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Decomposition of fluid forcing and phase
synchronisation for in-line vortex-induced
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We present a decomposition of the streamwise fluid force for in-line vortex-induced
vibration (VIV) to provide insight into how the wake drag acts as a driving force in
fluid–structure interaction. This force decomposition is an extension of that proposed in
the recent work of Konstantinidis et al. (J. Fluid Mech., vol. 907, 2021, p. A34), and is
applied to and validated by our experiments examining a circular cylinder freely vibrating
in line with the free stream. It is revealed from the decomposition and linear analysis
that two regimes of significant vibration are in phase synchronisation, while they are
separated by a desynchronised regime marked by competition between non-stationary
frequency responses of the cylinder vibration and the vortex shedding. Of interest, such a
near-resonance desynchronisation regime is not seen in the transverse vibration case.
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1. Introduction

Decomposition of the driving fluid force has been widely performed to gain insight into
the mechanisms governing fluid–structure interaction in flow-induced vibration (FIV). For
a bluff body with a single degree of freedom to vibrate in the cross-flow or streamwise
direction, the fluid force is often decomposed into potential (inviscid) and vortical
(viscous) components. The potential component is related to the ‘added mass’ arising
from acceleration of surrounding fluid during the acceleration of a body in an inviscid
irrotational fluid, and thus it is often referred to as the potential force or the added-mass
force (see Limacher, Morton & Wood 2018). The vortical component is related to forcing
associated with the surrounding time-varying vorticity field, noting that in general a flow
field can be constructed from irrotational (potential) and rotational components (Lighthill
1986; Govardhan & Williamson 2000; Limacher et al. 2018; Limacher 2021). This simple

† Email address for correspondence: jisheng.zhao@monash.edu

© The Author(s), 2022. Published by Cambridge University Press 941 R4-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

35
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:jisheng.zhao@monash.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.359&domain=pdf
https://doi.org/10.1017/jfm.2022.359


J. Zhao, M.C. Thompson and K. Hourigan

Fy

Fx

y c

k
m xDU

Figure 1. Problem set-up for in-line vortex-induced vibration of a circular cylinder showing key parameters.

force decomposition approach has been useful in characterising FIV response regimes
and transitions, and vortex-shedding modes, of bluff bodies vibrating transversely to a
free stream (e.g. Govardhan & Williamson 2000; Zhao et al. 2014; Soti et al. 2018;
Zhao, Hourigan & Thompson 2018a, 2019). However, for a body vibrating in-line, the
make-up of the vortex force is more complex and it is useful to split the vortex force
into different components to aid in developing a model representative of the flow physics.
As demonstrated by Konstantinidis & Bouris (2017), a decomposition of the vortex force
based on Morison’s equation (Morison, Johnson & Schaaf 1950) was only partially able to
reconstruct the fluid force acting on a cylinder in non-zero-mean displacement oscillatory
flows. Thus, building on previous studies, a key interest of the present study is to extend
this force decomposition model for a cylinder freely vibrating in line with the free stream.

Figure 1 shows a schematic for the problem of interest: an elastically mounted cylinder
is free to oscillate only in the streamwise direction, and the fluid–structure system
is modelled as a single-degree-of-freedom mass-spring-damper oscillator subjected
to a fluid flow. Key problem parameters are also defined in this figure. The body
dynamics is governed by the linear second-order equation for a mass-spring-damper
system:

mẍ(t) + cẋ(t) + kx(t) = Fx(t), (1.1)

where m is the total oscillating mass of the system, c is the structural damping of the
system, k is the spring constant, x(t) is the body displacement and Fx(t) represents
the time-dependent (streamwise) fluid force acting on the cylinder. Note that the
streamwise and transverse fluid force coefficients used in this study are defined by Cx =
Fx/((ρU2DL)/2) and Cy = Fy/((ρU2DL)/2), respectively, where ρ is the fluid density
and L is the cylinder immersed span. Often, the structural dynamics is characterised as a
function of flow reduced velocity, U∗ = U/(fnwD), where fnw is the natural frequency of
the system in quiescent fluid (i.e. water in the present study).

Previous studies have focused on characterising the in-line VIV amplitude and
frequency responses (e.g. Aguirre 1977; Okajima et al. 2004) and wake modes (e.g.
Cagney & Balabani 2013a,b; Konstantinidis 2014). It has been shown widely in
experimental studies that there generally exist two amplitude response branches in
moderate- or high-Reynolds-number flows, while no branching behaviour has been
observed in low-Reynolds-number numerical simulations (e.g. Bourguet & Lo Jacono
2015; Konstantinidis, Dorogi & Baranyi 2021). Note that the Reynolds number here is
defined by Re = UD/ν, with ν the kinematic viscosity of the fluid. Gurian, Currier &
Modarres-Sadeghi (2019) conducted experimental measurements of the streamwise fluid
force, but without further decomposition analysis. Very recently, Konstantinidis et al.
(2021) presented a force decomposition to shed light on the wake drag as the underlying
driving component; however, when applied to our experimental data, their equations
require modification. Therefore, there is still a need to develop an improved fluid forcing
decomposition model that is consistent with the underlying force components in in-line
VIV. This is particularly the case at moderate Reynolds numbers where the amplitude
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Decomposition of fluid forcing and phase for in-line VIV

response is distinctly different from previous low-Re low-amplitude numerical studies.
Thus, the primary contribution of the present work is to present this force decomposition
extension, based on the model of Konstantinidis et al. (2021), to provide further insight
into the dynamics in in-line VIV.

2. Experimental methodology

In the present study, the hydro-elastic system was modelled using a low-friction air-bearing
rig in conjunction with a recirculating free-surface water channel of the Fluids Laboratory
for Aeronautical and Industrial Research (FLAIR) at Monash University. Details of the
air-bearing system and water-channel facilities have been described in the previous related
studies of Zhao et al. (2018a,b) and Wong et al. (2018).

The test cylinder model, precision-made from aluminium tubing, had an outer diameter
of D = 40 ± 0.01 mm. The immersed length of cylinder was L = 614 mm, yielding a
span-to-diameter aspect ratio of AR = L/D = 15.4. To reduce end effects of the cylinder
and to promote parallel vortex shedding, an end conditioning platform was used (for
more details, see Zhao et al. 2018a,b). The total oscillating mass of the system was
m = 1140.1 g, and the displaced mass of water was md = ρπD2L/4 = 770.7 g, giving a
mass ratio m∗ = m/md = 1.48. The natural frequency of the mass-spring-damper system,
determined via free decay tests, was found to be fna = 0.951 Hz in air and fnw = 0.723 Hz
in quiescent water. Note that the structural damping ratio with consideration of the added
mass was given by ζ = c/(2

√
k(m + mA)) = 1.98 × 10−3, where the added mass, given

by mA = ((fna/fnw)2 − 1)m, was found to be 829.8 g. This equates to an experimentally
defined added-mass coefficient, defined by CA = mA/md, of 1.08, noting this is close to
the theoretical potential added-mass coefficient of CA = 1.

Measurement techniques for the cylinder vibration and fluid forces acting on the
vibrating cylinder have been described and validated by Zhao et al. (2014, 2018a,b). The
current VIV experiments were conducted over the reduced velocity range of 1.40 � U∗ �
5.00 with fine increments of 0.05, while the corresponding Reynolds number range was
1530 � Re � 5450. In addition, drag force measurements for a stationary cylinder over
the same Reynolds number range were also conducted using a high-precision six-axis
force sensor (Mini40, ATI-IA, US) with an accuracy of 5 mN (see Sareen et al. 2018).

The near wake of the cylinder was measured using the particle image velocimetry
(PIV) technique. Details of the PIV system used can be found in Zhao et al. (2018a,b).
In the present experiments, in order to provide a thorough examination of changes of
the near-wake flow structure, more than 100 000 images were obtained for 13 reduced
velocities (9 are presented in the text of this paper, while the others are provided together as
supplementary movies available at https://doi.org/10.1017/jfm.2022.359) across the VIV
response regimes. The imaging was conducted at a sampling rate of 100 Hz for 6200
images in each dataset. To clearly visualise the evolution of the wake, images of each
case were divided into 48 phases per vortex-shedding cycle, giving each phase at least 100
snapshots for averaging.

3. Results and discussion

3.1. Amplitude response and quasi-steady drag force
Figure 2 shows the normalised amplitude response (A∗), the normalised time-averaged
displacement (x̄∗) of the cylinder from its neutral position at zero flow velocity, and the
time-averaged streamwise fluid force coefficient (C̄x) as a function of reduced velocity.
Note that in the present study the amplitude is represented by the mean of the top 10 %

941 R4-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

35
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.359
https://doi.org/10.1017/jfm.2022.359


J. Zhao, M.C. Thompson and K. Hourigan

1.0
0

0.5

1.0

1.5

2.0

2.5

0

0.05

0.10

0.15

0.20

0

0.04

0.08

0.12

0.16
2000 3000 4000 5000

Present
Aguirre (1977)

1.5 2.0 2.5 3.0 4.0 4.5 5.03.5

1.0 1.5 2.0 2.5 3.0 4.0 4.5 5.03.5

1.0 1.5 2.0 2.5 3.0 4.0 4.5 5.03.5

U∗

x–∗

C̄x

A∗

Re

CR

x–∗ (Cd)

Cd

x–∗ (C̄x0)

C̄x0 = 1.00

Regime I Regime II

�2A∗
rms, Okajima et al. (2004)

�2A∗
rms, Cagney & Balabani (2013c)

�2A∗
rms, Gurian et al. (2019)

(a)

(b)

(c)

Figure 2. The variation of (a) the normalised amplitude response, (b) time-averaged displacement and (c)
time-averaged streamwise fluid force coefficient as a function of reduced velocity. In (a), the vibration response
regimes in the present study are shaded in different colours: VIV regime I in light yellow, CR in grey and VIV
regime II in light blue. For Aguirre (1977), m∗ = 1.46 (ζ unknown), Re = 1 × 103–3 × 105; for Okajima et al.
(2004), m∗ζ = 0.49 (m∗ and ζ individually unknown), Re = 8 × 103–4 × 104; for Cagney & Balabani (2013b),
m∗ = 1.17 and ζ ≈ 5.3 × 10−3, Re = 450–3700; and for Gurian et al. (2019), m∗ = 1.61 and ζ = 6 × 10−3,
Re = 970–3370. In (b), the dotted line in red and the solid line in black represent the evaluations of x̄∗(Cd)

and x̄∗(C̄x0 ) by substituting Cd and C̄x0 for (3.1), respectively. In (c), the dotted line in red represents the
measurements of Cd , while the horizontal line in black represents C̄x0 . Note that the circles filled in blue
represent spot PIV measurements.

of amplitudes (A∗
10, based on half of peak-to-peak values) at each U∗. As can be seen in

figure 2(a), the present amplitude response can be characterised distinctly by two VIV
regimes (namely regime I and regime II) and a competing regime (CR). In general, the
two response regimes of the present work agree with those found in previous studies (for
instance, see Aguirre (1977) with a similar mass ratio of 1.46). However, discrepancies in
some details may be attributable to differences in mass ratio, damping ratio and Reynolds
number, but these aspects are beyond the focus of the present study.

In regime I (covering the range 1.55 � U∗ � 2.40), the vibration amplitude increases
gradually to reach its peak value of A∗

10 = 0.144 as U∗ is increased to 2.40. In this regime,
the body vibration frequency (f ∗

x ) is synchronised with the fluid forcing frequency (f ∗
Cx

), as
shown in figure 3(b,c). Note that the frequency components are normalised by the natural
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frequency of the system in quiescent water, namely f ∗ = f /fnw. It is interesting to note
that both f ∗

x and f ∗
Cx

tend to increase slightly with U∗ beyond U∗ � 2.1. When both f ∗
x

and f ∗
Cx

approach the slope of 2St (Strouhal number = St = Df /U = 0.215 measured over
the Reynolds number range tested), the amplitude response experiences an abrupt drop at
U∗ = 2.45 (≈1/(2St)), due to the competition between non-stationary (i.e. changing with
time) frequency responses of the body vibration and the vortex shedding, noting that the
streamwise fluid force generally exhibits a dominant frequency twice that of the cross-flow
fluid force (f ∗

Cy
) for a fixed body. As shown in figure 2, the sudden drop of amplitude

response in this regime has also been observed occurring over different U∗ ranges in the
previous studies with different structural properties; however, no detailed investigations
into this regime have yet been reported. More features of the CR will be further discussed
later. As U∗ is increased slightly further to 2.60, frequency synchronisation between the
body vibration and driving fluid force is resumed in regime II for U∗ up to 4.20, where the
vibration amplitude is found to be almost constant at A∗

10 = 0.094 throughout. Still, both
f ∗
x and f ∗

Cx
tend to increase slightly with U∗, until desynchronisation is encountered when

they approach the natural frequency of the system in air (i.e. f ∗ ≈ fna/fnw).
To take the analyse further, we examine the time-averaged cylinder position and the

time-averaged streamwise fluid force coefficient. Following the analytical approach used
by Zhao et al. (2018b), by taking temporal averages of both sides of (1.1), the time-averaged
cylinder displacement in dimensionless form (normalised by the cylinder diameter D) can
be expressed as

x̄∗ = U∗2C̄x

2π3(m∗ + CA)
. (3.1)

Interestingly, as shown in figure 2(b), x̄∗ deviates from the values of x̄∗(Cd) and
x̄∗(C̄x0), which are evaluated by substituting Cd and C̄x0 , respectively, for C̄x in (3.1),
noting that Cd is the quasi-steady drag coefficient measured for the fixed cylinder case,
while C̄x0 is the average of C̄x taken for the desynchronised locations of insignificant
vibration (i.e. U∗ > 4.2). Similar deviations have been observed for in-line FIV of a
rotating cylinder by Zhao et al. (2018b), when the cylinder experienced large-amplitude
oscillations. It is also interesting to note in the present study that C̄x0 deviates from Cd
for high reduced velocities (i.e. U∗ > 4.1), which in turn leads to the differences between
x̄∗(Cd) and x̄∗(C̄x0). However, these significant deviations could not be explained by the
previous force decomposition of Konstantinidis et al. (2021), as they were neglected in
low-Reynolds-number flows (Re = 100–250). To better understand the underlying physics
of the resonant response, we perform a decomposition analysis for the driving fluid force
in the following § 3.2.

3.2. Decomposition of the driving fluid force
Assuming that the cylinder vibration in fluid–structure synchronisation can be represented
by a single-frequency harmonic function of time, the cylinder displacement and the
streamwise fluid force can be expressed by (3.2) and (3.3), respectively:

x(t) = x̄ + A cos(ωt), (3.2)

Fx(t) = F̄x + F̃x cos(ωt + φx), (3.3)

where F̄x and F̃x are the time-averaged component and the magnitude of the fluctuating
component of Fx, respectively, while φx is the phase between Fx and x (also referred to as
the total phase); ω = 2πf is the angular frequency.
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Figure 3. Normalised amplitude and logarithmic-scale power spectrum density contours of normalised
frequency responses as a function of reduced velocity. Note that f ∗

Cdw
represents the normalised frequency

of the wake drag.

Following the force decomposition method proposed by Konstantinidis et al. (2021),
who extended the equation of Morison et al. (1950) to include a wake drag term, the
streamwise fluid force is given as follows:

Fx(t) = 1
2ρDLCd|U − ẋ|(U − ẋ) − mAẍ + Fdw(t), (3.4)

where the first term represents the quasi-steady drag experienced by a fixed cylinder that
is subjected to a relative flow speed (U − ẋ), the second term represents the potential force
(the inviscid added-mass force) associated with the body acceleration, and the third term

941 R4-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

35
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.359


Decomposition of fluid forcing and phase for in-line VIV

represents the wake drag. In particular, different from Konstantinidis et al. (2021), we here
further decompose the wake drag into a steady component and an unsteady component
due to periodic vortex formation in the cylinder wake, given by

Fdw(t) = F̄dw + F̃dw cos(ωt + φdw), (3.5)

where F̄dw is the (time-averaged) steady component, while F̃dw is the magnitude of
the unsteady component with a phase, φdw, with respect to the body displacement x.
By neglecting the terms involving second or higher orders of sin(ωt) and cos(ωt), the
streamwise fluid force can be approximated as

Fx(t) = 1
2
ρU2DL

[
Cd + 2ωA

U
sin(ωt) + C̄dw + C̃dw cos(ωt + φdw)

]

+ 1
4
πρD2LCAω2A cos(ωt). (3.6)

The above equation indicates that the steady part of the streamwise fluid force consists of
contributions from the quasi-steady drag (Cd) and the steady component of the wake drag
(C̄dw):

F̄x = 1
2ρU2DL

(
Cd + C̄dw

)
, (3.7)

or in dimensionless form
C̄x = Cd + C̄dw. (3.8)

Importantly, this expression reflects that the mean wake drag, in addition to the
quasi-steady drag, can contribute to the steady component of the driving fluid force when
the cylinder is given the degree of freedom to oscillate streamwise. This approach presents
a significant modification of the original model of Konstantinidis et al. (2021) that gives
C̄x = Cd. Indeed in that model C̄dw was not considered, and thus the deviations in both x̄∗
and C̄x curves during VIV could not to be explained, noting the significant departures
shown in figure 2. To comment further, for the cases considered by Konstantinidis
et al. (2021) of Re = 100 and 180, the peak oscillation amplitudes are so small that
the movement of the cylinder during oscillation (∼1 %D or less) hardly causes any
modification of the wake from that of a stationary cylinder. Hence in that case, there is
hardly any change to the mean drag force whether the cylinder oscillates or not. On the
other hand, for the higher Reynolds numbers considered here, the oscillation amplitude
is larger, although still relatively small (∼10 %D). However, this is enough to cause the
motion of the cylinder to modify the wake and mean drag force to be noticeably different
from those of a stationary cylinder.

The unsteady part of Fx can also be written in a dimensionless form:

C̃x cos(ωt + φx) = 2ωA
U

Cd sin(ωt) + C̃dw cos(ωt + φdw) + πDω2A
2U2 CA cos(ωt). (3.9)

By equating the cosine and sine terms expanded through the double-angle formulae for
the above equation, we can find the following relationships:

C̃dw sin φdw = C̃x sin φx + 2ωA
U

Cd = C̃x sin φx + 4πf ∗A∗

U∗ Cd, (3.10)

C̃dw cos φdw = C̃x cos φx − πDω2A
2U2 CA = C̃x cos φx − 2π3

(
f ∗

U∗

)2

A∗CA. (3.11)
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Substituting (3.2) and (3.3) for the governing equation of motion (1.1), with the natural
frequency of the system in vacuum fn, we can obtain the following relationships:

C̃x sin φx = 4π3f ∗A∗

U∗2 m∗ζ
(

fn
fnw

)2

= 4π3f ∗A∗

U∗2 (m∗ + CA)ζ, (3.12)

C̃x cos φx = 2π3m∗A∗

U∗2
(fn2 − f 2)

fnw
2 = 2π3A∗

U∗2

[
m∗(1 − f ∗) + CA

]
. (3.13)

It should be noted that in addition to our new decomposition leading to (3.8), we have
also obtained the modified expressions in (3.10)–(3.13) to those given by Konstantinidis
et al. (2021). Furthermore, by substituting (3.12) for (3.10), the dimensionless vibration
amplitude in steady state can be evaluated by

A∗ = U∗2C̃dw sin φdw

4πf ∗ [
π2(m∗ + CA)ζ + U∗Cd

] . (3.14)

This expression indicates that the vibration amplitude depends on the unsteady component
of the wake drag and its phase. Note that this is significantly different from that of
Konstantinidis et al. (2021) (their (4.7)), which is much simplified and with the wake
drag phase term missing, an important parameter to evaluate A∗ in steady state. A direct
comparison between the amplitude response predicted using (3.14) and experimental data
is presented in § 3.4.

Through the decomposition of Fx, we can determine the wake drag to gain a
better understanding of the dynamics of the fluid–structure system. Figure 4 shows the
root-mean-square coefficients of the streamwise fluid force and wake drag (Crms

x and Crms
dw ),

together with their mean phases and phase variants (with respect to x), as a function of
reduced velocity. The mean phase is obtained by projecting the phase differences between
two signals onto the unit circle in a complex plane and calculating the mean resultant
vector of the angular phase distribution, as given by

Φ̄ = 1
N

N∑
j=1

eiφj, (3.15)

where φj is the relative phase between the two signals at an instance and N is the total
number of samples of a signal (McQueen et al. 2021). Thus, the mean phase angle can be
determined by

φ̄ = Arg(Φ̄), (3.16)

and the mean phase coherence based on the circular variance of the phase distribution can
be indicated by

σ = 1 − |Φ̄|, (3.17)

where 0 � σ � 1 is used as the index of phase synchronisation. The minimum
possible value, 0, indicates that all phase angles are equal (i.e. perfect phase
synchronisation), whereas the maximum, 1, indicates that the phase angles are spread
uniformly over the circular space (i.e. no phase synchronisation or uncorrelated phase
differences).

As can be seen in figure 4, the coefficients of fluid forces, and the mean phases and their
synchronisation indices, experience changes corresponding to changes in the frequency
responses in figure 3. Notably, both Crms

y and Crms
dw display an abrupt jump at the onset
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Figure 4. Variations of the streamwise fluid force and wake drag coefficients, together with the mean phases
(in degrees) and their variants, as a function of reduced velocity.

of regime I, and then another deflection change at U∗ ≈ 2.05. Interestingly, the notable
V-shape drop in Crms

y at U∗ ≈ 2.05 corresponds to a sharp change in the dominant
component of f ∗

Cy
shifting from f ∗

Cy
= f ∗

x to f ∗
Cy

= 0.5f ∗
x (figure 3e). After the abrupt drop

in the CR, Crms
x and Crms

dw increase rapidly at the beginning of regime II. However, as it is
expected from (3.13), Crms

x tends to decrease to minimal or zero, as the vibration frequency
increases gradually towards fna at the end of regime II. Through the U∗ range tested, Fx
remains in phase with x, i.e. φx � 0◦. On the other hand, the variation of Crms

dw resembles
that of A∗, which would be expected from (3.14). Interestingly, the wake drag phase φ̄dw
undergoes a sudden jump to 91◦ at the beginning of regime I and then increases to 130◦
at the end of the regime. The change of the dominant frequency of f ∗

Cy
and the variation

of φ̄dw imply the existence of different wake patterns in this regime, as expected from
previous studies. In regime II, φ̄dw is found to be stable at approximately 138◦. Further
discussion on wake modes is presented in § 3.3.

Moreover, the variants of the phases (σx and σdw) in figure 4(c) show that the driving
force components are in phase synchronisation with cylinder vibration in both regimes
I and II. Interestingly, time traces of the wake drag force shown in figure 5(b) revealed
that φdw sweeps through from 0◦ to 360◦, indicating a phase desynchronisation in the CR,
which is distinctly different from regimes I and II (see U∗ = 2.40 and 3.00 in figures 5(a)
and 5(c), respectively), where φx and φdw fluctuate slightly about their stable mean value;
that is, the phase desynchronisation leads to a chaotic dynamical response in this regime.

941 R4-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

35
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.359


J. Zhao, M.C. Thompson and K. Hourigan

0

0

0

2

0

0.1

90
180
270

2
–90

0

–2

0.4
0

0

90

0

2

0

0.1

0.2

180

–0.4

2

0

90

180
0

2

4

0

0.2

0

–2

5 10

0 5 10
τ

0 5 10

0 5 10

τ

–2

–4

4

0

0

90

180

0

2

0

0.2

Cy

Cy

Cx

x∗

Cdw

Cx

x∗

Cdw

φx
φdw

φx
φdw

(a)

(b)

(c)

(d)

Figure 5. Sample time traces of the cylinder displacement, fluid force coefficients and their phases (in degrees)
at different reduced velocities: (a) U∗ = 2.40, (b) U∗ = 2.50, (c) U∗ = 3.00 and (d) U∗ = 4.80. Note that Cdw
and φdw are denoted by the dashed lines. Note that τ is the normalised time given by τ = fnwt to indicate body
vibration cycles.

3.3. Time-frequency analysis and wake modes
To provide an insight into the dynamics of the cylinder vibration and the wake structure,
this subsection presents a time-frequency analysis and PIV measurements undertaken at
various reduced velocities across the VIV response regimes.

The time-frequency analysis is based on continuous wavelet transform (CWT), and
the ‘mother’ wavelet used is a complex Morlet wavelet. In the present analysis, the
centre frequency of the mother wavelet is set equal to fnw, while the bandwidth is set
at 10/fnw (approximately 10 cylinder vibration cycles) for cases in regimes I and II,
where the cylinder vibration is highly periodic, and 3/fnw for cases in the CR and
desynchronisation regime to better capture intermittent changes in the dynamic signals.
This CWT method has been used by Nemes et al. (2012) and Zhao et al. (2018c)
to reveal intermittent behaviour and branch competition of FIV responses for square
cylinders.

Figure 6 shows the time-frequency variations of the cylinder vibration and the
transverse lift (coefficient), which reflects the vortex-shedding frequency, at U∗ =
[1.80, 2.35, 2.55, 2.80, 3.50, 4.80]. Note that the measurements for each case in this figure
were taken over 1200 s (more than 900 vibration cycles) in order to reveal non-stationary
frequencies and intermittent behaviour. Based on the transverse lift frequency response in
figure 3(e), regime I can be further divided into two parts: 1.55 � U∗ � 2.1, where the
dominant component of f ∗

Cy
matches that of f ∗

x , and 2.1 < U∗ � 2.4, where the dominant
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component of f ∗
Cy

appears at 0.5f ∗
x , accompanied by a harmonic at 1.5f ∗

x . This change in
the dominant frequency of f ∗

Cy
implies a corresponding change in wake mode. As shown

in figure 6(a), at U∗ = 1.80 selected from the middle of first part of regime I, the cylinder
vibration is highly periodic with its dominant frequency as stationary (i.e. not changing
with time) slightly above fnw, while f ∗

Cy
also displays its stationary dominant component

matching f ∗
x , but accompanied by a non-stationary subharmoic (∼0.5f ∗

x ) with relatively
strong power varying with time. As expected, the phase-averaged PIV results of U∗ = 1.60
and 2.00 in figures 7(a) and 7(b), respectively, show a symmetric vortex-shedding mode,
where a pair of opposite-sign vortices are shed simultaneously from both sides of the
cylinder. This symmetric wake pattern agrees with the symmetric ‘S-I’ mode reported
in the previous studies of Cagney & Balabani (2013a,b), Okajima et al. (2004), and
Gurian et al. (2019). Unsurprisingly, in the present experiments, the symmetry of this
wake mode is associated with very low lift coefficient magnitudes (figure 6a), due to the
simultaneously symmetric wake structure and, thus so, the pressure distribution around the
cylinder. However, it is worth noting that the vortices of this symmetric mode tend to break
up towards the cylinder’s equilibrium position as U∗ is increased in this subregime, e.g. the
breakdown of vortices occurs at x̃∗ ≈ 2.5 for U∗ = 1.60, and at x̃∗ ≈ 1.5 for U∗ = 2.00.
Further increasing U∗ will cause the breakdown of vortices to occur close to the cylinder
body, thus leading to a change of the wake mode in the second subregime.

Indeed, the second part of regime I sees a different wake mode comprising two single
opposite-sign vortices shed simultaneously but alternating in size from both sides of the
cylinder per shedding cycle (or per two cylinder vibration cycles). This wake mode is
termed ‘AS’ (alternating-symmetric) mode by Gurian et al. (2019). Correspondingly, as
previously mentioned, f ∗

Cy
exhibits a different composition with its dominant component

at 0.5f ∗
x and a harmonic at 1.5f ∗

x (figure 3e), while the CWT result in figure 6(b) indicates
that these frequency components remain almost constant in power over time. On the other
hand, the phase-averaged vorticity fields in figure 7(c) show that vortices tend to become
stronger as U∗ is increased; that is, at U∗ = 2.15 (and 2.25 and 2.30 in supplementary
movie 1) the vortices seem to dissipate significantly as they travel downstream, while
at the high-end reduced velocity U∗ = 2.40, the vortices remain clearly in a strong AS
pattern travelling through the measurement field of view. As expected, this mode causes
significant fluctuating lateral fluid forces acting on the cylinder. Notably, these strong
vortices induce an amplitude peak significantly greater than those reported in previous
studies (as compared in figure 2).

Interestingly, as U∗ is further increased in the CR, both f ∗
x and f ∗

Cy
exhibit intermittent

behaviour. This is demonstrated by the case of U∗ = 2.55 in figure 6(c), where significant
cylinder oscillations (i.e. with A∗ ≈ 0.1) accompanied with well-defined harmonics of f ∗

Cy
are encountered intermittently in an unpredictable way. Such a chaotic response is similar
to the branch competing behaviour in FIV of inclined square cylinders reported by Nemes
et al. (2012) and Zhao et al. (2018c). On the other hand, however, as shown in figure 8(a,b),
the wake measurements taken separately for large- and low-amplitude oscillation cycles
show similar patterns, while the vortices associated with large-amplitude cycles seem to
be slightly stronger. When compared with the desynchronisation case of U∗ = 4.80 in
figure 8(c), despite similar (Kármán-like) patterns observed further downstream (x̃∗ > 2),
the CR cases see strong shear-layer wrapping across the centreline of the cylinder wake.
Nevertheless, the vortices in the CR do not seem to have well-defined regular shapes as
in regimes I and II, thus seem less able to maintain consistent forcing responsible for the
cylinder vibration.

941 R4-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

35
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.359


J. Zhao, M.C. Thompson and K. Hourigan

0

0
1
2

0
1
2

0

0.2

–2

2
0

100 200 300 400 500

0

0
1
2

0
1
2

0

0.2

–2

2
0

100 200 300 400 500

0

0
1
2

0
1
2

0

0.2

–0.2

0.2
0

100 200 300 400 500

τ
0

0
1
2

0
1
2

0

0.2

–0.4

0.4
0

100 200 300 400 500

0

0
1
2

0
1
2

0

0.2

–2

2
0

100 200 300 400 500

0

0
1
2

0
1
2

0

0.2

–2

2
0

–2
–3

–1
0

100 200 300 400 500

τ

Cy

x∗

fx
∗

fC
∗
y

Cy

x∗

fx
∗

fC
∗
y

Cy

x∗

fx
∗

fC
∗
y

(a)

(b)

(c)

(d)

(e)

( f )

Figure 6. Continuous-wavelet-transform-based time-frequency analysis for the body vibration and the
transverse lift coefficient at different reduced velocities selected from the VIV response regimes. For
convenience of comparison, the left column plots two cases U∗ = 1.8 and 2.35 from regime I and one case
U∗ = 2.55 from CR in (a–c), respectively, while the right column presents two cases U∗ = 2.8 and 3.5 from
regime II and one case U∗ = 4.8 from desynchronisation regime in (e–f ), respectively.

When U∗ is further increased into regime II, highly periodic vibration resumes. As
shown in figures 6(d) and 6(e) for two cases U∗ = 3.00 and 4.20, f ∗

x remains stationary
over time, while f ∗

Cy
also remains stationary but its harmonic component at 1.5f ∗

x tends
to become weaker as U∗ is increased. On the other hand, the wake patterns in figure 9
show similar major structures, which are in agreement with previous studies (i.e. the
A-IV mode reported by Cagney & Balabani 2013b). The present study, for the first time,
extends wake measurement beyond U∗ = 4.0 for regime II. It is interesting to note that
the elongated shear layers tend to become stronger with increasing U∗ in this regime,
and at high reduced velocities they can form a secondary weak vortex each time a major
vortex sheds, making the wake pattern appear as a Po mode (namely, a pair of vortices
consisting of a strong vortex and a relatively much weaker one in each pair shed per cycle)
– see supplementary movie 3 for animations of full vortex-shedding cycles. With multiple
vortices shed per cycle, this Po mode should explain why the harmonic component of
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Figure 7. Phase-averaged vorticity contours (of selected phases) showing the evolution of the wake patterns for
various reduced velocities across regime I: U∗ ∈ [1.60, 2.00, 2.15, 2.40] in (a–d), respectively. The normalised
vorticity range shown here is ω∗

z = [−5, 5]. The horizontal bar in red placed at the cylinder centre represents
the peak-to-peak vibration amplitude. The red dots on the sine waves in (a) denote the cylinder position during
its vibration. For the full oscillation cycles, see supplementary movie 1 for all test cases in regime I.

the drag force frequency f ∗
Cx

appears and tends to become stronger with increasing U∗ in
regime II (figure 3c).

3.4. Evaluation of amplitude response based on wake drag
In order to validate our force decomposition analysis, we evaluate the vibration amplitude
based on (3.14) and compare it with the experimentally measured response in figure 10.
As shown, the evaluated amplitude response closely matches the actual values of A∗

10
and

√
2A∗

rms (or
√

2x∗
rms) for most of the U∗ range tested. Subtle differences observed

for 3.5 � U∗ � 4.2 in regime II could be attributable to the fact that the power of
the harmonic components in f ∗

Cx
(figure 3c) tends to increase in this U∗ range (still

of two orders weaker than the dominant frequency), affecting the evaluation based on
harmonic approximations. (In the present experiment, we did not extend the evaluation
to the desynchronisation regime beyond U∗ = 4.2, where the harmonic assumption is not
applicable). Nevertheless, the above results have validated the force decomposition and
the harmonic approximations.

4. Conclusions

Decomposition has been performed for the driving fluid force on an elastically mounted
circular cylinder undergoing in-line vortex-induced vibration in a free-stream flow.
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Figure 8. Phase-averaged vorticity contours (of selected phases) showing the evolution of the wake patterns
at U∗ = 2.55 in the CR and U∗ = 4.80 in the desynchronisation regime. Note that (a) presents the
PIV measurements taken for large-amplitude oscillation cycles (i.e. A∗ ≈ 0.1) at U∗ = 2.55, and (b) for
low-amplitude oscillation cycles (i.e. A∗ � 0.03) . For more details, refer to the caption of figure 7. For the
full oscillation cycles, see supplementary movie 2.
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Figure 9. Phase-averaged vorticity contours (of selected phases) showing the evolution of the wake patterns
at U∗ = 3.00 and 4.20 in regime II. For more details, refer to the caption of figure 7. For the full oscillation
cycles, see supplementary movie 3 for all test cases in regime II.

Based on the carefully conducted experiments, we have updated the wake drag model
proposed previously by Konstantinidis et al. (2021) to include a steady and an unsteady
part. This approach reflects that, when the cylinder is allowed to oscillate streamwise, the
oscillation alters the time-dependent wake in turn altering the time-averaged displacement
of the cylinder as well as the time-averaged streamwise fluid force from those experienced
without cylinder oscillation. A harmonic approximation analysis was adopted to derive the
relationship between the total streamwise fluid force and the wake drag. This analysis has
been validated by predicting the amplitude response to directly compare with experimental
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Figure 10. Evaluation of amplitude response as a function of reduced velocity.

measurements, meaning that prediction of amplitude response based on the updated wake
drag model would be possible for various conditions of flow velocity and structural
properties.

The in-line VIV response was characterised by two regimes (i.e. regimes I and II) of
significant vibration and a CR in between. The peak values of the vibration amplitude and
the coefficients of the driving fluid force in regime I were found to be greater than those
in regime II. A continuous-wavelet-transform-based time-frequency analysis showed that
intermittent and competing behaviour occurred in the cylinder vibration frequency and the
vortex-shedding frequency, when the normalised cylinder vibration frequency approached
the slope of 2St at U∗ ≈ 1/(2St), leading to a phase desynchronisation and thus an abrupt
drop in the amplitude response. As can be explained by (3.13), the streamwise fluid force
coefficient tends to decrease to minimal or zero as the vibration frequency approaches fna
with increasing U∗, leading to vibration suppression.

The wake mode measurements provided an insight into the evolution of wake modes
across the in-line VIV response regimes. It was found that regime I is initially associated
with a symmetric S-I wake mode over 1.55 � U∗ � 2.10, and then it undergoes a
transition to an AS mode that tends to become stronger with increasing U∗ for the rest of
this regime; on the other hand, regime II initially displays an A-IV mode, which gradually
becomes a Po mode with its secondary vortex forming from the strengthened shear layers
at high reduced velocities, contributing to the harmonics of the drag force frequency.

The updated wake drag model and harmonic approximation analysis have been applied
successfully to the present experiments. Thus, it would be of further interest to examine
whether it provides an improved model for lower amplitude low-Reynolds-number
numerical simulations and, of course, other VIV systems.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.359.
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