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 Preliminary results are presented for the flow behind a circular cylinder orbiting about a
 vertical axis inside a tank .  The wake was investigated experimentally using image
 de-rotation and particle image velocimetry (PIV) .  It was found that the vortex shedding
 was perturbed by its own wake and ,  as a result ,  showed characteristics distinctively
 dif ferent from the normal vortex shedding behind a stationary cylinder .  The vortex
 structures formed behind the orbiting cylinder include the classical Ka ́  rma ́  n vortices and
 regular / irregular small-scale shear layer vortices .  The former are frequently overwhelmed
 by the latter .  The formation length of the Ka ́  rma ́  n vortices is shown to be substantially
 smaller than in the wake of a stationary cylinder .  PIV measurement shows that there is a
 reduction in the circulation of the vortices in the near wake .

 ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 T HE PRIMARY MOTIVATION  of this study was to investigate the flow behind an orbiting
 circular cylinder inside a vessel ,  as shown schematically in Figure 1 .  Compared with the
 well studied case of flow past a stationary cylinder ,  a major dif ference in the present
 wake development process is that the cylinder constantly moves through its own wake .
 In this respect the wake has some similarities to the wake of oscillating cylinders
 without mean flow ,  as studied by Williamson (1985) .  As in that case ,  the near wake
 vortex shedding is perturbed by its far wake ,  here at a distance 2 π R  downstream of the
 cylinder ,  where  R  is the distance from the cylinder centre to the rotational axis .

 The wake of a circular cylinder is of great interest in fluid dynamics because of the
 development of many distinctive flow structures (Wei & Smith 1986 ;  Williamson 1988 ;
 Wu  et al .  1996a ,  b) which prove to be illuminating for fluid mechanics researchers ,  and
 because it provides a model useful in the study of more complicated industrial fluid
 processes .  Many papers have been published since the turn of this century concerned
 with dif ferent aspects of cylinder wake flows ;  readers are referred to the comprehensive
 reviews by Coutanceau & Defaye (1991) ,  Roshko (1993) and Williamson (1996) .

 Chaplin (1988) has examined planar oscillatory flows in which a cylinder moves in an
 orbit without rotation in an ef fectively infinite fluid .  However ,  to the authors’
 knowledge ,  the flow behind a cylinder orbiting in a circular path ,  while also rotating
 within a constrained fluid ,  has not been reported in the literature .  [The authors are ,
 however ,  aware of work by Monkewitz  et al .  (1996) which examines the wake of an
 orbiting cylinder but with its axis orthogonal to that of the present study . ] The
 objective of the present work is therefore to characterize the fluid mechanics of this
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 rather special cylinder wake .  There is also an industrial application of this flow which
 relates to fluid mixing by impellers in tanks .  It is known that vortices shed from a
 rotating blade influence the performance and control of many important processes ,  e . g .
 gas / liquid mixing (Rigby & Evans 1996) .

 A related field to which this study may have relevance is the investigation of the
 influence of freestream turbulence on wake development .  Niemann & Holscher (1990)
 have discussed how freestream turbulence alters the laminar to turbulent transition in
 separated shear layers ;  this in turn influences the drag and pressure distribution .  For
 the case studied here ,  it is anticipated that the highly perturbed upstream flows may
 influence the wake development behind the orbiting cylinder .

 2 .  EXPERIMENTAL APPARATUS AND METHOD

 The experimental arrangement is as shown in Figure 1 .  An acrylic ,  cylindrical tank of
 390  mm in diameter and contained within an outer square-section viewing tank had a
 central shaft on which there was a rotating arm with a cylinder fixed ,  its axis being
 parallel to that of the tank .  The cylinder was made from acrylic ,  12 ? 7  mm in diameter
 and 244  mm long .  Its position on the rotating shaft was adjustable ,  allowing dif ferent
 radii of orbit of the cylinder to be examined .  A three-phase motor with variable
 frequency drive was used to drive the shaft ;  the range of angular speeds being
 0 – 70  r . p . m .

 The flow could be observed in the plane of rotation by viewing through the tank base
 through a mirror placed at 45 degrees to the tank axis .  Clearly ,  of central interest in
 observing this flow was how it compared with the well known and well-studied Ka ́  rma ́  n
 vortex street .  To make such a comparison it is desirable to be able to view the orbiting
 cylinder in a frame of reference fixed to the cylinder .  A new experimental technique ,
 developed by Wu  et al .  (1996c) ,  was used to do this .  In essence ,  the device consists of
 the ‘dove’-shaped prism shown in Figure 2 ,  which rotates at half the cylinder speed .
 The rotation of the prism introduces a bias rotational velocity to the image ,  such that
 the view through the prism is equivalent to what would be seen in the frame of
 reference fixed to the orbiting cylinder .  Thus ,  this ‘de-rotation’ technique permits
 viewing of the cylinder wake in such a way that a direct comparison is possible with
 that of fixed cylinders .

 Both the flow visualisations and PIV measurements were illuminated by a light sheet
 generated by a Spectra Physics 8  W argon-ion laser .  The flow was seeded with
 silver-coated glass particles having a mean size of 14  m m .  An electro-mechanical
 shutter ,  installed between the laser and the fibre-optic coupler used to carry the light to
 the experiment ,  pulsed the laser light so that multiple images of each particle were
 recorded in each frame of film .

 For the PIV measurements ,  a Nikon camera was used to record multiply exposed
 particle images on Kodak Tmax 400 ,  35  mm film .  A rotating mirror was used to
 introduce bias velocity so that directional ambiguity and the dynamic range limitation
 inherent in an auto-correlation PIV system were overcome .  The films were then
 digitized into digital images at a resolution of 3700 by 2500 pixels using a Polaroid
 scanner .  The digital particle images were then processed on a PC using a custom-
 developed software .
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 3 .  RESULTS AND DISCUSSION

 3 . 1 .  A S WITCHING  M ECHANISM

 Using the image de-rotation device ,  it is possible to observe the flow past the orbiting
 cylinder in the rotating frame of reference in real time .  Based on these observations ,
 two distinctively dif ferent vortex shedding patterns appear to exist .  Figure 3(a ,  b) shows
 two typical flow patterns recorded in the rotating frame of reference at Reynolds
 number of 1600 ,  based on cylinder diameter and the cylinder centreline velocity ,  and at
 a cylinder radius  R  5  69  mm .  In Figure 3(a) ,  Ka ́  rma ́  n vortices are seen developing
 behind the cylinder ,  similar to those observed in the wake of a stationary cylinder .
 However ,  the vortices were found to unstable ,  at times breaking down into small-scale
 vortices ,  as shown in Figure 3(b) .

 To evaluate the statistical behaviour of the two flow patterns ,  30 images were taken
 of the near wake .  The distance between discernible vortices with the same sense of
 rotation was measured .  Figure 4 shows the probability density function (P . D . F . ) of the
 streamwise wavelength .  Two peaks appear to exist :  one is at  l  / D  <  3 and the other at
 l  / D  <  0 ? 75 ,  where  l   is the streamwise wavelength and  D  is the diameter .  It is clear
 that the longer wavelength corresponds to the large scale of the Ka ́  rma ́  n vortices .

 The smaller peak warrants further discussion .  It has been established that small-scale
 shear layer vortices develop in the near-wake region prior to the formation of Ka ́  rma ́  n
 vortices .  These vortices are similar in nature to those resulting from the Kelvin-
 Helmholtz (KH) instability in free shear layers (Bloor 1964 ;  Wei & Smith 1986 ;  Kourta
 et al .  1987 ;  Sheridan  et al .  1992 ;  Williamson  et al .  1995) .

1

0
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λ /D
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 Figure 4 .  P . D . F .  of the streamwise wavelength of the vortices in the near-wake region .  Results were based
 on 30 flow visualisation images .  Impeller speed was 17 ? 4  r . p . m .  and the radius of the cylinder centre to the

 rotating axis was 69  mm .
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 Based on the Williamson  et al .  (1995) experimental correlation for the frequency of
 the shear layer vortices ,  it is proposed that the wavelength of the shear layer vortices is
 given by

 l  / D  5  34 / 4 Re

 where Re is the Reynolds number .  For Re  5  1600 ,   l  / D  5  0 ? 85 ,  which is close to the
 shorter of the two wavelengths in Figure 4 .  Therefore ,  it can be hypothesized that the
 mechanism of switching to the broken-down pattern of Figure 3(b) is the development
 of the shear layer vortices ,  probably as a consequence of being perturbed by the
 upstream (or ,  identically ,  the far wake of the cylinder) velocity fluctuations .  The
 development process of these shear layer vortices was so strong that the Ka ́  rma ́  n
 vortices were ef fectively suppressed and replaced with multiple small-scale vortices .

 Previous work by Chyu & Rockwell (1996) has found that the formation length of
 the Ka ́  rma ́  n vortices contracts in response to external perturbation of the Kelvin-
 Helmholtz vortices .  Similar observations were made by Prasad & Williamson (1997) ,
 where they found that stronger shear layer vortices appear to result in a reduced
 formation length of the Ka ́  rma ́  n vortices .  Thus ,  the contraction of the wake is
 consistent with other studies ;  the mechanism whereby this occurs requires further
 study .

 3 . 2 .  PIV V ELOCITY  F IELD  M EASUREMENT   IN  N EAR -W AKE  R EGION

 PIV was used to quantify the vorticity field of the large-scale Ka ́  rma ́  n vortices in the
 near wake region .  Figure 5(a) shows a typical velocity vector field in the rotating frame
 of reference .  The circular arc in the figure indicates the orbiting path traced by the
 cylinder .  For comparison ,  the velocity vector field of the vortex street of a stationary
 cylinder is presented in Figure 5(b) ,  based on the experimental results of Wu  et al .
 (1994) .

 In general ,  the formation of a vortex shed from the orbiting cylinder is similar to that
 of the stationary cylinder .  However ,  the vortices in the near wake of the orbiting
 cylinder appear to be more developed and to form closer to the back of the cylinder .

 The vortex formation length for both the orbiting cylinder and the stationary
 cylinder were obtained by measuring the distance between the cylinder centres and the
 centre of the rolled-up vortices immediately behind the cylinders .  The results for vortex
 formation length  L  normalized by cylinder diameter  D  are listed in Table 1 .  Formation
 length data at Re  5  1600 extracted from a summary given by Unal & Rockwell (1988)
 are also included as a reference .

 It is clear that there is a substantial shortening of the vortex formation length in the
 orbiting cylinder case .  It is conjectured that the reduction in the vortex formation
 length is caused by a high freestream turbulence level ,  since the freestream flow is also
 the far wake of the orbiting cylinder .

 T ABLE  1
 A comparison of cortex formation length :  Re  5  1600 .

 Orbiting cylinder  Stationary cylinder  Unal & Rockwell

 L / D  0 ? 80  Ú  0 ? 32  2 ? 4  Ú  0 ? 95  2 ? 3  Ú  0 ? 5
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 Figure 6 .  Near-wake vortex circulation P . D . F .,  Re  5  1600 .  The circulation is normalized by  U ,  the rotating
 velocity at the cylinder centre ,  and  D ,  the cylinder diameter .

 Figure 6 shows a P . D . F .  of the absolute value of the normalized vortex circulation
 obtained from integrating vorticity over vortices in the near-wake region .  Here the
 boundary of a vortex is defined as the contour at which the vorticity level becomes 10%
 of the maximum vorticity of the vortex .  Included for comparison are results from a PIV
 measurement of the near wake flow field of a stationary cylinder by Wu  et al .  (1994)
 and the vorticity measurement by Green & Gerrard (1993) at a lower Reynolds
 number (Re  <  200) .

 Thus ,  the circulation of vortices in the wake of the orbiting cylinder is only about
 half that found in stationary cylinder wakes .  The mechanism of this circulation
 reduction is not entirely clear .  Probably it is due to enhanced cross-cancellation
 between opposite-signed vorticity in the near wake region ,  but it might also be due to
 reduced fluid entrainment into the rolled-up vortices ,  since there is a shortening of the
 vortex formation length .  Further work is needed to clarify this phenomenon .

 4 .  CONCLUSIONS

 The wake behind a circular cylinder orbiting in a tank has been investigated
 experimentally using image de-rotation and PIV .  It is shown that vortex structures in
 the near-wake region switch frequently from the classical Ka ́  rma ́  n vortices to multiple
 small-scale vortices .  Based on the streamwise wavelength data presented ,  the small-
 scale vortices appear to be related to the Kelvin-Helmholtz vortices found in free shear
 layers .  PIV measurements also show that there is a reduction in vortex formation
 length in the wake of the orbiting cylinder .  A reduction in vortex circulation is also
 observed .
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 Figure 3 .  Wake development recorded in the rotating frame of reference .  (a) Ka ́  rma ́  n vortices ,  (b)
 multiple small-scale vortices .


