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Computer aided optimisation of a constant
shear-rate micro-channel contraction
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Abstract

A combination of spectral element computational fluid dynam-
ics simulation and the Levenberg–Marquardt non-linear optimisation
algorithm are used to optimise a micro-channel contraction. The
Levenberg–Marquardt algorithm finds the optimum contraction pro-
file which minimises changes in the shear rate near the channel cen-
treline. The primary criterion for the design of the micro-channel
contraction is a constant shear rate in the flow direction. This is mo-
tivated by the need to study living cells in an environment of uniform
shear.
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1 Introduction

Investigating the elasticity and rigidity of living cells answers many questions,
including whether the cell is healthy or infected with a virus or pathogen [1].
Determining physical properties of cells such as elasticity and membrane
toughness is non-trivial [2]. Cells are small, ranging from 3µm to 15µm,
and do not live long outside the host if not treated [3]. In the case of whole
blood, cells need to be kept warm and in a nutritious environment whereas
other elements of the blood will clot without the addition of anti-clotting
agents. Therefore, there is a need to quickly interrogate cells for their rhe-
ological properties. In previous studies, individual cells were interrogated
to characterise their mechanical properties [4]. However, current methods
have changed little over the past 28 years. Typically a cell is held under
a microscope, and a vacuum applied through a pipette to suck the cell up
the pipette [5]. The further up the pipette the cell stretches, the higher its
elasticity. This is a time consuming, manual process. Another method in-
volves a solution with a high concentration of red blood cells (rbc) and a
conventional rheostat [6]. Determining the viscosity of the solution allows
investigators to deduce some mechanical properties of the rbc. The method
that we propose involves passing the cells through a flow that exerts known
forces on the cell. This process would then be captured via a digital camera
with the cell deformation recorded and analysed via automated software.

We propose to photograph the cell membrane deformation due to the forces
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applied through a fluid flow. One such flow that is able to do this is a shearing
flow within a channel [7]. The cell would be stretched by the drag of the slow
flow compared to the force of the faster flow [8]. This shear gradient occurs
when the flow interacts with a wall. For the forces to remain consistent on
the cell as it flows downstream, the channel walls need to converge. This
contraction yields a continuous rate of shear and the contraction boundaries
define the shear rate. A simple flow to investigate this technique for cell
interrogation, is a contraction with a constant rate of shear. This work
provides a method to determine a boundary that produces the desired flow
conditions.

The purpose of this investigation is to produce a flow with a known con-
stant shear rate near the centreline. From symmetry the shear rate on the
centreline will be zero. The form of shear that is being evaluated over the
2D channel is taken as the leading eigenvalue of Cauchy’s strain tensor

ε̇ =
1

2

(
∂ui

∂yj

+
∂vj

∂xi

)
, (1)

where u and v are the x and y components of the velocity field, respectively.
The shear stress that is experienced by the cells in a Newtonian fluid is
proportional to the viscosity of the working fluid and ε̇. We investigate the
method of producing this flow. We use an iterative process of solving for
the flow and shear using a computation fluids dynamics (cfd) solver, and
then use these data to assist in redefining the boundaries to converge on the
desired result.

2 Method

The following section is a functional description of our computational code for
solving this problem. Figure 1 illustrates the algorithm used to optimise the
micro-channel contraction. Initial conditions including a starting mesh and
required flow conditions are implemented before running through iterations
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Figure 1: Illustration of the algorithm used to optimise the micro-channel
contraction; starting with the initial mesh and required flow condition, run-
ning through iterations of flow solving and geometry optimisation, to produce
the final result.
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Figure 2: Illustration of the spectral element mesh used by the flow solver to
compute shear rates. The top boundary profile is defined by the polynomial
function in equation (2).

of flow solving and geometry optimisation, concluding with the final result.
This code is a compilation of three major sections. The three sections are
layered with the primary backbone of code holding the Levenberg–Marquardt
(lm) solver, which in turn calls the cfd simulator that calculates the flow
field. The starting input is a meshed geometry and the desired shear rates for
the centreline. The flow field is then solved and the shear rates at discrete
points (equivalent to half the radius of a rbc) are evaluated before being
passed into the lm solver. The lm solver then alters the geometry on the
contraction and passes it to the cfd solver. This process is repeated until
any of the following end conditions are met: the minimum error condition
has been reached; the difference between changed geometries is below some
threshold; or the maximum number of iterations has been reached.

The mesh manipulation routine has been written in the C programming lan-
guage. Figure 2 shows the top boundary has a non-slip boundary condition
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applied, and this boundary is manipulated to change the contraction geome-
try. The boundary condition for the entrance on the left is a velocity profile
in the x-direction. The boundary on the right is the exit boundary and has
a reference pressure boundary condition imposed on it. The bottom bound-
ary along the x-axis has a symmetry boundary condition applied to it. The
boundary that is being manipulated is defined by the third order polynomial

y = ax3 + bx2 + cx+ d , (2)

where x and y are the Cartesian coordinates with the origin, (0, 0), at the
bottom left of the mesh in Figure 2. The function in equation (2) passes
through four defining points, and two fixed points, one at the entrance and
the other at the exit. The other two points are located at x = 2 and at
x = 8 . They are manipulated in their y-axis positioning to redefine the
boundary geometry. The coordinates of the four points are used to calculate
the constants a, b, c, and d in equation (2). Removing the constraints on
the fixed points leads to unrealistic channel geometries. This will be rectified
in future development with elastic constraints. While the code is running,
the boundary geometry is altered and remeshed in each iteration to ensure
a suitable finite element model is defined for the flow solver. Figure 2 shows
the smooth progression of element from the wall boundary to the centerline.
The Reynolds number (Re) for this work is

Re =
VD

ν
= 0.061 , (3)

where V is the mean inlet velocity in x-axis direction (1.0× 10−3m/s), D is
the height of the inlet of the channel (0.2× 10−3m), and ν is the kinematic
viscosity of the fluid, (3.3 × 10−6 m2/s). Due to the fact that the Reynolds
number for this flow is less than one, the solution is a creeping flow. This
means the solver will reliably evolve the flow to time independent state.
The steady state is defined to be when the change in velocity between time
successive steps falls below 10−8. The code uses the centreline boundary as a
plane of symmetry. This reduces computation time. The flow solver is a cfd
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package, developed in-house and described and validated by Sheard et al. [9],
that solves the time dependent incompressible Navier–Stokes equations in
either two or three dimensions. This package uses a spectral element method
to discretize the Navier–Stokes equations in space, and employs a third order
accurate, backwards multistep, method to evolve the solutions in time [10,
11]. For all simulations in this study, the fluid was modeled as a Newtonian
fluid.

The Levenberg–Marquardt method works very well in practice and has be-
come the standard of nonlinear least squares routines [12, p.683]. The algo-
rithm finds the local minimum of a function that is expressed as the sum of
squares of nonlinear functions, through an iterative process. This is demon-
strated in the equation,

S(β) =

m∑
i=1

[yi − f(xi,β)]2, (4)

where parameters β of the model curve f(xi,β) are replaced at each iteration
with β+δ until S(β) is minimised, and δ is the parameter for each iteration.

Differentiating equation (4) results in

(JT J)δ = JT [y− f(β)], (5)

using the first order approximation of f(xi,β + δ) and setting the result
to zero, since the gradient of the minimum point is zero by definition. In
equation (5), J is the Jacobian matrix whose ith row equals the gradient of f
with respect to β, and f and y are the vectors with ith component f(xi,β)

and yi respectively. JT is the transpose of J. This is a set of linear equations
to be solved for δ. The full Levenberg–Marquardt algorithm, as defined by[

JT J+ λdiag(J
T J)

]
δ = JT [y− f(β)] , (6)

is adaptive as damping is controlled with λ.
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Figure 3: A plot of shear rates at location (8, 0.02) on the model against
percentage displacements indicating the disturbance in the solution with re-
gard to the change in sampling position. These data points have a standard
deviation calculated to be 3.13× 10−5. The band highlights their position.

3 Results

Evaluation of the code has been conducted by looking at several variables to
determine the stability of the code and to evaluate the degree of robustness.
The variables evaluated included the number of sample points acquired, the
position that the sample points were taken at, the sampling locations, the
initial mesh arrangement and geometry. The number of samples used in the
code was adjusted from 9 to 38. This allowed the determination of the error
fluctuation as a function of the number of samples used. As the data points
were being sampled from a spectral element mesh, this could lead to the
position of the samples influencing the solution. This was found not to be
the case. The initial mesh was altered and though this did have some effect
on the convergence time there was no notable effect on the end result.

Figure 3 illustrates the deviation of the converged solutions. These data
points have a standard deviation of 3.13× 10−5.
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Figure 4: A plot of final computed shear rate against the desired shear
rate. Shear rates below 0.005 and above 0.035 could not be attained as the
channel inlet and outlet are fixed.

The solutions were evaluated by the extent to which the final solution min-
imised the error. Figure 4 illustrates the relationship between the computed
and desired shear rates. A shear rate below 0.005 is not feasible as the outlet
of the channel is fixed in this section and can not open out to allow lower
shear rates. This graph also indicates the highest achievable shear with this
fixed outlet, as the data asymptotes to 0.035 .

Figure 5 is a plot using a colour map to indicate the strain in the micro-
channel contraction after optimisation. Note that the channel is longer than
displayed here, different scales are used on the horizontal and vertical axes.
Figure 6 depicts a set of images of sequential iterations showing the code
changing the geometry to meet the required flow conditions. For particular
input conditions, this occurred over just six iterations, demonstrating the
power of the lm solver.
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Figure 5: A Plot using a colour map to indicate the strain in the micro-
channel contraction after optimisation. Note that x and y-axes carry different
scales for convenience.

4 Conclusion

This study has shown the optimisation of parameters required for a third
order polynomial boundary function to produce a constant shear rate on the
centreline. This optimisation was achieved over just six iterations for the par-
ticular set of input conditions used, showing the power of the lm solver. The
code and method both illustrate the robustness through convergence with
little sensitivity to the number of samples or sample position. Only a small
number of samples were needed to minimise the difference between resulting
and desired shear rate. The robust nature of the code with respect to conver-
gence lends confidence to ongoing work whereby the geometry is described
by more complicated function such as cubic splines. This has contributed
to improved micro-channel design where the specific flow requirement are
designed into the system.
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Figure 6: This set of images are sequential iteration steps of the code
changing the geometry to meet the required flow conditions. This occurred
over only six iteration shows the power of using the lm solver.
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