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Abstract

In this article the application of the forced Stuart-Landau equa-
tion to describe the wake flow from a circular cylinder in uni-
form flow under transverse forcing is investigated. Previous
work has shown that the forced Stuart-Landau equation pre-
dicts multivalued behaviour can occur over a range of forcing
frequencies for a sufficiently large forcing amplitude. In prac-
tice, this should mean that the wake is hysteretic as a function of
the forcing frequency. Both numerical simulations and experi-
ments have failed to find this predicted hysteresis. The resolu-
tion appears to be that forced Landau model predicts that, for
a particular forcing amplitude, the range of forcing frequencies
over which hysteresis is predicted to occur varies in space. This
means that the model can predict the wake response (as mea-
sured by the oscillation amplitude) almost up to the frequency
corresponding to maximum response, but for higher forcing fre-
quencies the predictions deviate from the observations.

Introduction

The complex Stuart-Landau (often just referred to as the Lan-
dau) equation has been widely used to model the shedding
of vortices in the two-dimensional wake of a cylinder at low
Reynolds numbers. Specifically, the different coefficients of the
model have been measured from experiments (Sreenivasan et
al. [11], Provansal et al. [8], Schumm et al. [9], Albaréde &
Provansal [1]), and from numerical simulations (Dusek et al.
[3]). The model has also been applied to other cases such as the
transition to the periodic wake for flow past a sphere (Ghidersa
& Dusek, [5], and Thompson et al. [13]), flow past triangu-
lar cross-sectioned cylinders (Zielinska & Wesfreid [15]), and
forms the basis of coupled models for interacting bluff body
wakes from more than one body. In addition, the forced Lan-
dau model also appears to have applications for forced periodic
bluff body flows. In particular, the experiments of Bishop &
Hassan [2] have clearly shown jumps and hysteresis loops in
the resonance curves for the amplitude and the phase of the vor-
tex shedding. These resonances appear for particular excitation
frequencies. Stansby [10] has shown the existence of resonant
horns where the wake is locked to the cross-flow oscillation of
the cylinder. These types of behaviours are typical of predicted
states of forced damped oscillator systems.

The present study uses numerical simulations to investigate
the resonance response of forced cylinder wake flow and com-
pares the results with theoretical predictions from the forced
Stuart-Landau model. We focus our attention on the pre-critical
regime, where the periodic solution is damped when it is not
excited. To our knowledge, the only attempt at modeling the
periodically forced wake by a forced Landau equation below
the threshold has been by Provansal et al. [8]. In this case,
the forcing term which is added to the model is a simple har-
monic term, having a given amplitude and frequency. Above
the threshold, additional third-order terms are involved in the
amplitude equation associated with the forced Hopf bifurcation

(Walgraef [14]). The solution is then much more intricate with
the possibility of the appearance of higher-order resonances and
bi-periodic behaviour. A complete mathematical analysis of the
different possibilities has been provided by Gambaudo ([4]). In
addition, numerical solutions of the forced Stuart-Landau equa-
tion in the post-critical regime have been obtained (Olinger [7]).

In this paper, we limit our attention to the pre-critical flow
regime where locking is expected (Gambaudo [4]). It was
shown by Le Gal et al. [6] that, due to the cubic nonlinearity
of the Landau equation, the resonance curves can exhibit a hys-
teresis loop for a certain range of parameters. We study the
wake behaviour of a circular cylinder subject to transverse sinu-
soidal oscillations numerically, to test the predictions from the
theory.

Physical Model

The situation under investigation is depicted in Figure 1. A
circular cylinder is placed in a uniform flow. If the Reynolds
number Re=UD/v is above a critical value (Regit = 46.4), the
wake forms the characteristic Benard-von Karman vortex street.
In this case we are concerned with Reynolds numbers slightly
below Regit. Periodic shedding results only because of low-
level transverse forcing; typically, strong shedding results with
forcing levels below U /U = 0.1%. Here, Us/U is the trans-
verse velocity amplitude (relative to the inflow velocity) of the
forcing.
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Figure 1: Problem setup showing critical parameters.

Theory

Details of the finer points of the Stuart-Landau model applied
to circular cylinder wake transition can be found in Dusek et
al. [3]. Importantly, the equations can be non-dimensionalised
using a physically based-scaling (e.g., [6]), which shows that
the critical parameter determining the global behaviour is the
ratio of the imaginary to real coefficient of the cubic term. (This
is often called the Landau constant and is denoted by c).

In the present analysis, the equations are kept in dimensional
form. Only a brief exposition of the theory will be presented
here; the reader is referred to the references above for a more
detailed and in depth description.

The Stuart-Landau model describes the initial transient linear



growth and subsequent saturation of the wake at (pre- and) post-
critical Reynolds numbers. The transition of interest here is
the Hopf bifurcation of the wake of a circular cylinder, that is,
the transition from a steady to a periodic wake as the Reynolds
number is increased above a critical value. For this cylindrical
body-shape experimental and numerical studies have revealed
the transition occurs between Re= 46 and 47.

The complex 3rd order Stuart-Landau equation with time-
periodic forcing is given by
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in which A is a complex-valued function of time t and the pa-
rameters aR, a;, /r and ¢ are all real. The Landau constant, usu-
ally denoted by c, is given by c= ¢; /R in this formulation. The
equation has been truncated after the cubic term as is the usual
case for supercritical transitions since the cubic term is nomi-
nally responsible for limiting the initial exponential growth and
causing saturation. This is the case for the transition to periodic
shedding in the circular cylinder wake. The last term represents
the forcing. The forcing amplitude F and frequency w are taken
to be real.

In the absence of forcing (i.e., F = 0), Eq. (1) represents the
normal form of the Hopf bifurcation which occurs at the critical
value of the parameter ar = 0. For ar < 0, the null solution
(A =0) is a stable solution of the unforced equation. For a cir-
cular cylinder the flow corresponds to steady flow with attached
eddies at the rear of the cylinder. For ag > 0, this base state loses
its stability and the solution settles down to a time-periodic state
(corresponding to Bérnard or Karman vortex shedding). If only
the cubic terms are considered, the saturation amplitude is given
by |A| = (ar/¢r)*? and the angular frequency at saturation is
given by a — arc (e.g., [3]). Note that it is known from previ-
ous investigations (see [3]) that ¢r is positive . The time-scale

for the transient approach to this final periodic state is given by
1

ag™.
At this stage, the analysis can be simplified by non-
dimensionalising the variables to reveal the important govern-
ing parameters. This analysis is presented in [6]; only the re-
sults will be given here. The analysis shows that if the cubic
coefficients are constants, then the system behaviour at satura-
tion is fully determined by the value of the Landau constant, to-
gether with the relative forcing level and the frequency at which
forcing is applied. The critical value of the Landau constant is
Cerit = —V/3. For c less than the critical value, the equations
indicate that the saturated state can be multivalued provided the
forcing amplitude and frequency are above critical values de-
pendent on c. This is of particular interest because both experi-
mental and numerical determinations of the Landau constant in-
dicate that it is about -3 near bifurcation. In practice, this means
that the saturated state is hysteretic—over a specific frequency
range, the wake state at saturation corresponding to a particular
frequency will be different depending on whether the frequency
was approached slowly from above or below.

Equation (1) can be used to predict the resonance curve, that
is, the variation of the saturated mode amplitude with forcing
frequency for a fixed forcing amplitude. This is done by first
writing the amplitude in the form

A(t) = p(t) exp(id(t)).

By splitting the complex Landau equation into real and imag-
inary parts and solving for the saturation amplitude, (see [6]
for details), the equation governing the saturation amplitude is

given by
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This equation can be further manipulated to determine the satu-
ration amplitude ps as a function of .

The analysis and main predictions of the model are presented in
[6]; we only present a summary here.

From this point it is possible to derive the dependence of the
saturated state on the governing parameters including ¢{r and ¢;.
(However, whether hysteresis does or does not occur is deter-
mined completely by the value of c). The main result is that
there exist critical values of w, —c, and F above which the fi-
nal state is multivalued. It should be possible to observe this
behaviour experimentally and numerically.

In order for a multivalued saturated state to occur, parameter ¢
must satisfy ¢ < —+/3 and w must satisfy the following relation-

ship
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For any (c,w) pair which satisfy these conditions, there is a
minimum critical forcing frequency above which three final sat-
urated states exist. Two of these flow states are stable and hence
are observable in reality, while the other is unstable and gener-
ally is not observable. The critical value of the forcing is deter-
mined by the following equation
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Expressions for the maximum amplitude and corresponding
forcing frequency are given in [6].

Results

The spectral-element method is used to simulate the flow, both
below and above the critical Reynolds number, Reyi;. The
specific implementation is described in Thompson et al. [12].
Care has been taken to verify the convergence of the simula-
tions. Resolution and domain size studies indicate the accuracy
of the predictions is better than 1%. Figure 2 shows the mesh of
macro-elements used for the simulations. Within each element
the mesh is further subdivided into 7 x 7 collocation points. The
behaviour of the flow is monitored by recording the velocity
components at fixed points in the flow. In particular, the trans-
verse component of the velocity on the centreline is used since
it is zero in the pre-transition state.

The saturated wake state at Re = 48 is shown in terms of the
vorticity field in Figure 3.

Initially the critical Reynolds number was determined using lin-
ear extrapolation of the growth rates (ar) determined at a series
of post-critical Reynolds numbers. The critical Reynolds num-
ber was evaluated as Regit = 46.4 in agreement with previous
numerical predictions for this flow.

The Landau model parameters for Re = 46, were estimated
as ar = —0.00088, a; = 0.3708. This allows an estimation
of the critical forcing frequency from equation (3) as wgrit =
a —clag|. Given c = —3.2 at Re = 46 based on the determi-
nation of the frequency shift of the saturated states at higher
Re, this gives the critical forcing frequency of wejt = 0.374
only about 1% in excess of the natural oscillation frequency.
In addition, the critical forcing amplitude can be calculated to



Figure 2: The spectral-element mesh used for the simulations.
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Figure 3: Vorticity field in the wake at Re = 48.

correspond to a perturbation velocity amplitude U /U < 0.1%.
Thus very low amplitude forcing should be sufficient to induce
hysteretic behaviour.

To determine the cubic model coefficients, the unforced flow
was simulated at Re= 46 for many hundreds of shedding cycles
with the velocity field initialised from a solution at Re = 200
where shedding is extremely strong. After about 50 shedding
periods, the effect of the initial state convects out of the system,
and the evolution of the wake towards the steady state is pre-
sumed to be determined by the unforced Landau model. This
allows the determination of the parameters ¢g and ¢, in a simi-
lar way to the method used by Dusek et al. [3]. These param-
eters were also estimated by extrapolating values determined at
post-critical Reynolds numbers. Both methods provide similar
estimates. In fact, {r varies with downstream position (as has
been found by others (e.g., see [3])), but more surprising the
Landau constant ¢ = ¢r/¢; also varies significantly with dis-
tance. Since the Landau constant determines the frequency shift
of the saturated state at post-critical Reynolds numbers, and the
final flow state is locked at all points in space, this value should
be independent of position. Most likely, the values determined
here as a function of position vary in space because the wake
shape varies considerably as it evolves, so that the measurement
of the transverse velocity at a fixed point is not necessarily an
ideal measure of the global mode amplitude (as required by the
Landau model). Despite this, the transverse velocity has been
used successfully in the past (e.g., Dusek et al. [3]), to model
this transition. In practice, it means that higher-order terms may
need to be included to accurately describe transition if a point
velocity is used to monitor mode amplitude.

A series of simulations of the forced flow were then performed
for Re = 46. Two types of forcing were applied resulting in
essentially equivalent results. In the first case, the cylinder was
oscillated in the transverse direction. In the second case, a trans-
verse oscillation was added to the flow at inlet and side bound-
aries. Although there were slight quantitative differences in the
resonance curves, there were no qualitative differences. The
results reported here are for the forcing applied at the exter-

nal boundaries. For each forcing amplitude investigated, the
wake was evolved until it reached a periodic state for a set
of forcing frequencies. This allowed the resonance curves to
be constructed as shown in Figure 4. The three curves shown
correspond to different forcing amplitudes of Us /U = 0.1,0.05
and 0.025%. The amplitude was measured at a point 7D down-
stream of the centre of the cylinder. Overlaid are the resonance
curves predicted from the forced Stuart-Landau model for com-
parison. Clearly, the actual resonance curves are well predicted
for lower frequencies but are not well-predicted near the pre-
dicted hysteresis ranges, although the curves are bent towards
the right side. Also the maximum of resonance amplitude is
lower than that predicted by the model. These results are quali-
tatively duplicated at other downstream locations.
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Figure 4: Predicted resonance curves. The symbols denote res-
onance points determined by the numerical simulations. From
lowest to highest the curves correspond to forcing levels of
U /U =0.025,0.05 and 0.1%. Also shown are the correspond-
ing predicted resonance curves from the forced Landau model.
The amplitude corresponds to the transverse velocity compo-
nent at 7D downstream of the cylinder.

Thus, although the Stuart-Landau model predicts a multivalued
wake state, there is no indication that this occurs in the real
system. Note that experimental results (Le Gal et al. [6]) concur
with this finding. However, the model does appear to predict
accurately at least part of the resonance curves, especially at
lower frequencies.

A possible explanation for this breakdown in the model may be
understood through reference to Figure 5. This shows the pre-
dicted resonance curves (from the Landau model) as a function
of downstream distance for the same forcing level. The varia-
tion of the cubic coefficients of the model mean that the range of
frequencies for which the wake is multivalued, varies consider-
ably with downstream position. Describing the two wake states
as low amplitude and high amplitude, it can be seen that at low
forcing frequencies all points in the wake prefer the high ampli-
tude wake state. In particular, this applies to points to the left
of the dotted line on the figure. Similarly, for (very) high fre-
quencies the low wake state is preferred. However, in between,
different points in the wake prefer different wake states depend-
ing on position. The predicted resonance curve corresponding
to x = 7D downstream is marked on the diagram. This is the
same curve shown in Figure 4 for the intermediate forcing am-
plitude. The range over which hysteresis can occur is different
from points upstream and downstream. In particular, consider-
ing the case where the forcing frequency is slowly increased, the
wake state should remain in the high state until the point corre-
sponding to the maximum resonance amplitude is approached.
However, near that frequency, at points slightly downstream,
the wake can only exist in the low state. This provides a hy-
pothetical explanation for why the measured maximum ampli-



tude at resonance is less than the predicted amplitude from the
model. It also explains why the wake fails to show the multival-
ued behaviour predicted because for any point in the wake at a
forcing frequency corresponding to the multivalued range, there
are other points where the wake prefers to be in only either the
low or high amplitude state. In effect, the hysteresis range is
smoothed out by the interaction (of the oscillators) at different
points in the wake.
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Figure 5: Predicted resonance curves from the forced Stuart-
Landau model as a function of downstream distance using mea-
sured local values of the parameters in the Landau equation.

Conclusions

The forced Stuart-Landau equation is applied to modelling the
behaviour of the wake from a circular cylinder close to the tran-
sition Reynolds number where periodic shedding first occurs.
While the model applied pointwise predicts hysteresis as a func-
tion of forcing amplitude, numerical simulations and experi-
ments show this not to be the case. However, the model does
accurately predict the shape of the resonance curves at low (and
high) forcing frequencies away from the hysteretic range. It
seems likely that the wake could be described by a set of inter-
acting forced Landau model systems with the interaction terms
limiting the possibility of hysteresis, at least in this case. This
possibility is currently being pursued.
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