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Subharmonic mechanism of the mode C instability
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The perturbation field of the recently discovered subharmonic mode C instability in the wake behind
a ring is compared via a side-by-side comparison to the perturbation fields of the modes A and B
instabilities familiar from past studies of the vortex street behind a circular cylinder. Snapshots of
the wake are presented over a full shedding cycle, along with evidence from a linear stability
analysis, to verify and better understand how the subharmonic instability is sustained. © 2005
American Institute of Physics. [DOI: 10.1063/1.2139682]

Since dye visualizations' and Strouhal frequency
measurements” showed that the transition from laminar peri-
odic flow to turbulent flow in the vortex street behind a cir-
cular cylinder occurred through a series of well-defined
three-dimensional transitions, much work has followed to
determine the nature of these intermediate modes.

Recent work”™ has focused on a ring aligned normal to
the direction of flow. For rings, an aspect ratio parameter
(AR) is defined as the ratio of mean diameter to cross-section
diameter. Thus bodies that vary continuously from a sphere
at aspect ratio AR=0 towards a straight circular cylinder
local to the ring cross section as AR — o can be represented.
It has been shown® that when AR = 4, the wake undergoes an
axisymmetric Hopf bifurcation at Reynolds numbers below
the onset of three-dimensional flow. Thus at these aspect
ratios, three-dimensional wake transitions occur through the
evolution of instability modes analogous to those observed
behind a circular cylinder. As well as predicting instability
modes similar in symmetry, spanwise wavelength, and tran-
sition Reynolds numbers to the modes A and B instabilities
behind a circular cylinder, studies of ring wakes have discov-
ered a third instability known as mode C. This mode is re-
markable for two reasons: first, it is predicted to be a true
subharmonic mode (the instability exceeds the unit circle
through —1 on the real axis), and second, it is predicted to be
the first-occurring mode for rings with 4 < AR =<8. The first
experimental observation of this mode is revealed in Sheard
et al.®

A review of the key events in the development of our
understanding of the three-dimensional transitions in vortex
streets best begins with the work by Williamson."* William-
son observed a wake with a spanwise periodic three-
dimensional structure at Reynolds numbers above Re= 180,
with a spanwise wavelength of 3—4d (where d is the cylinder
diameter). This mode, mode A, was observed to be replaced
by a second mode, again periodic in the spanwise direction,
but adopting a much shorter wavelength of approximately
1d. This second mode, mode B, is observed at Reynolds
numbers above Re=260, with remnants persisting to much
higher Reynolds numbers, where the flow is fully
turbulent.”®

The linear stability analysis of Barkley and Henderson’
determined that both the modes A and B instabilities oc-
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curred through synchronous bifurcations (the Floquet multi-
plier exceeds the unit circle through +1 on the real axis), and
verified the critical Reynolds numbers and preferred span-
wise wavelengths of the instabilities. The later three-
dimensional computations of the cylinder wake'*!! verified
that the Floquet stability analysis technique provided accu-
rate predictions of the spanwise wavelength, symmetry, and
mode topology of the corresponding three-dimensional
wakes. Modes A and B were predicted to occur above Re
=188.5 and Re=259, with spanwise wavelengths 3.96d and
0.8d, respectively. Three-dimensional computations by Th-
ompson, Hourigan, and Sheridan'? elucidated the streamwise
vortical structure of the instabilities, and a further detailed
stability analysis13 suggested that the mode A instability may
be initiated by an elliptic instability in the vortex rollers.

For the wake of a circular cylinder, modes with spanwise
wavelengths between those of the modes A and B instabili-
ties have been shown to remain stable and contain an imagi-
nary component.g’14 An imaginary component implies a qua-
siperiodic instability, leading to standing- or traveling-wave
modes.

For the unpenurbed15 and perturbe
circular cylinders, and the wakes behind square cylinders
and rings,3 the literature reveals several examples of unstable
three-dimensional modes in the intermediate spanwise wave-
length range of approximately 1.5d-2d. For a circular cylin-
der, early studies' ™" suggested that these three-dimensional
modes exhibited subharmonic properties (i.e., the three-
dimensional features alternated in sign from one shedding
cycle to the next) causing a doubling of the effective period
of the wake. However, the detailed stability analyses con-
ducted for circular’ and square14 cylinders proved that the
earlier classification of these modes as subharmonic'® was
erroneous. In fact, these modes are quasiperiodic, with a
small imaginary component and large negative real compo-
nent. This gave the appearance of a subharmonic mode, ex-
plaining their incorrect classification. For vortex streets with
Z, symmetry (a T/2 time shift and spatial reflection about
the wake center line recovers the original flow) it has been
speculated]4 that the generic bifurcation scenario to three-
dimensional flow comprises the familiar real mode A and
mode B instabilities, with wavelengths approximately 4 and
1 times an appropriate body length scale (e.g., diameter d),

d'"*"® wakes behind
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FIG. 1. Floquet multiplier convergence for the mode C instability with m
=10 at Re=170 with AR=5.

as well as an additional quasiperiodic instability with a span-
wise wavelength approximately twice the body length scale.

The wakes behind open rings do not possess a Z, sym-
metry due to the ring curvature, but as AR— the ring
locally approaches a straight circular cylinder, and the wake
approaches a Z, symmetry state. Therefore it has been
suggested3 that the real subharmonic mode C instability
emerges as a result of the asymmetry about the wake center
line. It was recently implied20 that the predicted mode C
instability behind rings might have been a quasiperiodic
mode due to the spanwise phase of the perturbation field
being locked in the original stability analysis.3 In fact, the
method employed in this study can distinguish subharmonic
(real) modes from quasiperiodic (complex) modes, based on
the Floquet multiplier behavior, and the characterization of
the mode C instability as a subharmonic mode is reinforced
in this paper.

In this paper, the existence and classification of the sub-
harmonic mode C instability is proved by rigorous examina-
tion of the results of a linear stability analysis, and is verified
through careful and accurate computations. The wake of a
ring with AR=5 at Re=170 is studied, as it is near to (and
slightly above) the critical Reynolds number for the emer-
gence of the mode C instability with azimuthal mode number
m=10 and a spanwise wavelength of approximately 1.6d.
This Reynolds number is below the onset of the modes A and
B instabilities; hence predictions pertaining to mode C are
relevant to the physical wake. In addition, the three instabil-
ity modes are compared over a full shedding cycle to identify
features distinguishing the mode C instability from the famil-
iar modes A and B instabilities.

The axisymmetric flow was computed using a spectral-
element method for the incompressible Navier-Stokes equa-
tions. The same formulation of the code has previously been
applied to accurately compute the wake behind a sphere,ZI
and the wake behind rings.3 The perturbation fields for the
three-dimensional instability modes were computed using a
linear Floquet stability analysis technique.3’9 In this tech-
nique, a small three-dimensional velocity perturbation of
fixed azimuthal wavelength is computed using linearized
three-dimensional Navier-Stokes equations in addition to the
periodic two-dimensional base flow. The evolution of this
perturbation field is monitored to determine the stability of
the base flow.

Figure 1 shows the convergence of the Floquet multi-
plier for the Floquet mode with m=10 at Re=170, the
fastest-growing azimuthal mode of the mode C instability.
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The computation was stopped when the dominant mode was
isolated in the perturbation field (i.e., constant or oscillating
Floquet multipliers for real and complex modes, respec-
tively). In this case, the observed multiplier convergence pro-
vided confirmation that the mode contained no imaginary
component, as this behavior is exclusive to real modes.'* In
addition, the alternation in sign of the perturbation field each
period [e.g., compare Figs. 2(c)(i) and 2(c)(v)] verifies that
the mode is subharmonic. As an independent check of this
result, the sum of these perturbation fields was evaluated,
and a zero field resulted, to the limit of numerical accuracy.

Figure 2 shows, for the first time, a comparison between
the perturbation fields generated over a full shedding cycle
for each of the modes A, B, and C instabilities. Flow fields
are presented at quarter-period intervals [parts (i) to (v) rep-
resenting times from 0.07 to 1.07], and the shedding cycles
are initiated from the point of maximum pressure drag. Com-
puted at Re=200 and Re=320, respectively, the modes A and
B presented here are similar in structure and symmetry to the
equivalent modes predicted in the wake behind a circular
cylinder.9’13 Note that unlike modes A and B, the sign of the
mode C perturbation vorticity field alternates over the shed-
ding cycle between Figs. 2(c)(i) and 2(c)(v). The structure of
the mode C perturbation field is a curious hybrid, with fea-
tures similar to both modes A and B. The near wake of the
mode C instability (i.e., within approximately 3d of the ring)
bears a strong resemblance to the mode B instability, with
strong vorticity present in the braid region between base flow
vortices. Further downstream, the perturbation field re-
sembles that of the mode A instability, with perturbation vor-
ticity localized within the base flow vortices.

The base flow vorticity contours in Fig. 2 show that the
asymmetry induced on the vortex street by the curvature of
the ring has the effect of pairing each lower vortex roller to a
previously shed upper roller. This phenomenon was observed
in studies of the vortex shedding behind rings,zz’23 and re-
lates to the asymmetry induced by the curvature of the ring.
This vortex pairing is driven by the extended attachment
duration of the upper vortex (with negative vorticity) to the
ring, and a streamwise elongation of the vortex. A rapid evo-
lution of a strong (positive vorticity) lower vortex roller oc-
curs over a time 0.75T=<1t= 1.07, after which the vortex pair
detach and convect downstream.

Initially, both the upper and lower vortices are strained
[observe the pair of vortex rollers located approximately 3d
downstream in Fig. 2(c)(iv) at r=0.75T). As this pair of vor-
tices convect downstream (e.g., t=1.0T, Fig. 2(c)(v)], the
upper vortex becomes circular while the lower vortex re-
mains strained in an elliptical shape. The perturbation field
vorticity in these shed vortex pairs is consistent with an el-
liptic instability, which manifests itself as a counterrotating
perturbation vortex pair in a strained elliptical base flow vor-
tex (see Refs. 13 and 24-26 for detailed discussion of elliptic
instabilities in strained vortices). Due to higher strain, the
elliptic instability is stronger in the lower vortex [see Figs.
2(c)(i) and 2(c)(v)].

Consider closely the perturbation fields of the mode C
instability in Figs. 2(c)(i)-2(c)(v). At time r=0.07, a counter-
rotating pair of perturbation field vortices can be observed in
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(a) Mode A, m = 4, Re =200. (b) Mode B, m = 20, Re = 320.(c) Mode C, m = 10, Re = 170.

@) t = 0.0T.

(i) t = 0.0T.

(i) t = 0.0T.

FIG. 2. A comparison between the perturbation fields obtained during one shedding cycle for each of the modes A, B, and C instabilities [(a), (b), and (c),
respectively]. Arbitrary contour lines show the base flow vorticity (dashed lines denote negative vorticity), and positive and negative spanwise vorticity in the

perturbation field is shaded white and black, respectively.

the detaching upper roller approximately 1d behind the ring
cross section. At first glance, this appears similar to the per-
turbation field vortices in the mode A wake at t=0.25T. One
difference may be observed, though. For the mode A wake in
Fig. 2(a)(ii), this pair of perturbation field vortices are con-
tained within the detaching upper roller, whereas in the mode
C wake, one of the counter-rotating vortices is located be-
tween the detaching upper roller and the forming attached
lower roller. By following the progression of the perturbation
field vorticity of the mode C instability over the full shed-
ding cycle, it can be observed that the sign of the vorticity
present between the rollers is opposite to the sign of the
vorticity within the upper roller [Figs. 2(c)(i) and 2(c)(ii)]
and the lower roller [Figs. 2(c)(ii) and 2(c)(iii)]. As the lower
roller is cast off the rear of the ring in Fig. 2(c)(iv), the

perturbation vorticity that was present between the rollers
convects downstream, and the opposite-sign vorticity in the
newly forming upper roller [Figs. 2(c)(iii)-2(c)(iv)] shifts
from within the roller to the now vacant region between the
attached rollers. This process repeats and thus the alternation
in sign of the perturbation field each period is sustained.

The earlier classification of the mode C instability in
ring wakes as a subharmonic mode has been verified here. In
addition, the perturbation fields of the three dominant insta-
bility modes behind rings have been presented for side-by-
side comparison.
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