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Damping effect on transverse flow-induced vibration of a rotating circular
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This study experimentally investigates the effect of structural damping on the transverse
flow-induced vibration (FIV) of an elastically mounted circular cylinder under imposed
axial rotation in a free stream. It has been shown by Wong et al. [K. W. L. Wong, J. Zhao,
D. Lo Jacono, M. C. Thompson, and J. Sheridan, J. Fluid Mech. 829, 486 (2017)] that
FIV of a circular cylinder can be enhanced or attenuated by imposing an axial rotation.
Here, we demonstrate that the rotation-enhanced FIV response is more susceptible to the
varying damping than the nonrotating cylinder. The rotation-enhanced response diminishes
when the damping ratio is increased to a certain value for the fixed rotation rate of α = 2.0
(α = cylinder surface to free-stream velocity). We also analyze the forcing components,
showing that the time-averaged lift coefficient is predominantly dependent on the rotation
rate over the Reynolds number range (1130 � Re � 5260) tested. Interestingly, it emerges
that the FIV of a rotating cylinder is associated with harmonic force components and wake
modes different than those of the nonrotating cylinder, despite the existence of a similar
three-branch response. In terms of the implication for energy harvesting, we demonstrate
a 33% increase in the peak power output compared with the nonrotating cylinder, noting
that enhancement occurs within the range 1.5 � α � 2.0.

DOI: 10.1103/PhysRevFluids.7.023905

I. INTRODUCTION

Flow-induced vibration (FIV) is a subject of great interest in the field of fluid-structure interac-
tion, due to its intrinsic dynamics that are of scientific interest and significant implications in a wide
variety of engineering areas. Since the pioneering experiments of Brooks [1], the two-sided roles
of FIV, being both an undesirable phenomenon in practical engineering and a potential renewable
energy harvesting source (e.g., Refs. [2–5]), have increasingly motivated ongoing research that aims
to model, characterize, predict, and control FIV (e.g., Refs. [6–9]).

Fundamentally, there are two body-oscillator phenomena typical of FIV: vortex-induced vibra-
tion (VIV) and galloping. VIV is caused by vortices shed periodically from an elastic or elastically
mounted body, and thus it is self-limited by the vortex-shedding process. On the other hand,
galloping, known as an aeroelastic instability, is driven by the unsteady aerodynamic forces arising
from an asymmetric pressure distribution around the body that is induced by changes in relative
incidence angle when the body moves in the flow. Studies have demonstrated that, depending on
the flow velocity and structural properties (e.g., the geometry, afterbody, mass ratio, and damping),
the two body-oscillator phenomena may occur separately or concurrently, resulting in profound
dynamics of fluid-structure interaction (see Refs. [10–13]). In the present study, the focus is on the
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FIG. 1. Definition sketch for transverse flow-induced vibration of a rotating cylinder. The axis of rotation
is perpendicular to the x-y plane. U is the free-stream velocity, D the cylinder diameter, m the oscillating mass,
k the spring constant, c the structural damping, and � the angular velocity. Fy represents the transverse (lift)
force components acting on the body. The angular rotation speed is represented by �, with its positive direction
in the clockwise direction that generates a positive Magnus force.

effect of structural damping on the FIV of a circular cylinder with an imposed rotation to break the
axial symmetry of the fluid-structure system for control purposes.

In the past century, flow past a rotating cylinder has been extensively investigated to examine the
effect of imposed rotation on fluid forces (i.e., lift augmentation due to the Magnus effect, named
after the well-known physicist G. Magnus who first demonstrated this phenomenon in experiments
in 1852), and wake structures (see Refs. [14–18]). It has been found that the fluid forces and wake
structures are dependent on both the Reynolds number Re = UD/ν and the dimensionless rotation
rate α = �D/(2U ), where U is the free-stream velocity, ν is the kinematic viscosity of the fluid, D
is the cylinder diameter, and � is the angular velocity of rotation, as illustrated in Fig. 1.

More recently, the rotation effect has been adopted for active control of FIV of circular cylinders
[19–26], and spheres [27–29]. In particular, Wong et al. [19] have examined the FIV response of
a rotating cylinder over a wide parameter space of reduced velocity and rotation rate, showing that
the three amplitude branches (namely, the initial, upper, and lower branches coined by Khalak and
Williamson [6]) typical of VIV of a circular cylinder with low mass and damping ratios can be
enhanced significantly (∼80% in the peak amplitude) by the imposed rotation up to α ≈ 2.3, prior
to an abrupt substantial reduction or even full suppression for higher α values. Note that here the
reduced velocity is defined by U ∗ = U/( fnwD), where fnw is the natural frequency of the system in
quiescent water. They have also demonstrated a variety of wake patterns and complicated switching
behaviors of wake modes occurring on a U ∗-α map. However, the fluid forcing components remain
largely unknown in their study.

On the other hand, the damping effect on VIV of a low-mass-ratio circular cylinder has been
investigated experimentally by Soti et al. [4]. They showed that the existence of the upper branch
continued with a peak amplitude down to 0.2D as the structural damping ratio was increased. The
implicated maximum average power output coefficient was found to be 0.151–0.200 in the Reynolds
number range of 1750–5330. It is suggested that the energy harvesting performance improves with
increasing Re.

Following on from Wong et al. [19] and Soti et al. [4], the present study investigates the combined
effect of rotation and damping on FIV of a circular cylinder. We aim to gain a deeper under-
standing of how the three-branch amplitude response enhanced by imposed rotation is attenuated
or suppressed by structural damping. More generally, this study characterizes the dynamics and
wake structures over a parameter space across wide ranges of reduced velocity, rotation rate, and
damping ratio. To provide insight into the mechanism of fluid-structure interaction, we present a
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detailed frequency analysis for the structural vibration and the driving fluid forces, while wake
structures associated with different FIV response regimes are also discussed. Of interest, the implied
energy harvesting performance of a rotating cylinder is assessed by comparing with its nonrotating
counterpart.

II. EXPERIMENTAL METHODOLOGY

A. Fluid-structure system modeling

The fluid-structure system is modeled as a single-degree-of-freedom mass-spring-damper os-
cillator subjected to a fluid flow, as sketched in Fig. 1. The elastically mounted cylinder is free
to oscillate only in the cross-flow direction to the oncoming free-stream. The body dynamics is
governed by a linear second-order oscillator equation:

mÿ(t ) + cẏ(t ) + ky(t ) = Fy(t ), (1)

where m is the total oscillating mass of the system, c is the structural damping, k is the spring
constant, y(t ) is the body displacement, and Fy(t ) represents the transverse fluid force (the lift).
Note that the transverse fluid force coefficient used in this study is defined by Cy = Fy/( 1

2ρU 2DL),
where ρ is the fluid density and L is the cylinder immersed span.

In the present study, the experimental modeling was based on a low-friction air-bearing system
in conjunction with a recirculating free-surface water channel of the Fluids Laboratory for Aeronau-
tical and Industrial Research (FLAIR) at Monash University. Details of the air-bearing system and
water channel facilities have been described in the previous related studies of Wong et al. [24] and
Zhao et al. [25]. Figure 2 shows photographs to clarify key components of the present experimental
rig. The air-bearing system was placed atop and aligned transverse to the water channel. The test
cylinder coupled with a stepper motor rig was vertically adapted to the air-bearing slider carriage
that was guided by precision stainless steel shafts to provide linear movement. The rigid cylinder
model, precision-made from aluminium tubing, had an outer diameter of D = 30 ± 0.01 mm.
The immersed length of cylinder was L = 614 mm, yielding a span-to-diameter aspect ratio of
AR = L/D = 20.5. To reduce end effects of the cylinder and to promote parallel vortex shedding, an
end conditioning platform was used (for more details, see Refs. [24,25]). The total oscillating mass
of the system was m = 2630.6 g, and the displaced mass of water was md = ρπD2L/4 = 433.6 g,
giving a mass ratio of m∗ = m/md = 6.07.

An eddy-current-based damping mechanism was used to control the structural damping by
varying the damper gap via a micro-drive stage with a resolution of 0.01 mm [see Fig. 2(c)].
Details of the design of this damper device can be found in Ref. [4]. The structural stiffness of
the mass-spring-damper system was controlled by precision extension springs. Free decay tests
were conducted individually in air and in quiescent water to determine the structural damping ratio
and the natural frequency of the system in each scenario. Figure 3 shows the free decay test results
of the structural damping ratios (i.e., ζa in air and ζ with consideration of the added mass) and
the natural frequencies (i.e., fna in air and fnw in quiescent water) as a function of the damper gap
(G, in mm). Note that the structural damping ratio with consideration of the added mass was given
by ζ = c/2

√
k(m + mA), where the added mass, given by mA = [( fna/ fnw)2 − 1]m, was found to

be 471.3 g, while the added mass coefficient, defined by CA = mA/md, was found to be 1.09. As
shown in Fig. 3, the structural damping ratio varied nonlinearly with the damper gap (close to an
exponentially decreasing trend with increasing G); on the other hand, the natural frequencies both
in air and in quiescent water remained consistent, i.e., fna = 0.455 Hz and fnw = 0.419 Hz, with
decreasing damper gap until G < 2 when structural damping effects became sufficiently strong to
affect the natural frequencies.

The imposed cylinder rotation was driven by a miniature stepper motor (Model LV172, Parker
Hannifin, USA) that was controlled by a micro-stepping drive (Model: E-DC) with a resolution
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(a)

(a)

FIG. 2. Photographs showing the experimental setup in (a) the front view and (b) the top view, where key
components of the air-bearing system, the rotation rig, and the damper device are illustrated. Panel (c) shows a
close-up view of the micro-drive used to control the damper gap.

of 25 000 steps per revolution and a Parker 6K2 motion controller. More details of this motor
mechanism can be found in Refs. [24,25].

B. Data acquisition and processing methods

The data acquisition and the control of the free-stream velocity and the motor rotary motion
were automated using a workstation computer equipped with customized LABVIEW (National
Instruments, USA) programs. The reduced velocity was varied over the range of 3 � U ∗ � 13 in
increments between 0.1 and 0.2 (depending on structural response regimes). The Reynolds number
range was 1130 � Re � 5260, with a relative uncertainty of 1%. Note that the experimental data
sets were collected in a consistent manner with increasing reduced velocities for fixed rotation rates
or with increasing rotation rates for fixed reduced velocities.

The body displacement and the fluid forces acting on the cylinder were measured simultaneously.
The body displacement was measured using a noncontact digital optical linear encoder (Model
RGH24, Renishaw, UK). This linear encoder had a resolution of 1 μm and a linear range of ±200
mm available. An optical rotary encoder with a resolution of 4000 counts per revolution (Model
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(a.i)

(a.ii)

(b.i)

(b.ii)

FIG. 3. Free decay test results of the structural damping ratios and natural frequencies as a function of the
damper gap. Panels (a.i) and (a.ii) show the results of the structural damping ratio (ζa) and the natural frequency
( fna) in air, respectively, while panels (b.i) and (b.ii) show the structural damping ratio with the consideration
of added mass (ζ ) and the natural frequency ( fnw) in quiescent water, respectively.

E5-1000, US Digital, USA) was used to measure the rotary motion [25]. The transverse fluid force
(the lift, Fy) was determined based on Eq. (1). The force measurement technique has been detailed
and validated in Refs. [9,11,25,27,28]. The water temperature was measured using a platinum-based
resistance temperature detector in conjunction with a Pt100 converter (Model 3112, PR Electronics,
USA). This temperature converter had an accuracy of 0.05% for the configured range of 10-40 ◦C.
For each measurement case, the data acquisition was made at a sampling frequency of 100 Hz for
300 s, which could obtain data from more than 140 vibration cycles for analysis.

To visualize the flow structure associated with the cylinder dynamic response, the near wake of
the cylinder was examined using the particle image velocimetry (PIV) technique. The PIV system
used has been detailed in the previous study of Zhao et al. [12,25].

More details of the experimental validation can be found in the studies of Wong et al. [24] and
Zhao et al. [25].

III. RESULTS AND DISCUSSION

A. Dynamical response as a function of reduced velocity

In this subsection, we examine the damping effect on the FIV response of a rotating cylinder at
α = 2.0 as a function of reduced velocity. The selection of this α value was based on the previous
study of Wong et al. [19] showing that the largest vibration amplitudes occurred at α � 2.0, prior
to an abrupt decrease in the amplitude response at α � 2.3 for the upper branch.

Figure 4 shows the variations of the normalized body vibration amplitude (A∗
10) as a function

of reduced velocity for α = 2.0 with a wide range of structural damping ratios, as compared with
selected cases of the nonrotating cylinder (α = 0). Note that A∗

10 represents the mean of the top
10% amplitude peaks normalized by the cylinder diameter D (for each U ∗). As can be seen in
Fig. 4(a), for the lowest damping ratio case (ζ = 0.0032, G = 24.00 mm), the maximum A∗

10 is
observed to be 1.32 in the upper branch, a 69% increase over its nonrotating counterpart. This
amplitude increase is somewhat lower than the 80% reported by Wong et al. [19], and it could be

023905-5



ZHAO, THOMPSON, AND HOURIGAN

(a)

(b)

FIG. 4. The normalized amplitude (A∗
10) as a function of U ∗ at the imposed rotation speed ratio of α = 2.0

with various damping ratios, as compared with selected nonrotating cases (α = 0).

attributable to the differences in mass ratios between the two studies (i.e., m∗ = 5.78 in Ref. [19]).
As ζ is increased gradually to 0.0248 (G = 9.50 mm), the initial to upper branch jump diminishes,
and the amplitude response becomes “two-branched” with a seemingly continuous branch growth
up to U ∗ = 6 prior to sharply dropping to the lower branch. For this ζ case, the maximum vibration
amplitude is found to be A∗

10 = 0.72, a 14% increase over its nonrotating counterpart. With ζ further
increased to 0.0345 (G = 7.50 mm), the vibration amplitudes appear to be lower than those of its
nonrotating counterpart; in other words, at α = 2.0, the cylinder rotation exhibits an attenuation
effect in this ζ case. On the other hand, the amplitude peak is reduced to A∗

10 = 0.51, a decrease
of 60% from that of the lowest ζ case. This reduction ratio is substantially greater than the 20%
for the nonrotating counterpart. Unexpectedly, for a further higher damping ratio of ζ = 0.0635
(G = 5.00 mm), the rotating cylinder sees FIV suppression for the entire U ∗ range tested, while its
nonrotating counterpart still displays a significant FIV response.

In particular, the lower branch for the rotating cases appears to be sensitive to changes in ζ , as
reflected by a V-shape drop at U ∗ ≈ 8, whereas all nonrotating cases display a well-defined lower
branch profile. In fact, this V-shape drop is associated with the loss of body-wake synchronization,
as revealed in the frequency power spectra density contour plots in Fig. 5. As can be seen in
Fig. 5(b.ii), the lower branch for ζ = 0.0032 is associated with a second harmonic in the lift
frequency response ( f ∗

Cy
), whereas the nonrotating counterpart displays a third harmonic [Fig. 5(b.i)].

The fluid forcing frequency response was not examined previously by Wong et al. [19]; however,
Zhao et al. [25] showed a secondary harmonic clearly existing in f ∗

Cy
when significant body-wake

synchronization was encountered in inline FIV of a rotating cylinder. Thus, the difference in
the frequency components between the rotating and nonrotating cases can be linked to different
vortex-shedding modes. More discussion on wake modes is given in Sec. III C. As ζ is increased,
the lower branch sees an interrupted region of desynchronization [e.g., ζ = 0.0182, G = 10.50 mm
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(a.i) (b.i)

(a.ii) (b.ii)

(a.iii) (b.iii)

(a.iv) (b.iv)

(a.v) (b.v)

(a.vi) (b.vi)

FIG. 5. Normalized amplitude and frequency responses as a function of the reduced velocity at α = 2.0
with various selected damping ratios. Note that the normalized frequencies are given by f ∗ = f / fnw, and
their power spectral densities are logarithmic scaled. The dashed slope line represents the normalized rotation
frequency αU ∗/π . For comparison of f ∗

Cy
, panel (b.i) shows the case of α = 0 and ζ = 0.0032. The vertical

lines separate the FIV response regimes of the initial branch (IB), the upper branch (UB), the lower branch
(LB), and desynchronization (DS).
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(a)

(b)

FIG. 6. Time-averaged displacement (y∗) and time-averaged lift coefficient (Cy) as a function of U ∗ at the
imposed rotation speed ratio of α = 2.0 with various damping ratios. In panel (a), the blue solid line represents
the second-order polynomial fit curve through all measurement cases, while in panel (b) the blue solid line
represents the averaged value of all Cy values.

in Fig. 5(b.iv)] corresponding to a V-shape drop in the A∗
10 response. However, it is unclear why this

desynchronization occurs in the middle of the lower branch, where strong fluid-structure interaction
would be expected to result in a body-wake synchronization. Nevertheless, the above results suggest
that the FIV response of a rotating cylinder is more susceptible to the damping effect than its
nonrotating counterpart.

Furthermore, we examine the damping effect on the time-averaged cylinder position and the lift
force coefficient. Figure 6 shows the time-averaged body position (y∗) and time-averaged transverse
fluid force coefficient (Cy) for the test cases of α = 2.0. Note that y∗ represents the normalized time-
averaged of the cylinder displacement from its neutral position at zero flow velocity, i.e., y∗ = y/D.
Following the analytical approach used in the inline FIV case by Zhao et al. [25], by taking the
temporal average of both sides of Eq. (1), the time-averaged cylinder displacement can be given by

y = F y

k
, (2)

and its dimensionless form (normalized by the cylinder diameter D) is determined by

y∗ = ρU 2LCy

2k
. (3)

Then, substituting for U ∗ = U/( fnwD) and k ∼= (2π fna )2m gives

y∗ = ρ(U ∗ fnwD)2LCy

2(2π fna )2m
, (4)
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and, with md = ρπD2L/4 and CA = mA/md = [( fna/ fnw)2 − 1]m∗, Eq. (4) can be rewritten by

y∗ = U ∗2Cy

2π3(CA + m∗)
. (5)

Clearly, y∗ depends on U ∗ and Cy for given CA and m∗. As shown in Fig. 4(b), y∗ increases
parabolically with U ∗. Based on Eq. (5), this implies that Cy is likely to be independent of U ∗.
As shown in Fig. 4(c), for a given rotation rate (i.e., α = 2.0), Cy remains almost constant at 4.42
(represented by a blue solid line) for almost the entire U ∗ range tested, except for 4 � U ∗ � 7
covering the initial and upper branches, where Cy deviates from the average value for all damped
cases. On the other hand, y∗ also deviates from its parabolic increase trend over 5.5 < U ∗ < 6.5
in the upper-branch regime. The deviations in y∗ and Cy are attributable to strong fluid-structure
interaction associated with large-amplitude oscillations, as explained for the inline FIV case by
Zhao et al. [25]. The above results indicate that, perhaps unsurprisingly, damping in general has
marginal influence on the Magnus force coefficient (i.e., Cy) experienced by a rotating cylinder
undergoing transverse FIV. In fact, Cy depends predominantly on α in the Reynolds number range
tested in the present study, which is further discussed in Sec. III B.

Moreover, we assess the fluid-flow energy harvesting performance of this hydroelastic system.
Power extraction from an FIV-based device is typically implemented through a generator that acts
as a damper with the power coefficient of the fluid-flow energy harvesting device defined by

CP = P/
(

1
2ρU 3DL

)
, (6)

where the instantaneous power output is given by P = Fyẏ. This measures the conversion of the flow
energy passing across a cylinder diameter into extractable energy. Assuming the body vibration is
periodic, the power output of a damper can be approximated by P = cẏ2. Typically, the power
extraction performance is assessed by its temporal-average power coefficient over a period time
(usually over many vibration cycles):

CP = 1

t

∫ t

0
CP(t )dt . (7)

In principle for an FIV-based harvester, the energy extraction process is driven by the fluctuating
force component, and the power output is determined by the product of the driving force and
the body velocity (P = Fyẏ). Thus, the possible maximum power output can be assessed through
experiments with various damping settings that affect the dynamics of the hydroelastic system.
Figure 7 shows the root-mean-square coefficient of the lift (Crms

y ) and the mean power output
coefficient as a function of U ∗. As can be seen, the peak value of Crms

y is observed to be 2.8 for
the case of ζ = 0.0032, greater than twice that of its nonrotating counterpart. Similar to the body
vibration amplitude, the Crms

y peak decreases significantly to 2.1 when ζ is increased to 0.0182
(G = 10.50 mm). At this ζ value, the rotating cylinder of α = 2.0 has a maximum power coefficient
of CP = 0.195 (at U ∗ = 6.1 and Re = 2150), 13% higher than that of 0.173 (at ζ = 0.0345,
G = 7.50 mm, U ∗ = 5.5, and Re = 2240) of all nonrotating cases over the U ∗ range tested. Note
that this maximum CP agrees with that measured with a lower mass ratio of 3.0 by Wang et al. [4].
On the other hand, however, for a given ζ value, CP values in the lower branch of the rotating cases
appear to be considerably lower than those of their nonrotating counterparts. Overall, the above
results suggest that the enhancement of the energy harvesting performance is considerably limited
within the upper-branch regime, even without considering the power input to provide the imposed
body rotation, as the fluctuating component of the lift can be attenuated significantly by increases
in ζ .
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(a)

(b)

(c)

FIG. 7. Variations of the root-mean-square (rms) lift coefficient and the mean power coefficient as a
function of reduced velocity at α = 2.0 (in the left column) with various damping ratios, along with a
comparison against selected nonrotating cases (in the right column). Panel (a) revisits the A∗

10 responses for
convenience of data presentation.

B. Dynamical response as a function of imposed rotation rate

In this subsection, we investigate the dynamical response as a function of α and ζ . This inves-
tigation covers a wide parameter space: 0 � α � 3 and 0.0032 � ζ � 0.0635, for three different
reduced velocities: U ∗ = 4.5, 6.0, and 7.5 (correspondingly, Re = 1580, 2110, and 2630), as
representatives selected from the initial, upper, and lower branches, respectively.

Figure 8 shows the variations of A∗
10, y∗, Cy, Crms

y , and CP [in rows (i)–(vi)] as a function of α

for various ζ values at the three selected U ∗ values [in columns (a)–(c)]. As can be seen in Fig. 8,
the damping effect has minimal influence on the A∗

10-α curves at U ∗ = 4.5 (the initial branch),
while it can strongly affect the responses for U ∗ = 6.0 and 7.5, as evidenced by the shrinking
of the amplitude responses and the onset α for full suppression shifting to lower values with
increasing ζ . On the other hand, as shown in Figs. 8(ii) and 8(iii), for a given U ∗, changes in ζ

have a negligible influence on the variations of y∗ and Cy over the α range tested, except the range
1.5 < α < 2.5, where marginal deviations from their global trends (highlighted by the blue solid
lines) are encountered with enhanced large-amplitude body oscillations due to strong fluid-structure
interaction. It should be noted that in the y∗-α plots, the blue solid line represents the y∗ value
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(a.i) (b.i) (c.i)

(a.ii) (b.ii) (c.ii)

(a.iii) (b.iii) (c.iii)

(a.iv) (b.iv) (c.iv)

(a.v) (b.v) (c.v)

FIG. 8. Variations of A∗
10, y∗, Cy, Crms

y , and CP as a function of α for various damping ratios at three
representative reduced velocities, U ∗ = 4.5, 6.0, and 7.5. In row (ii), the blue lines represent the y∗ values
evaluated using Eq. (5) with Cy obtained from a fifth-order polynomial curve fit represented by the blue lines
through all measurement cases in row (iii).

evaluated based on Eq. (5) with Cy obtained from a fifth-order polynomial curve fit through all
measurements of the three U ∗ cases, which, in turn, is represented by the blue solid line in the Cy-α
plots. The choice of this fifth-order polynomial fitting was adopted from that used for a wider α

range by Zhao et al. [25]. With the results presented in Fig. 4(c), this confirms that Cy predominantly
depends on α over the U ∗, and thus the Re, ranges tested.

Moreover, similar to the A∗
10 responses, increases in ζ lead to significant reductions in the

magnitude of Crms
y for the cases of U ∗ = 6.0 and 7.50, particularly over the range 1 < α < 2.3,

where rotation-enhanced amplitudes tend to be encountered, as shown in Fig. 8(iv). On the other
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hand, as shown in Fig. 8(b.v), CP tends to increase with ζ increased to 0.0248 (G = 9.00 mm),
prior to a rapid decrease at a higher ζ value. The maximum of CP is observed to be 0.230 at
α = 1.8, a 33% increase against the nonrotating cylinder (CP = 0.173). However, enhancements
of the CP peak against the nonrotating case are observed to be limited within a narrow range of
1.5 � α � 2.0.

C. Wake structures and fluid forcing phases

In this subsection, we investigate the wake modes captured using PIV at the three representative
velocities, U ∗ = 4.5, 6.0, and 7.5, for α = 2.0 at various ζ values. Since a comprehensive wake
mode map for flow past a rotating cylinder with low damping over a wide U ∗-α parameter space has
been given by Wong et al. [19], we focus here on how the wake modes vary at the three representative
reduced velocities as ζ is increased.

Figure 9 shows snapshots of phase-averaged wake modes at U ∗ = 4.5, 6.0, and 7.5 in columns
(a)–(c), for α = 2 at ζ = 0.0032, 0.0182, 0.0248, and 0.0345 (corresponding to G = 24.00, 10.50,
9.00, and 7.50 mm, respectively) in rows (i)–(iv), together with the nonrotating case of ζ = 0.0345
for comparison in row (v). Clearly, at U ∗ = 4.5 in the initial branch, the rotating cylinder exhibits a
wake mode consisting of two single (S) vortices shed per body oscillation cycle. These vortices are
shed downstream asymmetrically to the center line (ỹ∗ = 0) due to the body rotation effect, and thus
this wake mode is referred to as an A(2S) mode (see Ref. [19]), as opposed to the symmetric 2S mode
introduced first by Williamson and Roshko [30]. This A(2S) mode remains a well-defined pattern,
despite the vorticity seeming to decay slightly as ζ is increased. It is interesting to note that this wake
mode is associated with a wake-body synchronization characterized by both the body oscillation and
vortex-shedding frequencies ( f ∗

y and f ∗
Cy

) matching fnw in the initial branch for α = 2.0, while the
initial branch of a nonrotating cylinder is typically characterized by a “beating” dynamic behavior
modulated by the vortex-shedding frequency and the natural frequency of the system (i.e., fnw).

Further, at U ∗ = 6.0 in the upper branch, for 0.0032 � ζ � 0.0248 in Figs. 9(b.i)–9(b.iii), the
wake pattern is identified as a P+ + S mode consisting of a pair of positive (P+) anticlockwise-
rotating (in red) vortices and a single negative clockwise-rotating (in blue) vortex shed per body
oscillation cycle. It is interesting to note from Fig. 9(b.iii) that the case of ζ = 0.0248 (G =
9.00 mm) still features a P+ + S mode as in the upper branch of other lower ζ cases, despite the
lack of a clear jump in the amplitude response from the initial to the upper branch. The P+ + S
mode in the upper branch of α = 2.0 is observed to be stable, distinctly different from the 2Po mode
observed in the nonrotating cases, which is a weak 2P mode comprised of two pairs of opposite-sign
vortices shed per cycle (see Refs. [7,8]). In fact, the experiments by Zhao et al. [9] showed that the
upper branch of a nonrotating cylinder exhibits switching behavior between 2S and 2Po, due to
the chaotic nature in the upper branch of VIV. With ζ further increased to 0.0345 (G = 7.50 mm),
the wake mode is characterized by an A(2S) pattern. A well-defined A(2S) was also observed at a
lower reduced velocity of U ∗ = 5.6 (not shown here). These results suggest that the upper branch
disappears in this ζ case, in line with the A∗

10 response in Fig. 4(a) showing that the cylinder rotation
of α = 2.0 exerts attenuation rather than enhancement effects for ζ � 0.0345.

At U ∗ = 7.5, for the case of ζ = 0.0032, a P + Po wake mode is observed. This wake mode
consists of a pair of opposite-signed vortices (lower) shed in one half cycle and another opposite-
signed pair (upper) in the other half cycle. As illustrated in Fig. 9(c.i), the upper pair is found to be
a Po pattern, as it has a weak positive vortex, which dissipates rapidly to make the wake appear as
P + S. It should be noted that this mode was identified as a P + S mode in Ref. [19] due to a lower
resolution for phase averaging (8 phases), while the present study used more data and 48 phases
to capture rapid changes in the wake structure for high rotation rates. The vortices in this wake
mode break down rapidly as they travel downstream. This wake mode is distinctly different from
the stable 2P mode observed in the lower branch of the nonrotating case in Fig. 9(c.v). Indeed, this
wake mode is associated with a second harmonic in the lower branch, where the dynamics seem
to be susceptible to changes in ζ . When ζ is increased to 0.0345 and the amplitude response falls
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FIG. 9. Wake modes measured at three representative reduced velocities, U ∗ = 4.5, 6.0, and 7.5 in columns
(a)–(c), respectively, for α = 2.0 with four different damping ratios in rows (i)–(iv), as compared with the
nonrotating cylinder with ζ = 0.0345 in row (v). Note that ỹ∗ denotes the normalized fluctuating component of
the body displacement, namely, ỹ∗ = (y − y)/D. The normalized vorticity range is ω∗

z = ωzD/U ∈ [−2, 2],
where ωz is the vorticity out of the x-y plane. The red and blue contours represent positive and negative
vorticities, respectively. The gray bars indicate that the body vibration amplitude, and the red lines indicate
the averaged phase angle of the PIV snapshots. Note that P+ denotes a pair of positive vortices rotating in the
anticlockwise direction, while Po denotes a pair of opposite-sign vortices.

into the V-shape desynchronization region, as shown in Fig. 9(c.iv), the wake is characterized by
a coalescence of small asymmetric vortices, which has been termed a C(AS) mode by Wong et al.
[19], rather than regular well-defined vortices.
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(a)

(a)

(c)

FIG. 10. The time-averaged total and vortex phases (in degrees) as a function of U ∗ at α = 2.0 (in the
left column) with various ζ values, along with a comparison against selected nonrotating cases (in the right
column). Panel (a) revisits the A∗

10 responses for convenience of data presentation.

The above PIV results show that the changes of the wake patterns for α = 2.0 are in line with
those of the amplitude response branches, due to the influence of the structural damping ratio. For
the lightly damped cases (i.e., ζ � 0.0248) with well-defined initial and upper branches, A(2S)
and P+ + S modes are consistently encountered in the initial and upper branches, respectively.
When the upper branch is suppressed as ζ is increased to a certain value (i.e., ζ = 0.0345 in the
present experiments), an A(2S) mode is observed to persist with appreciable but low body vibration
amplitudes for U ∗ up to 7.5. On the other hand, the sensitivity of the lower branch to the influence
of increasing structural damping ratios can also be reflected by the P + Po wake pattern being
susceptible to the increases in the structural damping ratio, which breaks down much more easily
than the 2P mode for the nonrotating cylinder case.

Furthermore, we examine the fluid forcing phases, namely, the total phase (φt ) and the vortex
phase (φv), which are referred to as the relative phase angles of total lift and vortex lift force,
respectively, to the body displacement [7,31]. As has previously been reported (e.g., Refs. [7–9]),
different wake modes could be related to different fluid forcing phases. Figure 10 plots the time-
averaged phases of φt and φv as a function of U ∗ for both α = 2.0 and α = 0 with various ζ values.
Typically in VIV of a nonrotating cylinder, φt exhibits a sharp jump associated with the transition
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from the upper branch to the lower branch, while φv experiences a sharp jump in the transition from
the initial branch to the upper branch. Distinctly different from the nonrotating cylinder, a sharp
jump in φv is encountered when the rotating cylinder undergoes the transition from the upper branch
to the lower branch, while φt remains around 45◦, despite an increase trend with ζ . Unexpectedly,
however, both φt and φv remain constant through the initial and the upper branches in each case of
ζ � 0.0345 at α = 2.0, despite different wake modes occurring in the two branches. Nevertheless,
the results of the wake modes and fluid forcing phases have revealed that the three branches of
α = 2.0 are associated with mechanisms different than those for the nonrotating cylinder.

IV. CONCLUSIONS AND RECOMMENDATIONS

We have investigated the damping effect on the transverse flow-induced vibration of a rotating
cylinder through extensive experiments covering a wide parameter space across a reduced velocity
range of 3 � U ∗ � 14, a rotation rate range of 0 � α � 3, and a damping ratio range of 0.0032 �
ζ � 0.0635. FIV characteristics, including the structural vibration, fluid forces and phases, and
wake modes were examined in detail.

For the FIV response as a function of U ∗ at α = 2.0, an enhanced three-branch amplitude
response was encountered for ζ � 0.0182, while for higher ζ values the cylinder rotation resulted in
a reduced vibration amplitude response over the nonrotating case. The enhanced amplitude response
seemed to be more susceptible to increases in ζ , as compared with the nonrotating counterpart.
Moreover, unlike the nonrotating case, the lower branch seemed to be sensitive to changes in
ζ , where a (repeatable) V-shape drop associated with a desynchronization was encountered at
approximately U ∗ = 8 in the middle of the branch. By analyzing the frequency responses, we
found that the lower branch was associated with a second harmonic component in the lift force
signal, distinctly different from the third harmonic component observed for the nonrotating case.
Furthermore, our targeted PIV measurements illustrated that the initial branch was associated with
an A(2S) mode, the upper branch with a P+ + S mode, and the lower branch with a P + Po mode.
Both these results suggest that FIV of a rotating cylinder at α = 2.0 is driven by mechanisms of
fluid-structure interaction different from those observed for the nonrotating cylinder, despite the
existence of a similar three-branch response.

Quantification of the transverse lift coefficient indicates that the time-averaged lift coefficient
Cy predominantly depends on α over the Reynolds number range (1130 � Re � 5260) tested, and
the time-averaged body displacement can be well predicted based on Cy and U ∗, except for the
regimes associated with large-amplitude oscillations. On the other hand, similar to the amplitude
response, the fluctuating component (i.e., the root-mean-square coefficient) of the lift was found to
be susceptible to increases in the structural damping ratio. Overall, in terms of energy harvesting
performance, the power output coefficient CP was found to be enhanced by cylinder rotation within
a limited range of 1.5 � α � 2.0, discounting the power input required for driving the imposed
rotation. This suggests that a constantly rotating cylinder is perhaps not an ideal candidate for fluid
flow energy harvesting.
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[16] D. Stojković, P. Schön, M. Breuer, and F. Durst, On the new vortex shedding mode past a rotating circular

cylinder, Phys. Fluids 15, 1257 (2003).
[17] S. Mittal and B. Kumar, Flow past a rotating cylinder, J. Fluid Mech. 476, 303 (2003).
[18] A. Radi, M. C. Thompson, A. Rao, K. Hourigan, and J. Sheridan, Experimental evidence of new three-

dimensional modes in the wake of a rotating cylinder, J. Fluid Mech. 734, 567 (2013).
[19] K. W. L. Wong, J. Zhao, D. Lo Jacono, M. C. Thompson, and J. Sheridan, Experimental investigation of

flow-induced vibration of a rotating circular cylinder, J. Fluid Mech. 829, 486 (2017).
[20] R. Bourguet and D. Lo Jacono, Flow-induced vibrations of a rotating cylinder, J. Fluid Mech. 740, 342

(2014).
[21] R. Bourguet and D. Lo Jacono, In-line flow-induced vibrations of a rotating cylinder, J. Fluid Mech. 781,

127 (2015).
[22] L. Du and X. Sun, Suppression of vortex-induced vibration using the rotary oscillation of a cylinder, Phys.

Fluids 27, 023603 (2015).
[23] B. Seyed-Aghazadeh and Y. Modarres-Sadeghi, An experimental investigation of vortex-induced vibra-

tion of a rotating circular cylinder in the crossflow direction, Phys. Fluids 27, 067101 (2015).
[24] K. W. L. Wong, J. Zhao, D. Lo Jacono, M. C. Thompson, and J. Sheridan, Experimental investigation of

flow-induced vibration of a sinusoidally rotating circular cylinder, J. Fluid Mech. 848, 430 (2018).
[25] J. Zhao, D. Lo Jacono, J. Sheridan, K. Hourigan, and M. C. Thompson, Experimental investigation of

in-line flow-induced vibration of a rotating cylinder, J. Fluid Mech. 847, 664 (2018).
[26] R. Bourguet, Impact of body inclination on the flow past a rotating cylinder, J. Fluid Mech. 923, A33

(2021).
[27] A. Sareen, J. Zhao, D. Lo Jacono, J. Sheridan, K. Hourigan, and M. C. Thompson, Vortex-induced

vibration of a rotating sphere, J. Fluid Mech. 837, 258 (2018).

023905-16

https://doi.org/10.1115/1.2957913
https://doi.org/10.1016/j.jfluidstructs.2017.05.002
https://doi.org/10.1016/j.jfluidstructs.2018.04.013
https://doi.org/10.1016/j.apenergy.2020.114902
https://doi.org/10.1006/jfls.1996.0031
https://doi.org/10.1017/S0022112000001233
https://doi.org/10.1017/S0022112009990516
https://doi.org/10.1063/1.4904975
https://doi.org/10.1017/jfm.2012.353
https://doi.org/10.1017/jfm.2014.167
https://doi.org/10.1017/jfm.2018.501
https://doi.org/10.1063/1.1562940
https://doi.org/10.1017/S0022112002002938
https://doi.org/10.1017/jfm.2013.486
https://doi.org/10.1017/jfm.2017.540
https://doi.org/10.1017/jfm.2013.665
https://doi.org/10.1017/jfm.2015.477
https://doi.org/10.1063/1.4913353
https://doi.org/10.1063/1.4921683
https://doi.org/10.1017/jfm.2018.379
https://doi.org/10.1017/jfm.2018.357
https://doi.org/10.1017/jfm.2021.545
https://doi.org/10.1017/jfm.2017.847


DAMPING EFFECT ON TRANSVERSE FLOW-INDUCED …

[28] A. Sareen, J. Zhao, J. Sheridan, K. Hourigan, and M. C. Thompson, The effect of imposed rotary
oscillation on the flow-induced vibration of a sphere, J. Fluid Mech. 855, 703 (2018).

[29] T. McQueen, J. Zhao, J. Sheridan, and M. Thompson, Feedback control of flow-induced vibration of a
sphere, J. Fluid Mech. 889, A30 (2020).

[30] C. H. K. Williamson and A. Roshko, Vortex formation in the wake of an oscillating cylinder, J. Fluids
Struct. 2, 355 (1988).

[31] J. Lighthill, Fundamentals concerning wave loading on offshore structures, J. Fluid Mech. 173, 667
(1986).

023905-17

https://doi.org/10.1017/jfm.2018.667
https://doi.org/10.1017/jfm.2020.47
https://doi.org/10.1016/S0889-9746(88)90058-8
https://doi.org/10.1017/S0022112086001313

