary ID numbers: 

1. Constant Dirichlet boundary (values of components of flow variables are 
given by <params>). 

2. Static user-defined Dirichlet boundary (components are expressed as 
mathematical expressions that are functions of spatial coordinates x, y, z, and 
the reciprocal kinematic viscosity, RKV). 

3. Transient user-defined Dirichlet boundary (components are again expressed as 
mathematical expressions, which here can also be functions of time, t). 

4. Periodic boundaries (x-direction only).  This boundary requires boundary 
edges/faces to be identical on a pair of periodic boundaries. 

5. Symmetry boundary (no velocity normal to the boundary, and zero shear stress 
along the boundary – this condition is inexactly imposed at the conclusion of 
each time step). 

Viper permits the separate prescription of velocity and pressure boundary conditions 
on a boundary through the <var> string, which can be set to “vel” or “p”(case 
insensitive), for velocity and pressure, respectively. 
In addition, if <var> takes the value “s”, then a scalar field will be established, 
which will then be computed using an Auxiliary Semi-Lagrangian Advection-
Diffusion approach (for further details on this method see Maday, Patera & Rønquist, 
J. Sci. Comp., 1990).  Users should also then specify the coefficient of scalar diffusion 
using gvar_scalar_diff. 
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The following are examples of the use of btag: 
e.g. 1: 
 
\> btag 5 vel 3 ‘x*cos(t)’ ‘2.0’ ‘3.0’ 
 
Specifies that boundary number 5 (in the mesh file) will be prescribed a transient 
user-defined Dirichlet velocity condition with velocity components u = x cos(t), 
v = 2.0, and w = 3.0. 
 
e.g. 2: 
 
\> btag 4 p 1 0.5 
 
Specifies that boundary number 4 will be prescribed a fixed Dirichlet pressure 
condition with p = 0.5 on the boundary. 
 

gvar_curve 
Syntax: gvar_curve <bndry> 
Function: Specifies a boundary number on which to apply automated 
boundary curvature. 
Description: 
The domain boundary number <bndry> corresponds to the boundary number as 
defined in the btag statements in the viper.cfg file.  Continuous blended curves 
comprising circular arcs are constructed along edges corresponding to boundary 
number <bndry>.  Continuous curvature is not enforced for adjacent edges on a 
single element to avoid illegal element mappings.  In 3D, an edge-curvature-
preserving interpolation is applied to generate the curved surface on each boundary 
face. 
 

gvar_dt 
Syntax: gvar_dt <value> 
Function: Sets the time step Δt. 
Description: 
The time step Δt is set to <value>, where <value> must be greater than 0.0, 
otherwise the default value Δt = 0.005 is used instead. 
 

gvar_init_field 
Syntax: gvar_init_field <u_fn> <v_fn> <w_fn> <p_fn> 
Function: Sets an initial velocity/pressure field for a simulation. 
Description: 
Viper solves the time-dependent Navier—Stokes equations forward in time from 
some initial condition, subject to imposed boundary conditions.  If no initial velocity 
field is set, Viper begins computing from a zero interior velocity field.  This facility 
allows user-specified functions for the velocity fields to be specified, which can, in 
some cases, make simulations more stable or more efficient, by permitting an 
improved “first guess” of the velocity field to be used. 
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If the user subsequently calls load to load a velocity field from a saved file, then that 
velocity field is used to begin the computation, rather than what is specified by 
gvar_init_field. 
Functions <u_fn>, <v_fn>, <w_fn> and <p_fn> are input for each of the 
velocity components u, v and w, and the kinematic static pressure p. 
These functions accept variables time t, spatial coordinates x, y, and z, and the 
reciprocal kinematic viscosity RKV.  In two dimensions, z is assumed to be zero. 
 

gvar_init_scalar_field 
Syntax: gvar_init_scalar_field <s_fn> 
Function: Sets an initial scalar field for a simulation 
Description: 
If the user subsequently calls load to load a velocity field from a saved file, then that 
velocity field is used to begin the computation, rather than what is specified by 
gvar_init_field. 
A function <s_fn> is input for the initial scalar field distribution at the beginning of 
the computation. 
This functions accept variables time t, spatial coordinates x, y, and z, and the 
reciprocal kinematic viscosity RKV.  In two dimensions, z is assumed to be zero. 
 

gvar_kink 
Syntax: gvar_kink <elem> <vertex> 
Function: Specifies a node at which to allow a curvature discontinuity on a 

boundary in 2D. 
Description 
A kink, or a discontinuity in curvature, is permitted at the mesh node corresponding to 
element <elem> and vertex <vertex> in 2D.  <elem> must be a positive integer, 
which is set to the largest element number if <elem> is greater than the number of 
elements, and <vertex> is a positive integer between 1 and 4.  This feature is used 
to avoid attempts by the automated curvature algorithm in Viper to create unrealistic 
curvature, such as around a deliberately sharp corner in a mesh.  An example of this is 
the sharp trailing edge of an aerofoil. 
 

gvar_monitor (deleted) 
Description: 
This command is no longer implemented.  Use command-line function monitor 
instead. 
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gvar_movref 
Syntax: gvar_movref <u> [<v> <w>] 
Function: Specifies time-varying functions for the velocity of a moving 

reference frame. 
Description: 
The user inputs time-varying functions for the velocity of a moving reference frame.  
Functions can include variables time t, reciprocal kinematic viscosity RKV, and any 
user-specified functions. 
At least one function (for the u-velocity) must be supplied.  Functions for v and w 
components are optional. 
If this command is included in the viper.cfg file, this facility adjusts the velocity 
fields at each time step to accommodate a time-varying moving reference frame.  The 
sign convention is such that if the user wishes for the velocities within the 
computational domain to be adjusted to match a time-varying boundary condition, 
both should be specified with the same sign. 
 

gvar_n 
Syntax: gvar_n <value> 
Function: Sets the element polynomial degree (p-resolution). 
Description: 
The element polynomial degree is set to an integer <value>, where <value> must 
be equal to, or greater than, 2.  The maximum allowable polynomial degree is 
restricted only by system resources.  Increasing this value improves spatial resolution 
of computations on a mesh, though users should note that this incurs costs due to 
larger and slower calculations, and less stable calculations, requiring a smaller time 
step. 
 

gvar_nnvisc 
Syntax: gvar_nnvisc <function> 
Function: Sets a function for a non-Newtonian viscosity. 
Description: 
A mathematical expression <function> is input, which is a function of the shear 
rate SR, and the spatial coordinates x, y, and z.  In two-dimensional computations, z 
is assumed to be zero. 
 

gvar_re (obseleted) 
Description: 
As of 10 August 2007 this command has been renamed to gvar_rkv, reflecting the 
name change of the reciprocal kinematic viscosity parameter from Re to RKV. 
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gvar_rkv 
Syntax: gvar_rkv <value> 
Function: Sets the reciprocal kinematic viscosity RKV. 
Description: 
The reciprocal kinematic viscosity parameter RKV is set to <value>.  If the 
simulation imposes a unit reference velocity, and employs a mesh with a unit 
reference length, then the Reynolds number of the simulation is equal to the value of 
the RKV parameter. 
 

gvar_scalar_diff 
Syntax: gvar_scalar_diff <coeff> 
Function: Sets the diffusion coefficient for transport of a scalar field. 
Description: 
The parameter <coeff> specifies the coefficient of diffusion for the advective-
diffusive transport of a passive scalar field on a fluid flow.  The scalar field S is 
integrated using an auxiliary semi-Lagrangian advection-diffusion algorithm (e.g., see 
Maday, Patera & Rønquist, J. Sci. Comp., 5(4), 263-292, 1990). 
 

gvar_usrvar 
Syntax: gvar_usrvar <func_name> <function> 
Function: Creates a user-defined mathematical function. 
Description: 
A function named <func_name> is created, and is assigned to a mathematical 
expression <function>, which is which is a function of time t, spatial coordinates 
x, y, z, the reciprocal kinematic viscosity RKV, plus any previously created user-
defined functions. 
A character string is required for each of <func_name> and <function> 
parameters, which must be enclosed in single quotes (‘) if they include parentheses. 
The new function <func_name> must be given a unique name, which cannot 
conflict with any of the implicit variables recognised by Viper.  The expression 
<function> is a string specifying the function that is evaluated whenever other 
functions featuring <func_name> as a variable are evaluated. 





Chapter 5: Running Simulations 
Once a suitable configuration file is established to define the problem to be solved, 
Viper is relatively easy to use.  Instructions can either be input interactively by the 
user, or supplied to the code in a macro file.  While Viper executables exist for use 
under a Windows operating system as well as Linux platforms, it is a command-line 
application: there is no Graphical User Interface (GUI). 
When invoked, Viper automatically seeks the configuration file viper.cfg, and if 
not found, it prompts the user for a file containing appropriate configuration 
instructions.  Once a suitable file is located, Viper then proceeds to process the 
contents of the configuration file, during which the mesh data is input, boundary and 
initial conditions are established, and various mapping and indexing arrays are 
generated. 
These processes are accompanied by output printed to the screen, which should be 
checked carefully if the process fails, or the subsequent simulation produces 
undesirable or unexpected results. 
Finally, the user is instructed on how to activate the help utility, which can be used to 
find out what commands are available, and give detailed instructions on their usage.  
An example of screen output upon launching Viper is shown below. 
 

 
An example of the screen output after Viper is launched: the configuration file viper.cfg has 

successfully been located and processed, and Viper awaits input from the user. 
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This chapter describes a number the tasks and features that can be employed when 
using Viper. 

Saving and Loading flow field data using restart files 
Sometimes a simulation has not finished before a user needs to end their session at a 
terminal, and sometimes hardware faults or divergence within a computation can 
cause a simulation to fail, potentially losing hours of valuable work.  Viper facilitates 
a buffer against these potential calamities by allowing the user to save the computed 
flow fields at instants in time to restart files.  This is implemented with the save and 
load commands. 
The save command can be used at the end of, or many times during, a simulation, to 
store the velocity fields for a possible restart of the computation in a later session.  At 
the beginning of a subsequent Viper session, the load command can be used to read 
in the saved velocity fields, allowing the simulation to proceed from where it was 
saved. 
Restart files are also useful in allowing the user to initiate a computation from a saved 
solution, but run it at a different parameter (such as the Reynolds number).   

Using Macros and Loops 
The macro facility provides an alternative to manually (interactively) entering 
commands during a Viper session.  This is especially useful if the user wishes to run 
jobs remotely (such as on high-performance computing facilities), or if there is a 
lengthy list of complex commands the user may wish to execute several times.  
Macros are simply text files containing a list of commands recognisable by Viper.  
Each command must appear on its own line, and spaces and tabs are treated the same.  
The macro file can have any name or extension the user wishes. 
Input control can be passed to a macro file either from within Viper, or when 
launching Viper.  Within Viper, the macro command is used to open and execute 
commands within a supplied macro file.  From the Linux shell / Windows command 
prompt, the user can execute Viper with instruction to take input from the macro file, 
rather than the keyboard, by using the left angled bracket feature of both operating 
systems, i.e.: 
 

\> viper < macro  
 
launches the Viper executable viper, and input is piped from the file named macro. 
Macro files can be nested – it is possible to include the command macro within a 
macro file. 
For repetitive tasks, Viper has the ability to execute a sequence of commands in a 
loop.  This is facilitated using the loop command, which permits the user to specify 
their required number of iterations.  Additional loops can be nested within parent 
loops, and macro files can also be called from within loops.  Therefore, powerful and 
complicated sets of instructions can be executed with very few user-input keystrokes. 
For example, a macro file could be established, named macro1.txt, containing the 
following: 
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axi 
init 
step 1000 
save –f save.dat 
tecp –f tecplot.plt 
stop  

 
The user could then invoke Viper, and use the macro command to read from the 
macro file, by typing 
 

macro macro1.txt 
 
Macros can be combined with loops for some considerable flexibility.  Imagine two 
macro files, macro2.txt and macro3.txt, containing: 
 

macro2.txt commands: macro3.txt commands: 
init 
loop 3 
macro macro3.txt 
endl 
stop 
 

step 100 
save –s –f save.dat 
tecp –s –f tecplot.plt 
flowrate 
forces 2 
forces_bndry2.dat 

 
From within Viper, if the command 
 

macro macro2.txt 
 
is called, the macros and loop command make this equivalent to typing the 
following list of commands:  
 

init 
loop 3 
step 100 
save –s –f save.dat 
tecp –s –f tecplot.plt 
flowrate 
forces 2 forces_bndry2.dat 
step 100 
save –s –f save.dat 
tecp –s –f tecplot.plt 
flowrate 
forces 2 forces_bndry2.dat 
step 100 
save –s –f save.dat 
tecp –s –f tecplot.plt 
flowrate 
forces 2 forces_bndry2.dat endl 
stop 





Chapter 6: Post-Processing 
Once a simulation has been completed, the output usually requires some form of post-
processing to be converted into useful results.  Viper outputs data in two primary 
formats: ASCII files and Tecplot binary files.   
Text-based (ASCII) files typically contain time history data of various quantities, with 
each line in the file containing data at time increments through the computation.  For 
instance, the command flowrate is used to output the flow rate through each 
boundary on a mesh, and the example below shows the content of such an output file 
for a mesh with four boundaries, two of which (boundaries 3 and 4) are impermeable 
(no flow through them): 
 

 
The contents of the ASCII output file created after a number of calls to flowrate. 

 
Notice that results are stored in these files at a very high precision (approximately 17 
significant figures) to ensure that all the precision of the double-precision arithmetic 
of the code is preserved in the output. 
Commands which can be used to create ASCII data files include (see their entries in 
the subsequent Command List for more information): 
 

flowrate 
forces 
getminmax 
int 
l2 
monitor 

 
Furthermore, ASCII file output is generated when invoking global linear stability 
analysis (using floq and arnoldi or stab), as well as simulated particle tracking 
(using track commands). 
For visualization of the computed flow fields, Viper generates binary data files 
suitable for plotting using the Tecplot package (see www.tecplot.com for more 
information).  These files should carry the default extension .plt, though files with 
extension .dat can also be opened with Tecplot.  To generate a Tecplot binary file, 
use the command tecp, but note that specialist Tecplot plotting files are also 
generated when computing a global linear stability analysis using either tec_floq 
or arnoldi. 
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Visualizing Flow Fields with Tecplot 
Flow fields visualised using Tecplot contain the spatial coordinate and connectivity 
data defining the mesh, plus data fields corresponding to various quantities.  Users 
have some control over which variables are stored – see the tecp command 
description for more information. 
The images below show examples of visualization of data in Tecplot.  Shown is a 
portion of a larger two-dimensional computational domain, and plotted are the mesh, 
flooded contours of velocity magnitude (one of the numerous quantities available), 
velocity vectors, and streamlines. 
 

(a) (b) 

 
(c) (d) 

 
Visualization of a portion of the computational domain of a two-dimensional simulation.  (a) The mesh, 

(b) flooded contours of instantaneous velocity magnitude, (c) velocity vectors, and (d) velocity 
streamlines. 

 
Users are encouraged to experiment with Tecplot, as there are many possibilities for 
plotting available, and with some practice, first-class figures can be generated.   

Plotting ASCII Data Files 
The Tecplot package can also be used for plotting the data contained in the ASCII 
data files, as by default, Tecplot can read the columnar data format presented in these 
files.   
From a Windows desktop, users can right-click on an ASCII data file (with the .dat 
extension), and can select Open With  Tecplot. 
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Alternatively (and on Linux systems), these files can be loaded from within Tecplot in 
the standard fashion. 
 

(a) 
(b) 

Graphing data with Tecplot: (a) A screenshot showing a time-dependent data set loaded into Tecplot 
with default plotting options.  (b) A plot from Sheard & Ryan (2007) generated using Tecplot. 

 
In the above figure, both the default appearance of plotted data in Tecplot, and an 
example of a published plot, are shown to illustrate that a substantial flexibility in 
appearance and style can be obtained using features of the plotting software. 

 39





Chapter 7: Command List 
Viper recognises a number of commands which are used to initialise, run, and obtain 
output from, a simulation.  A description of each command similar to those given here 
can be obtained while running Viper by invoking the Help facility, i.e.: 
 
\> help <command_name> 
 
where <command_name> is the name of the command for which a description is 
required.  A list of available commands can be generated simply by typing: 
 
\> help 
 
Commands in the following list are sorted alphabetically.  Each entry contains the 
following information: 
Syntax: The command, plus any [optional] <parameters> or -

options that can be supplied. 
Function: A brief description of the action performed by the command. 
Description: A more detailed description of the functionality of the command. 

Advect 
Syntax: advect <form> 
Function: Select the form of the advection operator. 
Description: 
The advection term of the Navier—Stokes equations can be written in a number of 
forms which are equivalent in a continuous sense, though not in a discrete sense.  
Viper implements the rotational, skew-symmetric and convective forms of the 
advection term.  These are invoked by typing the following: 

 advect convective 
 The convective form conserves neither momentum nor kinetic energy 

in the inviscid limit, and requires 4 or 9 derivative operations for two- 
or three-dimensional computations, respectively. 

 advect rotational 
 The rotational form conserves both momentum and kinetic energy in 

the inviscid limit, and only requires 4 or 6 derivative operations in two- 
or three-dimensional computations, but has been shown to cause 
significant aliasing errors.  If this option is selected during 
axisymmetric computations, the convective form is used instead. 

 advect skew 
 The skew-symmetric form is the default, and it conserves both 

momentum and kinetic energy in the inviscid limit.  It requires 8 or 18 
derivative operations in two- or three-dimensional computations, but 
despite this cost, it has been shown to be the preferred form in spectral, 
Galerkin and collocation methods for minimising aliasing errors. 
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The advect command can also be used to switch the advection term off (or back on 
again) during computations of the base flow (does not apply to perturbation fields 
during Floquet stability analysis: 

 advect on 
 Turn on computation of the advection term. 

 advect off 
 Turn off computation of the advection term. 

Note that switching off the advection term reduces the equations being solved to 
the creeping flow equations. 
See also: diff, pres. 
 

Arnoldi 
Syntax: arnoldi <Neigs> <Nits> [<file_prefix>] 
Function: Perform an Arnoldi iteration of global linear three-dimensional 

stability analysis. 
Description: 
If Floquet stability analysis is being performed (call floq prior to init), this 
command performs an iteration of the Implicitly Restarted Arnoldi Method, which is 
used to compute several of the leading complex eigenvalues (Floquet multipliers) and 
the corresponding eigenvectors (perturbation velocity fields for the Floquet modes) of 
the linear operator A, which describes the effect of integrating the perturbation field 
forward in time by one period, T. 
• The <Neigs> parameter is an integer specifying the number of leading 

eigenvalues that are to be computed (typically only a handful are desired). 
• The <Nits> parameter is an integer specifying the number of Arnoldi vectors 

that are generated at each iteration.  The relation <Nits> ≥ 2 + <Neigs> must 
be satisfied, but otherwise <Nits> should be kept reasonably small to reduce the 
storage cost of the method. 

• The optional string <file_prefix> is added to the beginning of the output 
files created upon convergence of the eigenvalues.  This is essential to avoid files 
accidentally being overwritten if multiple jobs are being run in the same directory. 

Presently, this facility can only be employed on a single spanwise/azimuthal 
wavelength.  This approach is far more powerful than the stability analysis capability 
provided by the stab command, which only returns the magnitude of the leading 
Floquet multiplier.  The arnoldi command returns the complex components of 
several of the leading modes. 
Once the arnoldi routine converges on the requested number of eigenvalues, the 
eigenvector fields are saved to Viper restart files 
<file_prefix>save_floq_eigXXXX.dat, and to Tecplot binary files 
<file_prefix>tecp_floq_eigXXXX.plt.  The converged Floquet 
multipliers are printed to screen (or STDOUT), and to a file named 
<file_prefix>floq_mult_eigs.dat. 
On the first occasion that this command is called in a Viper session, an Arnoldi restart 
file <file_prefix>saved_arnoldi_eigs.dat is searched for.  If it exists, 
the state of a previously saved Arnoldi iteration is loaded, and the computation 
continues from that position. 
At the conclusion of every arnoldi call, the current state of the Implicitly Restarted 
Arnoldi Iteration is saved to a file named 
<file_prefix>saved_arnoldi_eigs.dat.  This feature allows the user to 
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perform an Arnoldi stability analysis over several Viper sessions.  Users should note 
that if a file of the same name exists in the working directory, it will be overwritten 
without prompting the user. 
See also: floq, stab. 
 

Autocorrf 
Syntax: autocorrf [-f <filename> -x <x> <y>] 
Function: Return the autocorrelation of each SE/Fourier velocity component 

at a point. 
Description: 
This command outputs the time (t), the supplied spatial coordinates, and the 
autocorrelation of each velocity component along the span at a physical point on the 
mesh. 
Notes: 
• Unlike the monitor command, autocorrf interpolates the flow quantities to 

the requested location, rather than just output the values at the nearest mesh node. 
• Furthermore, the points are calculated and output to file at the time that 
autocorrf is called.   

• autocorrf can only be called after init. 
Given a discrete Fourier transform of the spanwise variation of a velocity component 
Fu, the autocorrelation s calculated first by taking the product of Fu and its complex 
conjugate, and then by finding the inverse discrete Fourier transform of this product. 
The following options are available: 

 -f <filename> 
 Used to specify a filename <filename> (including extension) to 

save the flow values to.  If omitted, the default filename is 
samplef.dat. 

 -x <x> <y> 
 Used to specify the (x, y) coordinates of a point in the computational 

domain at which the Fourier coefficients are to be determined. 
See also: energyf, samplef. 
 

Axi 
Syntax: axi 
Function: Toggles between cylindrical and Cartesian coordinate systems (2D 

only). 
Description: 
Two-dimensional computations may be carried out in either a Cartesian (the default; 
x-y-z) or a cylindrical (z-r-θ) coordinate system.  This command is used to toggle 
between the two modes. 
If cylindrical coordinates are switched on, then the computations are performed in an 
axisymmetric sense, where y = 0.0 is taken to be the symmetry axis r = 0.0.  
Therefore, the user should ensure that no mesh vertices include a negative y-
coordinate, as this will produce unpredictable, incorrect, and non-physical results. 
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Notes: 
• axi has no effect on three-dimensional computations, which are currently 

restricted to Cartesian coordinates only, 
• axi can be toggled at any time, though the computation will need to be re-

initialized prior to further time stepping.  Care should be taken to ensure that post-
processing commands (e.g., forces, flowrate, tecp, etc.) are called with the 
appropriate axi setting. 

See also: wvel. 
 

Bouss 
Syntax: bouss <density_gradient> <gravity> 
Function: Implement a Boussinesq approximation for density-driven 

convection. 
Description: 
 
Notes: 
• This command requires that the scalar advection-diffusion field is active, as this 

field represents the temperature field. 
• The scalar diffusion coefficient must be set appropriate to the diffusion properties 

of whatever medium is being evolved (e.g. thermal diffusion coefficient for 
temperature, etc.). 

 
This command implements density-driven convection by means of a Boussinesq 
approximation. 
The Boussinesq approximation is valid for small density variations, as under these 
conditions the density difference enters only through the gravity term.  For simplicity, 
the acceleration due to gravity is taken to act in the positive x-direction, which 
corresponds to the positive axial direction in the cylindrical formulation of the code. 
The x-direction momentum equation is modified by adding the gravity term: 
 

,g xρ′  
 
where ρ′  is the density normalised by a reference density 0ρ , and is expressed 
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 is supplied to the bouss command, 

and represents the dimensionless gradient of the density-temperature profile of the 
working fluid, evaluated at the reference temperature, and normalised by the reference 
density and temperature.  The temperature of the working fluid is represented by the 
scalar field S, and is taken to be normalised by a reference temperature (S = T/T0). 
While this implementation is designed to implement a temperature-based density-
driven convection, in fact any density-driven convection can be incorporated in this 
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fashion (e.g. density variation due to solute concentration, etc.) provided that the basis 
can be transported as a scalar field. 
 

Chref (obsolete) 
Syntax: chref <u-chng> <v-chng> [<w-chng>] 
Function: Adjust the reference frame in which the fluid is moving. 
Description: 
This command changes the Cartesian velocity components in the interior of the 
computational domain to allow for an alteration in the reference frame of motion.  For 
example, if a body is initially at rest, then impulsively begins moving to the right 
(positive x-direction), an appropriate call would be 
 
\> chref -1.0 0.0 0.0 
 
which adds -1.0 to all the interior u-velocities.  The user must independently adjust 
any boundaries whose velocity also alters (e.g., the inlet and transverse boundaries for 
the impulsively started cylinder case). 
Note that this command has been superseded by the more powerful 
gvar_movref facility implemented through the viper.cfg configuration file. 
 

Diff 
Syntax: diff 
Function: Toggle diffusion substep on/off during time integration. 
Description: 
Time integration is carried out by solving each of the advection, pressure and viscous 
diffusion terms consecutively.  This function is used to switch off computation of the 
diffusion term.  The default setting of this feature is ON.  This facility is primarily 
provided as a debugging tool. 
Note that switching off the diffusion term alters the equations being solved by 
Viper. 
See also: pres, advect. 
 

Energyf 
Syntax: energyf [-f <filename>] 
Function: Compute norms of energy in each Fourier mode in an SE/Fourier 

3D simulation. 
Description: 
An energy norm is computed for each Fourier mode of a three-dimensional spectral-
element/Fourier computation.  For each Fourier mode (k), the energy norm is given by 
the integral 
 

,ˆ k Ω∫Ω d2u  
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where the kth Fourier mode coefficients of the velocity field are given by , and  
is the computational domain in the spectral-element plane (either x-y or z-r). 

kû Ω

The computed energy norms are written to a text file with default filename 
energyf.dat, or if provided, the optional filename <filename>. 
See also: autocorrf, samplef. 
 

Exit 
Syntax: exit 
Function: Exits Viper. 
Description: 
Viper terminates immediately, and any unsaved work will be lost.  This command 
performs the same action as stop and quit. 
See also: quit, stop. 
 

Floq 
Syntax: floq <m1> [<m2> <m3> ... <mNfloq_modes>] 
Function: Invoke Floquet linear stability analysis and specify mode numbers 

(2D only). 
Description: 
Floquet analysis is a type of linear stability analysis which can be used to determine 
the stability of a two-dimensional base flow to three-dimensional disturbances which 
are spatially periodic with a specific spanwise/azimuthal wavelength.  This technique 
requires either a periodic or time-independent two-dimensional base flow. 
This command must be called prior to a call to init, as it is used to specify a number 
of spanwise (two-dimensional Cartesian) or azimuthal (axisymmetric) mode numbers 
for linear stability analysis.  This command cannot be invoked in three-dimensional 
computations.  The number of mode numbers which can be analysed simultaneously 
(NFloq_modes) is limited only by available computational resources, which increases 
approximately with (NFloq_modes + 1).  The spanwise/azimuthal wavelength 
 

,2
m
πλ =  

 
m is the spanwise/azimuthal mode number. 
During a Floquet analysis computation, the periodic base flow is evolved in the 
standard fashion, and in addition, a perturbation field associated with each mode 
number is also evolved.  At periodic intervals, either the command arnoldi or 
stab is used to calculate and output the Floquet multiplier(s) associated with each 
azimuthal/spanwise mode. 
See also: arnoldi, stab. 
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Flowrate 
Syntax: flowrate [<filename>] 
Function: Outputs the flow rate through each boundary. 
Description: 
The volume flow rates out of each boundary are calculated and output to a file named 
<filename>.  If <filename> is not specified, the data is written to a default file 
named flowrate.dat.  If the file exists, the time t, and each boundary flow rate is 
appended as a row of space-separated numbers to the end of the existing text file.  
Otherwise, a new file is created. 
 

Forces 
Syntax: forces <boundary> [<filename>] 
Function: Calculate global forces imparted on a specific boundary. 
Description: 
Calculates the global forces imparted on the boundary numbered <boundary> in the 
viper.cfg file.  These forces are output to a file <filename> (default is 
forces.dat), which is appended if it already exists.  If no boundary number is 
given, no calculations or output are performed. 
 

Fourier 
Syntax: fourier [-f <filter_dist> -n <Nplanes> -mode 

<mode_number> -span <span>] 
Function: Configure the solver for a three-dimensional computation. 
Description: 
Three-dimensional computations can be performed on a two-dimensional mesh 
provided that the geometry is homogeneous in the out-of-plane direction (z in 
Cartesian, θ in cylindrical coordinates).  This is achieved by expanding the flow 
variables in the out-of-plane direction using a Fourier expansion. 
This command supplies the necessary parameters to initialise a spectral-
element/Fourier computation.  The following options are available: 

 -f <filter_dist> 
 In cylindrical coordinates (use axi), the vanishinly small grid spacing 

near the axis can lead to an amplified stability constraint on the time 
step. 

 By default, a ramp filter is applied to the advection substep from 100% 
at r = 0 to 0% at r = 10% of the maximum radial dimension in the grid.  
If a positive value of <filter_dist> is supplied, a ramp filter is 
applied extending to r = <filter_dist>.  This facility is useful if a 
filter is helpful, but the default distance is either too small or too large 
for the model being computed. 

 -mode <mode> 
 The positive floating point value supplied as <mode> specifies the out-

of-plane wavenumber describing the extent of the computational 
domain in the out-of-plane direction.  The mode number relates to the 
span by <span> = 2π/<mode>.  If no span or mode number is 
supplied, the computation defaults to a span of 2π, corresponding to an 
out-of-plane mode number m = 1.  If both are given, the computation 
will employ the most recently given value. 
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 -n <Nplanes> 
 A positive integer is supplied to specify the number of Fourier planes 

employed in the computations.  After Fourier transformation, this 
corresponds to <Nplanes>/2 Fourier modes in the out-of-plane 
direction.  A default of 4 planes is used. 

 Note: For best efficiency from parallel simulations, computations 
should be run on <Nplanes>/2+1 threads, or factors thereof.  For 
example, if a user wishes to compute with 30 Fourier planes, this 
corresponds to 15 complex Fourier modes, resulting in 16 separate 
fields to be computed (including the fundamental mode).  Thus 
simulations would best be run on 16, 8, 4, 2, or 1 thread (or processor). 

 -span <span> 
 The positive floating point value supplied as <span> specifies the 

out-of-plane extent of the computational domain.  Users can either 
specify an out-of-plane span using this option, or they can use the -
mode option to specify this parameter as an out-of-plane wavenumber 
(useful for computations in cylindrical coordinates).  The span is taken 
as being in length units for Cartesian computations, and in radian for 
computations using cylindrical coordinates. 

If a load command is called prior to this routine, the two-dimensional solution input 
during load is mapped to the three-dimensional velocity field.  Users must call 
init after a call to fourier, to prepare for time integration. 
See also: rand. 
 

Freeze 
Syntax: freeze 
Function: Toggles a freeze on time integration of the base flow. 
Description: 
The default condition is OFF, which provides for normal time integration of the base 
flow velocity field when the step command is used.   
Sometimes, though, it is useful to freeze the base flow, while continuing as normal to 
carry out time integration of perturbation fields in Floquet analysis, or simulated 
particle tracking.  This could either be as a result of the base flow being time-
independent (in which case freeze could be used to save time by not evolving the 
steady-state flow), or in specific cases where the user may wish to interrogate a frozen 
snapshot of a normally time-varying flow field. 
See also: track, floq, rotate 
 

Getminmax 
Syntax: getminmax [-f <filename> -p <function> -c 

<cutoff> -x <level> <tol> -e] 
Function: Find location and values of minima and maxima of a user-specified 

scalar field. 
Description: 
A user-specified function <function> is input (using the same mathematical functions 
available during configuration), and the positions (x, y, z) of maxima and minima, and 
values of the scalar function at those locations are returned. 
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Available variables are: 
t  Current time, 
x, y, z  Spatial coordinates, 
u, v, w, p Velocity components (u, v, w) and kinematic static pressure (p), 
RKV  Reciprocal kinematic viscosity (1/ν), 
dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz (spatial 
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and any user-specified variables defined during configuration. 
Local minima and maxima are located where the gradient vector of the scalar field is 
zero. 
The values of all variables are determined at the current time, and the evaluated 
locations are output to either the default minmax.dat, or the optional user-specified 
<filename>. 
The following options are available: 

 -f <filename> 
 Used to specify a filename <filename> (including extension) to 

save the minima/maxima data to.  If omitted, the default filename is 
minmax.dat. 

 -p <function> 
 A user-specified function <function> is provided to the routine.  If 

omitted, the default is vorticity in the x-y plane (
y
u

x d
d

d
dv

− ): “dvdx-

dudy”. 
 -c <cutoff> 

 A cutoff value for the square of the magnitude of curvature at turning 
points.  Turning points below this cutoff threshold are ignored.  The 
square of the magnitude of the curvature for each located turning point 
is output to screen, so users will be able to tune their minima/maxima 
identification to isolate only those they wish to find on a simulation-
specific basis.  The default value is |curvature|2 = 0.0. 

 -x <level> <tol> 
 A threshold for turning points whose scalar value lies within a certain 

tolerance <tol> of a specified value <level> can be employed with 
this option.  Any turning point with a maximum/minimum scalar field 
value lying between <level> - <tol> and <level> + <tol> 
will be ignored.  The defaults are <level> = 0.0 and <tol> = 0.0, 
(i.e., no turning points are ignored). 

 -e 
 If specified, the magnitude of the rate of strain is computed at the 

locations found, and this is also output. 
 

Help 
Syntax: help [<command name>] 
Function: Gives assistance to user. 
Description: 
If no <command name> input, a list of available commands is given. 
If <command name> is provided, a detailed description of the command follows. 
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Immerse 
Syntax: immerse [-static] 
Function: Toggles immersed-boundary computation on/off. 
Description: 
Immersed-boundary calculations are performed in two-dimensional simulations when 
this feature is activated.  An external code is currently required to facilitate this 
feature, and if it is not operational, this code will hang during time stepping, as Viper 
enters a perpetual loop which only stops when the external code has completed its 
calculations. 
If the -static option is specified, the immersed boundary is taken to be fixed in 
time, and thus the information from the forcing input file is processed only once. 
 

Init 
Syntax: init 
Function: Initialize job for time integration. 
Description: 
This routine builds all the necessary matrices for time-integration of the flow solution.  
If init is called multiple times in a Viper session, all matrices and storage are re-
created afresh. 
 

Int 
Syntax: int <function> [<filename>] 
Function: Integrates a user-specified function over the computational 

domain. 
Description: 
A user-specified function <function> is input (using the same mathematical 
functions available during configuration), and the value of this function is integrated 
over the computational domain.  Additional available variables are: 

t  Current time, 
x, y, z  Spatial coordinates, 
u, v, w, p Velocity components (u, v, w) and kinematic static pressure (p), 
RKV  Reciprocal kinematic viscosity (1/ν), 
dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz (spatial 
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and any user-specified variables defined during configuration. 
The values of all variables are determined at the current time, and the evaluated 
integral is output to either the default text file integral.dat, or the optional user-
specified <filename>. 
See also: l2. 
 

 50



L2 
Syntax: L2 [<filename>] 
Function: Compute the L2 norm (integral of velocity magnitude throughout 

domain). 
Description: 
The L2 norm is defined as 
 

,d2 Ω≡ ∫Ω uL  

 
where |u| is the magnitude of the velocity vector, and Ω is the computational domain.  
This quantity is calculated at the current time, t, and the result is written to either the 
default text file l2norm.dat, or if provided, to the optional filename 
<filename>. 
See also: int. 
 

Load 
Syntax: load [-f <filename> -k <floq_mode> -m] 
Function: Load flow field vectors from file. 
Description: 
Loads flow field vectors, as well as computation parameters t, dt, RKV, and the 
number of elements and element polynomial degree from a user-specified file.  This 
command loads flow field data from files created with the command SAVE, and is 
used to begin a computation from a previously computed solution. 
Update 4/11/2006: This command can now read files containing flow fields at the 
three previous time steps, while also being capable of reading the old current-time 
saved fields.  The new files avoid the annoying perturbation that was added to flows 
upon re-start. 
The following options are available: 

 -k <floq_mode> 
 Used to specify an integer perturbation field number (i.e., 1, 2, ... , 

NFloq_modes, when Floquet analysis is active) to load a saved flow field 
into.  The default is <floq_mode> = 0, corresponding to the base 
flow. 

 -f <filename> 
 Used to specify a filename <filename> (including extension) to 

load the flow fields from. If the -f option is not specified, the default 
filename ff_in.dat is used. 

 -m 
 Specifies that you wish to load spatial coordinates from the file also 

(this feature is only required if you wish to load data onto a different 
macro-element mesh. 

See also: save. 
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Loop 
Syntax: loop <num_iterations> 
Function: Executes a list of commands <num_iterations> times. 
Description: 
Following a call to loop <num_iterations>, the user inputs a list of commands 
to be executed within a loop.  The command list is terminated by entering endl (for 
“end loop”).  Multiple loops can be nested within one another.  The looping begins 
after the final endl command is supplied.   
The commands are stored in a temporary “scratch” file (visible on Linux systems, 
invisible on Windows systems), which may not be deleted if Viper is terminated while 
looped commands are being executed.  These files are typically named fortXXXXX, 
and are safe to delete if Viper is not running in that directory. 
See also: macro. 
 

Macro 
Syntax: macro <filename> 
Function: Read commands from a file. 
Description: 
Specifies a file from which commands are to be input from.  The file <filename> 
is opened, and commands in the file are executed as if they were entered at the 
command line.  A number of macro files may be nested (i.e., the macro command 
can be called from macro files) to improve the flexibility of this function. 
See also: loop. 
 

Mask 
Syntax: mask [-a <function> -k <field>] 
Function: Apply a user-defined mask function to a specified velocity field. 
Description: 
This command can be used to filter, amplify, or in some way modify the u, v (and w) 
velocity components of a velocity field.  Users can choose which field the mask is 
applied to using the optional -k parameter.  By default, the mask is applied to the 
base flow (k = 0).  Reference each perturbation field using numbers 1, 2, 3, etc. 
The mask is specified using the -a option, and is supplied by the user as a 
mathematical function of available intrinsic and user-specified variables, such as x, y, 
t, RKV, etc. 
The velocity fields are modified by evaluating the product of the velocity field with 
the mask function (β), as 
 

originalmasked uu β= . 
 
If no mask function is specified, the default mask is unity (no change to the velocity 
field). 
This command is especially useful for filtering perturbation fields used in stability 
analysis.  For instance, if the stability of a flow is being computed in a rotating frame, 
then the velocities far from the centre of rotation can be very large.  This can lead to 
instability when random noise introduced at startup is being advected by high 
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rotational velocities in the base flow.  In this case a Gaussian mask could be used to 
filter towards zero the perturbation field velocity far from the centre of rotation, 
providing a better initial field.  For example,  
 
\> mask –k 1 -a 'exp(-(x^2+y^2))' 
 
could be used to isolate startup white noise to the region of interest, possibly 
improving the speed of convergence of the analysis. 

Meshpts 
Syntax: meshpts [-f <filename>] 
Function: Save mesh coordinates to a text file. 
Description: 
This outputs the (x, y, z) coordinates and global node number (n) of every coordinate 
in a mesh, including interpolation points within each element.  If no filename is 
specified, the default meshpts.dat is used. 
The data is stored in text format at a high precision, so for large meshes these files can 
be very large. 
 

Monitor 
Syntax: monitor <string> [<x> <y> <z>] 
Function: Monitor velocity and pressure time history at a point on the mesh. 
Description: 
A file named <string> is created, and the time history of a point in the velocity 
field is output at each time step.  The point is taken as the nearest mesh node to the 
spatial coordinates <x>, <y>, (and <z> if in 3D).  Existing files of the same name 
will be overwritten. 
If the user wishes to cease recording to open monitor files, they can call monitor with 
the value of <string> set to “close” (case insensitive).  This will close all 
currently open monitor files, and will free the resources allocated to them.  Thus 
multiple time histories can be acquired from a single Viper session. 
Note that monitor need only be called once for each file - the files are actually 
created during initialization (see help init). 
See also: sample. 
 

Pgrad 
Syntax: pgrad <dpdx> <dpdy> [<dpdz>] 
Function: Impose components of a pressure gradient on the flow. 
Description: 
Constant pressure gradient components can be imposed on a flow by specifying 
values of the parameters <dpdx>, <dpdy> (and <dpdz> in 3D), which correspond 
to the linear spatial kinematic static pressure gradient being imposed in each of the x-, 
y-, and z-directions, respectively. 
Viper treats the kinematic static pressure as 
 

,
d
d~

tot x
x
PPP −=  
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where P~  is the disturbance pressure field obtained from the divergence-free 

projection of the velocity field during the pressure substep, 
xd

dP  is a vector of mean 

pressure gradient components, and x  is the spatial coordinate vector.  This feature can 
be employed to accurately model spatially periodic pressure-driven flows such as pipe 
flows, etc. 
 

Pres 
Syntax: pres 
Function: Toggle pressure substep on/off during time integration. 
Description: 
Time integration is carried out by solving each of the advection, pressure and viscous 
diffusion terms consecutively.  This function is used to switch off computation of the 
pressure term, which also stops the continuity (conservation of mass) constraint being 
enforced.  The default setting of this feature is ON.  This facility is primarily provided 
as a debugging tool. 
Note that switching off the pressure term alters the equations being solved by 
Viper. 
See also: diff, advect. 
 

Quit 
Syntax: quit 
Function: Exits Viper. 
Description: 
Viper terminates immediately, and any unsaved work will be lost.  This command 
performs the same action as stop and exit. 
See also: exit, stop. 
 

Rand 
Syntax: rand [<level>] 
Function: Add a random perturbation to a 3D spectral-element/Fourier 

computation. 
Description: 
If a spectral-element/Fourier computation has been initialised for time integration, 
then the rand command can be used to add some random white noise to the velocity 
fields to accelerate the development of instability modes or transient flow features.  
Without a call to rand, the user relies on noise at the limit of numerical precision to 
trigger the growth of three-dimensional flow in the non-zero Fourier modes, which 
can take considerable time. 
Users should use rand with care if they are restarting a simulation (using load) 
from a saved spectral-element/Fourier computation, as the added noise will 
contaminate time histories of flow quantities captured over multiple runs. 
If the optional <level> is not supplied, random noise with a magnitude of 10-4 is 
used. 
See also: fourier. 
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Rotate 
Syntax: rotate <x> <y> <omega> 
Function: Specify a rotating frame of reference for stability analysis on a 

frozen base flow. 
Description: 
The command freeze artificially stops any time evolution of a flow field.  For some 
flows, such as co-rotating vortex pairs, the base flow would otherwise rotate about 
some point in the flow.  In essence, freeze transfers the computation into a frame of 
reference rotating with the base flow.  However, for stability analysis, the evolution of 
the perturbation field is still computed as if it were in an inertial reference frame.  
Therefore, Coriolis and centrifugal accelerations due to the rotation are not included 
in the computation. 
The command rotate is used to correct for these additional acceleration terms.  The 
command rotate only has an effect on the perturbation field(s) of a two-
dimensional Cartesian (not asixymmetric) computation where freeze has been 
called. 
The command rotate takes as input the <x> and <y> coordinates of the centre of 
rotation of the computational domain, and the angular velocity of the rotation 
(<omega>, defined positive for anti-clockwise rotation, and expressed in radian per 
time unit). 
The command rotate makes the following corrections to the calculation of the 
perturbation field: 

1) The rotational velocity component is subtracted from the base flow, U, 
supplied to the advection term for calculation of the perturbation field 
evolution, and 

2) The correction due to the Coriolis acceleration -2 ω � vrotating is added to the 
evolution equations of the perturbation field. 

Note that no contribution due to centrifugal effects is required, as this affects the 
evolution of the base flow. 
See also: freeze. 
 

Sample 
Syntax: sample [-f <filename> -x <x> <y> <z>] 
Function: Get flow parameters at a physical location within the 

computational domain. 
Description: 
This command outputs the time (t), the velocity components (u, v, w), velocity 
gradients (du/dx, etc.), kinematic static pressure (p), and strain rate magnitude at a 
physical point on the mesh.  Note that unlike the monitor command, the sample 
command will interpolate the flow quantities to the requested location, rather than just 
output the values at the nearest mesh node.  Furthermore, the points are calculated and 
outputted to file at the time that sample is called.  sample can only be called after 
init. 
This command will append new data to the end of an existing file of the same name, if 
one exists. 
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The following options are available: 
 -f <filename> 

 Used to specify a filename <filename> (including extension) to 
save the flow values to. If the -f option is not specified, the default 
filename sample.dat is used. 

 -x <x> <y> <z> 
 Used to specify the spatial coordinates of a point in the computational 

domain at which to interpolate the flow values.  Only two coordinates 
may be specified in 2D, and three values must be specified in 3D. 

See also: monitor. 
 

Samplef 
Syntax: samplef [-f <filename> -x <x> <y> <z>] 
Function: Return the Fourier coefficients of the velocity field at a point. 
Description: 
During a three-dimensional spectral-element/Fourier computation, this command 
outputs the time (t), the supplied spatial coordinates, and the Fourier coefficients of 
the velocity field at a physical point on the mesh. 
Note that unlike the monitor command, samplef will interpolate the flow 
quantities to the requested location, rather than just output the values at the nearest 
mesh node.  Furthermore, the points are calculated and output to file at the time that 
samplef is called.  The command samplef can only be called after init. 
This command will append new data to the end of an existing file of the same name, if 
one exists. 
The following options are available: 

 -f <filename> 
 Used to specify a filename <filename> (including extension) to 

save the flow values to.  If the -f option is not specified, the default 
filename sample.dat is used. 

 -x <x> <y> 
 Used to specify the spatial coordinates (in the x-y or z-r plane) of a 

point in the computational domain at which the Fourier coefficients are 
to be interpolated. 

See also: autocorrf, energyf. 
 

Save 
Syntax: save [-f <filename> -k <floq_mode> -m -s] 
Function: Save flow field vectors to file. 
Description: 
Saves flow field vectors, as well as computation parameters t, dt, RKV, and the 
number of elements and element polynomial degree to a user-specified file.  These 
stored fields can then be reloaded using the load command to re-start a computation.  
If no filename is specified, then the default output filename ff_out.dat is used. 
Update 4/11/2006: This command now saves files containing flow fields at the three 
previous time steps.  This avoids the annoying perturbation that was added to flows 
upon re-start. 
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The following options are available: 
 -f <filename> 

 Used to specify a filename <filename> (including extension) to 
save the binary file to. If the -f option is not specified, the default 
filename ff_out.dat is used. 

 -k <floq_mode> 
 Used to specify an integer perturbation field number (i.e., 1, 2, ..., 

NFloq_modes, when Floquet analysis is active) to load a saved flow field 
into. The default is <floq_mode> = 0, corresponding to the base 
flow. 

 -m 
 Specifies that you wish to save spatial coordinates to file also (this 

feature is only required if you wish to load data onto a different macro-
element mesh. 

 -s 
 Used to include a number sequence in the filename. A 4-digit integer 

(e.g., _0001, _0002, _0003, etc.) is added to the default or user-
specified filename, just prior to the file extension, if one is specified. 
Numbering begins at 1, and increments every time a save call is made 
with the -s option. 

See also: load. 
 

Scalar 
Syntax: scalar <option> 
Function: Used to invoke functions relating to transport of a scalar field. 
Description: 
Viper facilitates the transport of a passive scalar field (variable S) on a two- or three-
dimensional flow field.  The transport is computed using an auxiliary semi-
Lagrangian advection-diffusion algorithm (see Maday, Patera & Rønquist, J. Sci. 
Comp., 5(4), 263-292, 1990). 
To activate advection-diffusion transport of the scalar field S, the user must set 
boundary conditions for the scalar field in the viper.cfg file. 
The following scalar transport options can be invoked with <operation> values: 

 scalar diff <coeff> 
 Defines the coefficient of diffusion for the scalar field.  By default, a 

coefficient of diffusion of <coeff> = 1.0 is used. The value of this 
coefficient can be set in the viper.cfg file (see help 
gvar_scalar_diff for more information).  A larger value will 
result in more diffusion (smearing) of the scalar field.  A value of zero 
(pure advection) is not permitted due to numerical stability 
implications. 

 scalar steps <Ntrack_steps> 
 Adjusts the number of time steps per scalar field update (requires re-

initialization).  The code performs an auxiliary advective update of the 
scalar field every time step, and every <Nscalar_steps> time 
steps, the diffusion of the scalar field, as well as its updated 
distribution, are computed.  By default, <Nscalar_steps> = 10. 

See also: gvar_scalar_diff. 
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Set 
Syntax: set <variable> <param_1> [... <param_n>] 
Function: Change the value of a configuration variable. 
Description: 
Supported variables are: 
• RKV Reciprocal kinematic viscosity (must be a positive floating-point 

number) 
• dt  Time step (must be a positive floating-point number) 
The value of the variable and other parameters are input as <param> values as 
required.  For example, to set the reciprocal kinematic viscosity to 173.5, type: 
 
\> set RKV 173.5 
 

Stab 
Syntax: stab [<filename>] 
Function: Calculate Floquet multipliers for each linear instability mode. 
Description: 
If Floquet linear stability analysis is being performed (call floq prior to init), this 
command calculates an estimate of the magnitude of the Floquet multiplier ( μ ) for 
each mode, using the power method.  The Floquet multiplier is a complex number 
related to the growth rate σ , and the base flow period T, by 
 

.Teσμ ≡  
 
Viper estimates μ  by comparing an integral of the perturbation field at one period to 
one evaluated at the previous period.  Over a sufficient number of periods, all but the 
fastest-growing mode wash out of the solution.  If N(t) is a perturbation field integral 
evaluated at time t, then 
 

( ) ( ),tNTtN +=μ  
 

providing the flow has evolved for a sufficient number of periods to isolate only the 
fastest-growing mode at the given wavelength. 
The current time and the estimated Floquet multiplier magnitudes are writted to a file 
<filename>, or to the default floq_mult.dat. 
If users wish to resolve the complex components of an instability mode, or multiple 
modes at a single wavelength, then they should employ arnoldi instead of stab, 
which determines eigenvalues and eigenvectors using an Implicitly Restarted Arnoldi 
Method. 
See also: arnoldi, floq. 
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Step 
Syntax: step [<num_steps>] 
Function: Performs a number of time integration steps. 
Description: 
The optional integer <num_steps> need not be provided.  If it is not specified, a 
single time integration step is computed, otherwise <num_steps> steps are 
computed. 
See also: stopcrit. 
 

Stop 
Syntax: stop 
Function: Exits Viper. 
Description: 
Viper terminates immediately, and any unsaved work will be lost.  This command 
performs the same action as exit and quit. 
See also: exit, quit. 
 

Stopcrit 
Syntax: stopcrit <value> 
Function: Abruptly ceases time integration subject to a stopping criterion. 
Description: 
When evolving a solution to a time invariant (steady) state, the max du monitor, 
which monitors the maximum change in velocity between each successive time steps, 
reduces towards zero.  It is sometimes desirable to compute only sufficient time steps 
to reach a steady state. 
To facilitate this, the stopcrit command can be called to specify a critical value of 
max du, beyond which no further time stepping is conducted.  By default, this 
function establishes a stopping criterion of 1 � 10-12 (1e10-12).  If this function is 
not called, time integration will not be prematurely arrested, regardless of the value of 
max du. 
Notes: 

1) This criterion also ceases any particle tracking or scalar field evolution. 
2) Subsequent calls to step (e.g., in a subsequent loop iteration, say) will 

allow time stepping to resume, subject to the same stopping criterion. 
3) The stopping criterion can be changed at any time.  The stopping criterion 

can effectively be removed by setting <value> to a negative value. 
4) After a set of time steps are ceased subject to this criterion, control passes 

to the next input command. 
See also: step. 
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Tecp 
Syntax: tecp [-f <filename> -n <plot_interp_pts> -k 

<Floquet_mode> -s -t] 
Function: Outputs a Tecplot binary data file. 
Description: 
Outputs a Tecplot .plt binary data file containing spatial coordinates, velocity, 
pressure and various flow quantities such as vorticity, shear rate, etc.  If tecp is 
called before init, only the mesh (x, y, and z coordinates of the mesh) is written to 
the Tecplot binary file, with the default file name tec_mesh.plt.  If init has 
been called, the mesh information and fluid flow variables are output, with the default 
filename tec_out.plt being used. 
The following options are available: 

 -f <filename> 
 Used to specify a filename <filename> (including extension) to 

save the Tecplot binary file to.  If the -f option is not specified, the 
default filenames tec_out.plt or tec_mesh.plt are used, for 
post- and pre-initialization calls respectively. 

 -k <Floquet_mode> 
 Used to specify which velocity field is to be saved.  

<Floquet_mode> can be an integer between 0 and the maximum 
number of Floquet modes being computed. If this option is omitted, the 
default base flow field (mode zero) is saved. 

 -n <plot_interp_pts> 
 Used to specify a number of interpolation points along each element 

dimension for plotting. If this option is omitted, the data is plotted on 
the spectral element mesh interpolation points. Otherwise, an even 
distribution of points is used.  <plot_interp_pts> must be an 
integer of at least 2.  This option is helpful for improving the quality of 
the resulting plots. 

 -o <level> 
 The integer <level> is a value from 1 to 3 (default 3) which 

specifies the level of data included in the Tecplot binary file. The 
levels include the variables as described below: 

1 Spatial coordinates, and velocity and pressure fields, 
2 The above, plus velocity divergence, vorticity, velocity 

magnitude, and particle/scalar fields 
3 The above, plus strain rate magnitude and directional 

components, and the λ2 field used to identify vortex cores (see 
Jeong & Hussain, J. Fluid Mech. 285, 69-94, 1995). 

 Numbers 1 or 2 can be used if less information is required. This will 
save time and storage space. 

 -s 
 Used to include a number sequence in the filename.  A 4-digit integer 

(e.g., _0001, _0002, _0003, etc.) is added to the default or user-
specified filename, just prior to the file extension, if one is specified. 
Numbering begins at 1, and increments every time a tecp call is made 
with the -s option. 

 -t 
 Specifies that data is to be written to an ASCII data file (Tecplot .dat 

file) rather than the default .plt file format. 
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Tec_floq 
Syntax: tec_floq [-f <filename> -n <num_floq_planes> -k 

<Floquet_mode> -s -a <scale_factor> -t] 
Function: Generate 3D vorticity plot of Floquet mode for Tecplot. 
Description: 
Outputs a Tecplot .plt binary data file containing spatial coordinates and vorticity 
components of a three-dimensional reconstruction of a Floquet mode superimposed 
onto the computed base flow. 
The solution must be initialised, and at least one Floquet mode must be active for this 
command to be invoked. 
The following options are available: 

 -a <scale_factor> 
 Used to specify a scaling factor (can be any real number) to be applied 

to the perturbation field prior to being superimposed onto the base flow 
velocity field.  By default, a scaling factor of 1.0 is applied, though in 
many cases a significantly larger number may be required to visibly 
identify the perturbation on the base flow vorticity contours.  Users are 
advised to experiment with this value to find what works for their 
specific cases. 

 -f <filename> 
 Used to specify a filename <filename> (including extension) to 

save the Tecplot binary file to.  If the -f option is not specified, the 
default filename tec_floq3d.plt is used. 

 -k <Floquet_mode> 
 Used to specify which Floquet mode is to be plotted.  

<Floquet_mode> can be an integer between 1 and the maximum 
number of active Floquet modes.  If this option is omitted, 
<Floquet_mode> defaults to the first active Floquet mode. 

 -n <num_floq_planes> 
 Used to specify the number of planed plotted in the spanwise (or 

azimuthal if using cylindrical coordinates) direction.  If this option is 
omitted, the data is plotted onto 16 additional planes in the 3rd 
dimension. 

 <num_floq_planes> must be a positive integer, and powers of 2 
are recommended to best symmetrically capture the features of the 
underlying sinusoidal expansion of the Floquet mode. 

 -s 
 Used to include a number sequence in the filename.  A 4-digit integer 

(e.g., _0001, _0002, _0003, etc.) is added to the default or user-
specified filename, just prior to the file extension, if one is specified. 
Numbering begins at 1, and increments every time a tecp call is made 
with the -s option. 

 -t 
 Specifies that data is to be written to an ASCII data file (Tecplot .dat 

file) rather than the default .plt file format. 
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Track 
Syntax: track <operation> 
Function: Used to invoke functions relating to passive tracer particle 

tracking. 
Description: 
Viper facilitates an accurate and flexible particle tracking facility.  A (nearly) fourth-
order accurate time integration scheme is used to advance the positions of passive 
virtual particles in the flow.  This scheme employs a 4th-order Runge—Kutta method 
to advance particles within elements, and a series of linear increments to step to and 
across element boundaries (see Coppola, Sherwin & Peiró, J. Comput. Phys. 172, 356, 
2001).  Particles can either be injected from one or many spatial positions in the flow, 
or the flow can be seeded with a uniform concentration of particles. 
The available options for particle tracking can be invoked with the following 
<operation> values: 

 track steps [<Ntrack_steps>] 
 Defines the number of computation time steps (∆t) per particle tracking 

time steps, where <Ntrack_steps> is an integer. If 
<Ntrack_steps> is omitted, the simulation will default to a value 
<Ntrack_steps> = 10. 

 track inject_steps <Ninject_steps> 
 Sets the number of particle time integration steps per particle injection.  

The default value is <Ntrack_steps> = 5. 
 track inject 

 Tracer injection points are loaded from a text file named track_pts, 
which includes the following numbers on a each line: firstly the 
number of injection points, then the x, y and z-coordinates of each 
point (only two spatial coordinates need be specified for two-
dimensional computations).  One injection point is given per line, and a 
large number of points may be established concurrently.  During time 
integration, a new particle is injected at each of these locations every 
time particle positions are updated. 

 track inject_off 
 Ceases tracer injection and erases stored injector information from 

memory.  Further injection can be initiated by calling track 
inject. 

 track seed [<density>] 
 The flow is seeded with an even distribution of tracer particles. 

Throughout the domain, particles are placed <density> units apart 
in the x, y (and z) directions.  If <density> is omitted, a particle 
spacing of 0.1 is employed.  For flows with inlets, the user may wish to 
maintain particle density by also including a call to track load, 
incorporating a rake of injection points. 

 track sample [<filename>] 
 Saves velocity field information at each particle location to a text file 

<filename>.  If not supplied, the default filename is 
track_sample.dat.  Particle information is output line by line, 
with each line containing: t, x, y, [z,] coordinates, u, v, [w]-velocities, 
velocity gradients, shear rate, and pressure. 
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 This command will append new data to the end of an existing file of 
the same name. 

 track save [<filename>] 
 Saves information about particles to a text file <filename>.  If no 

filename is given, a default file track_out.dat is created.  Particle 
information is output line by line, with each line containing: 
<particle_number>, x, y, [z,] coordinates, and u, v, [w]-
velocities. 

 This command will overwrite an existing file of the same name. 
 

Vismat 
Syntax: vismat 
Function: Output images showing the structure of the global matrices being 

solved. 
Description: 
The sparse matrices used to solve the global boundary system for the pressure and 
viscous diffusion substeps can be visualized using this command. 
Image files laplace_matrix.pgm and helmholtz_matrix.pgm are created, 
showing the structure of the matrices.  Many of the matrices built by Viper are 
symmetrical so in these cases only the upper or lower diagonal may be visible. 
Please inform the developer if you would find a binary image file format preferable 
for output. 
 

Wvel 
Syntax: wvel 
Function: Toggles z/θ-component of velocity on or off in two-dimensional 

computations. 
Description: 
By default, Viper only computes in-plane velocity components in two-dimensional 
simulations (i.e., only u and v-velocity components in two-dimensional Cartesian 
coordinates).  However, sometimes it is necessary to include the out-of-plane velocity 
component (i.e., the θ-velocity component in swirling flows in a cylindrical 
coordinate system, or the w-velocity component in the interaction of vortices with a 
non-zero axial velocity along their cores. 
A call to wvel prior to calling init will activate the out-of-plane velocity 
component for two-dimensional computations.  It has no effect on three-dimensional 
computations. 
Note that the computations will still be two-dimensional – that is, there is still no 
variation (zero spatial gradients) in the third dimension. 
See also: axi. 





Chapter 8: References 
Barkley, D. & Henderson, R.D.  (1996)  Three-dimensional Floquet stability analysis 
of the wake of a circular cylinder.  J. Fluid Mech. 322, 215-241. 

Blackburn, H.M. & Sherwin, S.J.  (2004)  Formulation of a Galerkin spectral element-
Fourier method for three-dimensional incompressible flows in cylindrical geometries.  
J. Comput. Phys. 179(2), 759–778. 

Blackburn, H.M., Barkley, D. & Sherwin, S.J.  (2008)  Convective instability and 
transient growth in flow over a backward-facing step.  Under consideration for 
publication in J. Fluid Mech. 

Coppola, G., Sherwin, S.J. & Peiró, J.  (2001)  Non-linear particle tracking for high-
order elements.  J. Comput. Phys. 172, 356-386. 

Huerre, P. & Monkewitz, P.A.  (1985)  Absolute and convective instabilities in free 
shear layers.  J. Fluid Mech. 159, 151-168. 

Huerre, P. & Monkewitz, P.A.  (1990)  Local and global instabilities in spatially 
developing flows.  Annu. Rev. Fluid Mech. 22, 473-537. 

Jeong, J. & Hussain, F.  (1995)  On the identification of a vortex.  J. Fluid Mech. 285, 
69-94. 

Karniadakis, G.E.  (1990)  Spectral element-Fourier methods for incompressible 
turbulent flows.  Comp. Meth. Appl. Mech. & Engng. 80, 367-380. 

Karniadakis, G.E., Israeli, M. & Orszag, S.A.  (1991)  High-order splitting methods 
for the incompressible Navier—Stokes equations. J. Comput. Phys. 97(2), 414-443. 

Karniadakis, G.E. & Sherwin, S.J.  (2005)  Spectral/hp Element Methods for 
Computational Fluid Dynamics (2nd Edition).  Oxford University Press. 

Lehoucq, R.B., Sorensen, D.C. & Yang, C.  (1996)  ARPACK users’ guide: Solution 
of large scale eigenvalue problems by implicitly restarted Arnoldi methods.  Tech. 
Report from http://www.caam.rice.edu/software/ARPACK/. 

Leweke, T., Thompson, M.C. & Hourigan, K.  (2004)  Touchdown of a sphere.  Phys. 
Fluids, 16(9), Gallery of Fluid Motion. 

Maday, Y., Patera, A.T. & Rønquist, E.M.  (1990)  An operator-integration-factor 
splitting method for time-dependent problems: application to incompressible fluid 
flow.  J. Sci. Comp. 5(4), 263-292. 

Patera, A.T.  (1984)  A spectral-element method for fluid dynamics: laminar flow in a 
channel expansion.  J. Comput. Phys. 54, 468-488. 

Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P.  (2002)  Numerical 
recipes in C++: The art of scientific computing.  Cambridge University Press. 

 65

http://www.caam.rice.edu/software/ARPACK/


 66

Sheard, G.J., Leweke, T., Thompson, M.C. & Hourigan, K.  (2007)  Flow around an 
impulsively arrested circular cylinder.  Phys. Fluids 19(8), 083601. 

Sheard, G.J., Thompson, M.C. & Hourigan, K.  (2003)  From spheres to circular 
cylinders: The stability and flow structures of bluff ring wakes.  J. Fluid Mech. 492, 
147-180. 

Sheard, G.J. & Ryan, K.  (2007)  Pressure-driven flow past spheres moving in a 
circular tube.  J. Fluid Mech. 592, 233-262. 

Sorensen, D.C.  (1995)  Implicitly restarted Arnoldi/Lanczos methods for large scale 
eigenvalue calculations.  Tech. Report TR-96-40.  In: Keys, D.E., Sameh, A., 
Venkatakrishnan, V. (Eds.), Parallel numerical algorithms.  Dordrecht, Kluwer. 

Thompson, M.C., Hourigan, K. & Sheridan, J.  (1996)  Three-dimensional 
instabilities in the wake of a circular cylinder.  Exp. Therm. Fluid Sci. 12(2), 190-196. 

Van Dyke, M.  (1982)  An Album of Fluid Motion.  The Parabolic Press. 

Williamson, C.H.K.  (1996)  Three-dimensional wake transition.  J. Fluid Mech. 328, 
345-407. 

Zang, T.A.  (1991)  On the rotation and skew-symmetric forms for incompressible 
flow simulations.  Appl. Numer. Math. 7, 27-40. 



 

 67


	Table of Contents
	Chapter 1: Overview
	About Viper
	Audience for this Manual
	Getting Started
	Rules for inputting text into Viper
	Rules for inputting mathematical expressions into Viper
	Implicit and user-defined variables

	Unresolved Bugs
	Resolved Bugs

	Chapter 2: Background
	The Navier—Stokes Equations
	Newtonian and non-Newtonian Fluids
	Incompressible Flow

	The Spectral-Element Method and Spatial Discretization
	Time Integration
	Coordinate Systems
	Discrete forms of the Advection Operator
	Stability Analysis
	Absolute and Convective Instabilities
	Global Stability Analysis

	Scalar Transport & the Boussinesq Approximation for Buoyancy-Driven Flows
	Advection-Diffusion
	Passive Tracer Particle Tracking

	Viper Solvers
	Running Simulations in Parallel
	Parallel base flow simulations
	Parallel linear stability analysis computations
	Parallel spectral-element/Fourier computations
	Important OpenMP environment variables


	Chapter 3: Pre-Processing
	Accepted Mesh Formats
	Converting from Gambit

	Chapter 4: Configuring Simulations
	Commands recognised in the viper.cfg file
	btag
	gvar_curve
	gvar_dt
	gvar_init_field
	gvar_init_scalar_field
	gvar_kink
	gvar_monitor (deleted)
	gvar_movref
	gvar_n
	gvar_nnvisc
	gvar_re (obseleted)
	gvar_rkv
	gvar_scalar_diff
	gvar_usrvar


	Chapter 5: Running Simulations
	Saving and Loading flow field data using restart files
	Using Macros and Loops

	Chapter 6: Post-Processing
	Visualizing Flow Fields with Tecplot
	Plotting ASCII Data Files

	Chapter 7: Command List
	Advect
	Arnoldi
	Autocorrf
	Axi
	Bouss
	Chref (obsolete)
	Diff
	Energyf
	Exit
	Floq
	Flowrate
	Forces
	Fourier
	Freeze
	Getminmax
	Help
	Immerse
	Init
	Int
	L2
	Load
	Loop
	Macro
	Mask
	Meshpts
	Monitor
	Pgrad
	Pres
	Quit
	Rand
	Rotate
	Sample
	Samplef
	Save
	Scalar
	Set
	Stab
	Step
	Stop
	Stopcrit
	Tecp
	Tec_floq
	Track
	Vismat
	Wvel

	Chapter 8: References

