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Abstract

The observation of vortex breakdown over delta wings, in
swirling pipe flows, and in torsionally driven cylinders, has led
to inconsistencies regarding the definition of breakdown and an
inability to define a geometry independent criterion for the oc-
currence of breakdown. Study of two geometries which produce
vortex breakdown, the swirling pipe flow and torsionally driven
cylinder flow, has resulted in revised definitions of the quanti-
ties generally used to specify breakdown flows: the Reynolds
number (Re) and swirl parameter (S or Ω). A consistent way of
defining these quantities is presented, with the aim of compar-
ing more directly the manifestations of breakdown in the var-
ious geometries in which it is observed. Both quantities are
based on the axial and azimuthal velocity profiles measured in
the vortex core, and hence are geometry independent.

Introduction

The variety of circumstances in which breakdown can occur is
made possible by the fact that breakdown seems to be largely a
function of the structure of the vortex core. The susceptibility
of a flow to breakdown therefore is only influenced indirectly
by the external flow, in that the external flow has a part to play
in determining the profile of the vortex core. However it is the
core flow that determines whether the axial flow will stagnate
and a breakdown bubble subsequently form.

A complete description of vortex breakdown must include the
forms of breakdown observed in all the various geometries.
Hence the Reynolds number Re and swirl Ω are used to define
the relevant properties of the vortex with relation to breakdown.
However, many authors define Re and Ω differently depending
on the peculiarities of their geometry or the flow produced in
that geometry. Darmofal [2] and Beran and Culick [1] base Re
on the freestream velocity and vortex core radius. This defini-
tion is set out below, as we will refer to it in subsequent sections:
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where Γ∞ is the freestream circulation, r the radial ordinate,
u∞ the axial velocity at infinity, δ the core radius, and ν the
kinematic viscosity. (We use the subscript P to indicate pipe
quantities, and C to represent cylinder quantities). Khoo et al.
[6] use a rotating drum apparatus to generate breakdown, and
hence define their Re in terms of an average axial velocity and
drum radius. Faler and Leibovich [4] use the average axial ve-
locity and pipe diameter to determine ReP. In torsionally driven
cylinder studies ReC is defined by the rotation rate of the lid Ω
and viscosity ν:

ReC
�

Ωr2

ν
(3)

Given the range of geometries used in these studies, this eclec-
ticism is understandable. However, the result of these differing
definitions is that it is difficult to draw a direct comparison be-
tween the different flows that produce breakdown.

Maxworthy [8] went some way toward solving this problem
by describing a generic apparatus, which has elements com-
mon to most of the geometries considered. Khoo et al. [6]
used the definitions associated with this apparatus to compare
the results from their swirling tank geometry with results ob-
tained for open pipe flows. However, this apparatus still does
not enable a direct comparison to be made between the various
breakdown-susceptible flows, as approximations have had to be
made in order to accommodate some geometries, such as the
open pipe of Faler and Leibovich [4]. Also, it is not possible to
include breakdown produced in a geometry such as the torsion-
ally driven cylinder as a mean axial velocity is required, and this
cannot be defined when all of the flow recirculates.

In this work we attempt to remove specificity of the geometry
that produces breakdown by examining only the vortex core.
As was stated at the start of this section, vortex breakdown is a
product mainly of the vortex core, so it would appear reasonable
to consider just the core when comparing breakdowns produced
in differing geometries.

Problem Setup

The two geometries we consider are illustrated in figures 1 and
2.
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Figure 1: Pipe geometry.
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Figure 2: Cylinder geometry.

This investigation begins with an examination of the axial (u),
radial (v), and azimuthal (w) velocity profiles in both geome-
tries.

The axial and radial velocity profiles for Re=2560 and Ω �

1 � 777 (based on their definitions) measured by Faler and Lei-
bovich [5] in their experiments at various axial locations are
shown in figure 3. In figure 4 are reproduced the equivalent
velocity profiles in the cylinder just upstream of breakdown
for comparison; r is normalised by the radius of maximum az-
imuthal velocity.

It can be seen from these figures that close to the axis the axial
and swirl velocities are similar. Both the Faler and Leibovich
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Figure 3: Faler and Leibovich’s [5] Re=2560, Ω=1.777 axial
(u) and swirl (w) inlet velocity profiles
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Figure 4: Cylinder axial (u) and swirl (w) velocity profiles up-
stream of breakdown

[5] pipe and the cylinder have a jet-like axial velocity profile;
the velocity at the axis is a maximum. Away from the axis
the velocity drops off rapidly with radial distance. The swirl
velocity profiles for both geometries have a similar, roughly
solid body rotation, profile, which in the case of Faler and Lei-
bovich’s experiment changes at a radial distance of about r=0.5,
and reduces to zero at the pipe wall. The cylinder profile rounds
off more smoothly, but has a form similar to the experimental
pipe result.

These simple comparisons confirm qualitatively the similarities
between the flows in the vortex core upstream of breakdown in
two very different geometries. Although the velocity profiles
at a distance from the axis are different, in the near-axis region
the axial and azimuthal velocity profiles have a similar form.
The similarity of these core flow profiles allows the definition
of generic quantities which can describe both flows.

Consistent Ω and Re Definitions

An aim of this study is to find a set of parameters by which the
open pipe and torsionally driven cylinder flow can be directly
compared. The cylinder flow is completely determined by spec-
ifying the rotation rate of the lid in terms of a Reynolds number
(ReC). For the pipe we specify the Reynolds number (ReP) and
swirl (ΩP), which can be varied independently. This is impos-
sible in a cylinder with constant aspect ratio, because the swirl
and Reynolds number are driven by the rotation of the spinning
lid. However if we consider only the vortex core flow, then it is
possible to determine a Reynolds number and swirl equivalent
to that used in open pipe studies. We determine these quanti-
ties by examining the axial and azimuthal velocity profiles just
upstream of breakdown in both geometries

The Reynolds number will be defined by the maximum axial
velocity along the centreline (umax), the radius of the point of
maximum azimuthal velocity at the axial location of maximum
axial velocity (r), and the kinematic viscosity (ν):

Re �
umaxr

ν
(4)

The swirl is defined simply as the maximum azimuthal velocity
(wmax), at the axial location of maximum axial velocity, divided
by the maximum axial velocity:

Ω �
wmax

umax
(5)

These definitions are represented graphically in figure 5.
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Figure 5: umax, wmax, and r used in Re and Ω definitions

The rationale for these definitions is as follows. Previous stud-
ies (Darmofal [2], Beran and Culick [1]) of pipe geometries
have based their Reynolds number on the freestream axial ve-
locity. In those studies the freestream axial velocity was an eas-
ily obtained quantity. For the cylinder it is difficult to define a
freestream axial velocity because the flow recirculates. Hence
it proves to be more convenient and more consistent to use
the above equations for our definition of swirl Ω and Reynolds
number Re. umax is chosen in order to determine the flow as far
along the axis as possible from the influence of the breakdown
bubble, which tends to stagnate the axial flow. In the cylinder
this is important because the bubble is located so close to the
stationary lid. Determining the swirl and Reynolds number at
the location of maximum axial velocity gives a position of least
influence from both the stationary lid and breakdown bubble in
the cylinder. In the pipe the axial velocity is modified by the
constricting section, and becomes a jet-type flow, characteris-
tic of the vortex flows observed in the unconfined geometries
which result in vortex breakdown. r is defined by the radius
of the vortex core, ie. the radius at which the azimuthal veloc-
ity profile begins to decrease with radial distance from the axis.
Thus r provides a consistent length scale.

The maximum azimuthal velocity divided by the maximum ax-
ial velocity was used for the swirl definition as it represents well
the degree of swirl in the vortex core. The inverse tangent of
this quantity has been used previously (helix angle defined in
Delery [3]) as an indicator of breakdown susceptibility. Using
the definitions above it is possible to compare the flow regimes
quantitatively, ie. in terms of the swirl parameter Ω and the
Reynolds number Re.

We consider flows produced in the torsionally driven cylinder,
and in a pipe whose geometry and typical breakdown flow are
presented in figure 6.

Table 1 presents some values of the core Re and Ω calculated
for the torsionally driven cylinder.

The first point to note is the very low core Re compared to
the cylinder ReC. This is an indication of the velocity magni-
tudes in the secondary recirculating flow in the cylinder The
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Figure 6: Half section of the open pipe geometry with breakdown. The inlet is to the left, and the pipe wall is a slip boundary.

Cylinder Re Breakdown state Core Re Ω
1902 No bubble 60.2 0.8787
1933 1 bubble 59.9 0.8936
2001 2 bubbles 59.0 0.9299
2252 2 bubbles 61.1 1.1250

Table 1: Reynolds number and Ω for the torsionally driven
cylinder

core Reynolds number does not change much with increase in
cylinder Reynolds number, whereas Ω increases roughly lin-
early with increase in cylinder Reynolds number.

The equivalent properties calculated for the pipe with ReP
�

1000 are shown in table 2

Swirl Breakdown state Core Re Ω
1.40 no bubble 1282 0.2836
1.45 1 bubble 1433 0.6944
1.49 1 bubble 1426 0.7126

Table 2: Reynolds number and Ω for the open pipe

It can be seen from tables 1 and 2 that the core Reynolds number
regimes at which breakdown is observed in the two geometries
are quite different. However the values of Ω which breakdown
occurs are comparable, even at these very different values of
core Re.

Effect of Sloping Cylinder Walls

As was mentioned earlier, a limitation of the torsionally driven
cylinder is the inability to independently alter the Reynolds
number and swirl. Since the flow for a specific aspect ratio
is wholly determined by the rotation rate of the lid, it is not
possible to vary the Reynolds number without also indirectly
affecting the swirl. The result of this limitation is that it is only
possible to explore a very limited range of flows in the cylinder.
In order to make independent changes to the Reynolds num-
ber and swirl in the cylinder, it will be necessary to make some
change to the cylinder geometry. In this study this change takes
the form of a variation in the cylinder endwall length. The new
geometry to be considered is shown in figure 7.
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Figure 7: Sloped cylinder definition

The rotating lid is at the right hand end of the cylinder, and the
cylinder ReC is still determined by the lid rotation rate. For this
study the ratio of the endwall radius to the rotating wall radius
will be varied; define this as the wall ratio:

α � stationary wall radius
rotating wall radius

(6)

For each α the flow at various Reynolds numbers will be ex-

plored. We use the Reynolds number range: 1000
�

ReC
�

7000. For ReC � 2700 in the straight-sided aspect ratio 2.5
cylinder the flow has been observed to become unsteady (eg.
Lopez [7]). In this study we consider only steady state solu-
tions. However the high ReC steady results give an indication
of the Ω and Re obtainable in the cylinder.

Results are generated for 0 � 25
� α �

1 � 25, which includes the
straight-sided cylinder and results on both sides of this case.
Note that the more highly sloped wall cases (low α) begin to
approximate the situation in cyclone separators.

In figure 8 we plot the variation in Re and Ω for the cylinder
slopes considered. Each line represents the result for a single
cylinder Reynolds number ReC, and the points on each line are
the results of varying α.

It can be seen from figure 8 that the aim of influencing Re and Ω
with some independence has been achieved, through changing
the ratio of stationary endwall to rotating lid. For ReC

� 2500
changing α results in a variation in the swirl Ω from 0.8 to 1.7,
and for cylinder ReC

� 1000 the core Re varies between 43 and
65.
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Figure 8: Re vs Ω for the sloped cylinder.

Evaluation of Re and Ω

The next stage in this investigation is to test the Re and Ω def-
initions for the two geometries. We plot results for the sloped
cylinder as described above, and for the open pipe, with Rep
varying between 40 and 200, and pipe swirl Ωp varying be-
tween 1.45 and 2.2. This plot is presented in figures 9.

In figure 9 we plot Re against Ω. The red (larger) symbols cor-
respond to values obtained from the open pipe. Black (smaller)
symbols correspond to sloped cylinder values. Crosses indicate
absence of breakdown, and triangles indicate the presence of at
least one breakdown bubble.

An obvious aspect of the plot is the ability of the sloped cylinder
to attain very high swirl values, up to Ω � 8 � 5. These very high
swirls were found for the high cylinder Reynolds number cases,
which we will pay little attention to, since they are far removed
from the typical flows which accompany breakdown in pipes.
The bubble becomes a ‘wall breakdown’, as described by Max-
worthy [8], in these cases. The cylinder results are all confined
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Figure 9: Re vs Ω for the cylinder and pipe.

to very low Re; increasing the cylinder ReC has a dramatic ef-
fect on Ω but comparatively little effect on Re. For even larger
cylinder ReC the breakdown disappears, although there is still a
large streamline divergence, and the flow has a coat-hanger like
appearance, but without a recirculating bubble. The flow also
becomes unsteady at these larger ReC for cylinders with α � 1,
but we do not attempt this case as a steady solver was used to
generate solutions in this study.

The situation for the open pipe is very different. There is a rel-
atively large spread in Re, and little spread in Ω. It would be
useful to obtain very high swirl results for the pipe to compare
with the high swirl cylinder results. However, this is not possi-
ble. The swirl range which can be tested in the pipe is severely
limited by the propensity of the bubble to progress past the inlet
constriction for very high swirls. At swirl=2.2 for Re

� 40 the
axial velocity does not reach a definable maximum as the bub-
ble has moved too close to the inlet. These results have been
discarded, since the boundary condition becomes unrealistic at
that point, and the inability to determine a maximum axial ve-
locity renders our Reynolds number definition useless. Also, it
is difficult to obtain useful very low Re pipe results in which
breakdown occurs. This is because for Rep � 40 the swirl ve-
locity does not reach a maximum before the pipe wall. Hence it
is impossible to define Ω in these cases.

This plots shows the general trends: Low Ω results are without
breakdown, and increasing Ω results in breakdown evolution in
both the pipe and cylinder. So the Ω and Re used here result in
trends consistent with previous studies.

Discussion

The Re and Ω definitions used here are to a certain extent arbi-
trary, but they are a first step toward obtaining definitions which
describe a flow’s susceptibility to vortex breakdown. Despite
the geometry-independence of the definitions, the core flow is
still dependent on the surrounding geometry, hence breakdown
is still a function of the geometry. This is obvious from the types
of breakdown observed in the pipe comapared to the cylinder;
pipe breakdowns tend to have a more elongated structure for
the ReP and ΩP considered. The approximations made in the
definition also contribute to inaccuracies in the final result, ie.
definition of maximum centreline axial velocity in the cylinder
when the bubble is so close to the lid.

The aim of this work is to contribute toward a generic definition
for breakdown in terms of the vortex core. This is necessary
partly to counter claims that the breakdown in the cylinder is
not breakdown but a form of flow-separation, distinct from pipe

breakdown. Figure 9 shows that the region in parameter space
where breakdown occurs in the pipe and cylinder is consistent;
it is not unreasonable to suspect that the phenomenon occurring
in pipe studies is the same as that occurring in torsionally driven
cylinder, ie. vortex breakdown.
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