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Previous experimental studies have shown that the steady recirculation bubble that
forms as the flow separates at the leading-edge corner of a long plate, becomes
unsteady at relatively low Reynolds numbers of only a few hundreds. The reattaching
shear layer irregularly releases two-dimensional vortices, which quickly undergo three-
dimensional transition. Similar to the flow over a backward-facing step, this flow is
globally stable at such Reynolds numbers, with transition to a steady three-dimensional
flow as the first global instability to occur as the Reynolds number is increased to
393. Hence, it appears that the observed flow behaviour is governed by transient
growth of optimal two-dimensional transiently growing perturbations (constructed from
damped global modes) rather than a single three-dimensional unstable global mode.
This paper quantifies the details of the transient growth of two- and three-dimensional
optimal perturbations, and compares the predictions to other related cases examined
recently. The optimal perturbation modes are shown to be highly concentrated in
amplitude in the vicinity of the leading-edge corners and evolve to take the local
shape of a Kelvin–Helmholtz shear-layer instability further downstream. However, the
dominant mode reaches a maximum amplitude downstream of the position of the
reattachment point of the shear layer. The maximum energy growth increases at 2.5
decades for each increment in Reynolds number of 100. Maximum energy growth of
the optimal perturbation mode at a Reynolds number of 350 is greater than 104, which
is typically an upper limit of the Reynolds number range over which it is possible to
observe steady flow experimentally. While transient growth analysis concentrates on
the evolution of wavepackets rather than continuous forcing, this appears consistent
with longitudinal turbulence levels of up to 1 % for some water tunnels, and the fact
that the optimal mode is highly concentrated close to the leading-edge corner so that
an instantaneous projection of a perturbation field from a noisy inflow onto the optimal
mode can be significant. Indeed, direct simulations with inflow noise reveal that a
root-mean-square noise level of just 0.1 % is sufficient to trigger some unsteadiness at
Re= 350, while a 0.5 % level results in sustained shedding. Three-dimensional optimal
perturbation mode analysis was also performed showing that at Re = 350, the optimal
mode has a spanwise wavelength of 11.7 plate thicknesses and is amplified 20 % more
than the two-dimensional optimal disturbance. The evolved three-dimensional mode
shows strong streamwise vortical structures aligned at a shallow angle to the plate top
surface.
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1. Introduction
Despite the successes of global stability analysis in predicting wake instabilities,

circular cylinder wake transition being a prime example (Dušek, Fraunı́e & Le Gal
1994; Barkley & Henderson 1996, for the Hopf and three-dimensional transitions,
respectively), over the last two decades it has been realized that global stability
analysis is not always a good predictor of the experimentally observed stability of real
flows, at least when the instability mode spectrum is dominated by only a few modes.
For the mainstream fluid dynamics community, perhaps the genesis of this realization
was the observation of the massive transient amplification of perturbations due to
the non-orthogonality of linear eigenfunctions. This helped to explain the observed
turbulent transition of pipe flows at Re ' 2000, and plane Couette flow at Re ' 350
which is globally stable at all Reynolds numbers (Butler & Farrell 1992; Reddy &
Henningson 1993; Trefethen et al. 1993), also see reviews by Chomaz (2005) and
Schmid (2007). Since then there have been many studies of flow geometries for which
the experimental observations indicate that effective transition to unsteady flow occurs
significantly below the critical Reynolds number for global instability. (Of course, it
is true that it has been realized for a much longer time that convective instabilities
could be triggered by upstream perturbations, and that flows past corners or edges are
regions of high flow receptivity so that perturbing the flow at such points can lead to
massive downstream amplification. For example, in his 1966 AGARD report, Gaster
(1966) observed ‘disturbances in the separated flow were travelling waves, which grew
spatially along the shear layer’.)

A classic example is the flow over a backward-facing step. Kaiktsis, Karniadakis
& Orszag (1996) examined unsteadiness and convective instabilities of the backward-
facing step wake after an earlier paper (Kaiktsis, Karniadakis & Orszag 1991) had
indicated an unsteady flow well below the transition Reynolds number predicted by
other computer simulations. The discrepancy was traced to insufficient resolution in
the numerical simulations triggering convective instability. Since then Barkley, Gomes
& Henderson (2002) have shown that the initial wake transition from the steady
separated flow is through a three-dimensional steady transition rather than quasi-
periodic shedding, as is commonly seen in experimental flows. It was also shown
that the two-dimensional flow is globally stable up to Reynolds number of ∼1500.
The paper by Blackburn, Barkley & Sherwin (2008a) quantifies the growth of optimal
perturbation modes, indicating that there is substantial amplification of perturbations as
they convect along the separating shear layer, which in practice leads to effective early
transition. They perform three-dimensional direct numerical simulation (DNS) on the
flow perturbed by Gaussian noise at inflow and observe the quasi-periodic release of
vortex structures from the shear layer at a downstream location near where the optimal
modes reach maximal amplitude. Also, the observed frequency is consistent with the
wavelength and convection speed of the optimal disturbance.

Marquet et al. (2008) examine a smoothed backward-facing step in terms of
resonator and amplifier dynamics. In terms of resonator dynamics (or global
instability) the wake undergoes an initial transition from two-dimensional steady flow
to three-dimensional steady flow, as occurs for the standard backward-facing step.
The amplifier dynamics, examining transient growth of optimal perturbation modes,
is also similar. Exponential amplification of perturbations initially localized near the
step occurs as they convect along the shear layer. Further downstream the optimal
perturbation modes decay. The upshot is that the amplification rate of perturbations is
high enough to dominate the much slower growth of the global instability, so that for
moderate Reynolds numbers it is expected that the first mechanism may dominate the
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flow dynamics. In a followup paper, Marquet et al. (2009) examine the problem in
terms of direct and adjoint global modes, especially with a view to the implications for
flow control.

Flows through stenotic geometries, i.e. past partial blockages in pipes or channels,
show similar if not more extreme transient energy growth. Griffith et al. (2008)
examined pipe flow through a symmetrical stenosis, both experimentally and
numerically. The global stability analysis indicates that global steady three-dimensional
transition takes place at Reynolds numbers much higher than the flow is observed
to undergo effective transition in the experiments using the same geometries. For
example, for a blockage ratio of 0.5, experiments indicate that chaotic flow is
sustained at Reynolds numbers below 1000, while the global stability analysis
indicates that the flow should remain stable for Reynolds number of more than
2000. Blackburn, Sherwin & Barkley (2008b) examine numerically a similar stenotic
geometry in terms of transient growth of optimal perturbations and global instability.
Their findings are similar, but explicitly show the huge increase in the transient growth
rate as the Reynolds number is increased, in line with the experimental results of the
previous authors. More recently, Griffith et al. (2010) show that the transient shear-
layer flow structures observed in the experiments match well with the flow structures
obtained by seeding a DNS with the optimal transient perturbation mode.

In an informative recent paper, Ehrenstein & Gallaire (2008) examine the optimal
growth and global temporal modes for the boundary-layer flow over a smooth bump,
which produces a downstream recirculation bubble. They find that the temporal modes
undergo transition as a group at a particular Reynolds number depending on bump
height, and they are localized near the reattachment point of the separation bubble.
These modes have shifted frequencies, so that a sum of these unstable modes can lead
to modulation or beating; the authors correlate this with the flapping that is observed
in such separating and reattaching flow. The observed modulation of the shedding
is indeed well predicted by the beating frequency of the temporal modes. This
phenomenon appears to have been found previously for a seemingly very different
problem of the stability of a falling liquid curtain (Schmid & Henningson 2002). Of
some interest, the temporal modes closely resemble the optimal growth modes after
they have advected to the reattachment zone, thus seemingly connecting the overall
flow dynamics to both the global and optimal growth modes. Of course, this is perhaps
not surprising given that the advecting optimal perturbation modes can be constructed
from linear combinations of the damped global modes, and they should evolve towards
the individual dominant damped global mode(s) as they move far downstream. The
temporal mode analysis by Cherubini, Robinet & Palma (2010) for the separated flow
over a flat plate induced by blowing and suction shows a similar result. They also
find that shear-layer flapping leading to large-scale vortex shedding from the mean
separation zone can be correlated with temporal modes becoming unstable as a group.
The linear interaction of this group of modes leads to regenerating wavepackets, which
can be directly associated with the flapping. In addition, they find a structural change
to the recirculation bubble close to the Reynolds number at which the temporal modes
become unstable. This appears to introduce a second frequency to the flapping, which
is apparent in their DNSs.

The aim of the current paper is to examine the flow over a different geometry, that
of a long flat plate with a square leading-edge. Relative to the geometries examined
above, the flow near the leading-edge corner is more highly accelerated. The flow has
been examined before in terms of shear-layer receptivity near the leading edge. For
example, a very small cross-stream flow oscillation is sufficient to lock the vortex
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FIGURE 1. Problem setup: the plate is assumed to be semi-infinite in length and of infinite
width. Above a certain Reynolds number the leading-edge separation bubble sheds semi-
discrete vortices due to the receptivity of the leading-edge shear layer.

shedding from the separation bubble, and indeed severely shorten the mean bubble
length (Tan, Thompson & Hourigan 1998; Mills, Sheridan & Hourigan 2003; Tan,
Thompson & Hourigan 2004). In addition, for plates of particular length to height
aspect ratios, the passage of vortices past the trailing edge can trigger a shear-layer
perturbation at the leading-edge corners, resulting in subsequent shear-layer roll-up
and shedding. A feedback loop can be established resulting in a discrete number of
vortices on each side of the plate, with the number depending on the aspect ratio
(Ohya et al. 1992; Hourigan, Thompson & Tan 2001). Thus, the sensitivity of the
shear-layer near the leading edge corners is well established; however, an analysis in
terms of transient growth of optimal perturbations has not yet been undertaken. This
does throw further light on the flow dynamics for this case.

2. Methodology
The flow under investigation is shown in figure 1. The geometry is a long flat

plate with a square leading edge. Ideally the plate is of infinite length so that
there is no feedback to the leading-edge shear layers as shed vortices pass the
trailing edge. The plate is also ideally infinitely wide. Above a Reynolds number
of ∼Re = U∞H/ν = 100, a separation bubble is formed as the shear layer separates
from the leading-edge corner. Experiments indicate that at higher Reynolds numbers of
Re ∼ 300–400, quasi-periodic vortex shedding from the separating shear layer begins
to occur. These vortical structures appear to become three-dimensional soon after
forming (Sasaki & Kiya 1991), although that is not the focus of this paper, which
concentrates on the initial predominantly two-dimensional release of vortices.

The flow is governed by the incompressible Navier–Stokes equations coupled with
the continuity equation

∂u
∂t
+ u ·∇u=−∇p+ ν∇2u, (2.1)

and

∇ ·u= 0. (2.2)

Here as usual p is the kinematic pressure, i.e. the pressure divided by the density,
ν is the kinematic viscosity and u is the velocity vector. For the flows studied here,
the flow variables are split into a two-dimensional base flow (ū(x, y), p̄(x, y)) and
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perturbation fields (u′(t, x, y, z), p̄′(t, x, y, z)). The base flow, denoted by the barred
quantities, satisfies the Navier–Stokes equations as do the full fields, allowing the
equations for the perturbation fields to be extracted, which on linearizing are

∂u′

∂t
+ ū ·∇u′ + u′ ·∇ū=−∇p′ + ν∇2u′, (2.3)

and

∇ ·u′ = 0. (2.4)

The spatial derivatives in this case may include the z-dependent terms.
In this paper the focus is on transient growth of optimal disturbances, as previously

examined for other flow geometries (e.g. Butler & Farrell 1992; Blackburn et al.
2008a; Ehrenstein & Gallaire 2008; Griffith et al. 2010). The analysis presented uses
the approach described in various papers including Butler & Farrell (1992), Mamun
& Tuckerman (1995) and Barkley, Blackburn & Sherwin (2008), and so only a brief
overview is given here. The aim is to determine the maximum energy growth of an
initial perturbation for a chosen time period. This can be expressed as an eigenvalue
problem in which the perturbation can be expressed in terms of a set of optimal
perturbation modes which grow to different amplitudes over the chosen time interval.
These growth amplitudes effectively represent the associated eigenvalues. Even though
the base flow may be globally stable, the non-normality of the global modes can lead
to massive amplification of perturbations, i.e. massive transient growth. The relative
energy amplification of an optimal mode is written as

G(τ )= E (t = τ)
E (t = 0)

, (2.5)

where E (t) = (1/2) ∫ (u′2 + v′2 + w′2) dV is the kinetic energy per unit mass in the
perturbation velocity field at time t.

In practice, the determination of the optimal growth modes can proceed using
the same time-stepping approach that can determine the linear stability of a steady
base flow or the Floquet stability of time-periodic flows, i.e. integrating forward in
time from a white noise perturbation field until only the dominant global modes
remain. These can then be extracted based on a Krylov subspace approach using
Arnoldi decomposition as described by Mamun & Tuckerman (1995), Barkley &
Henderson (1996) and Barkley et al. (2008). For the optimal growth modes, the
integration consists of two substeps: integrating the linear system forward in time
until t = τ ; and then integrating the related adjoint linear system backwards in time,
until t = 0. This can be repeated until the first few dominant optimal perturbation
modes can be extracted to the desired accuracy. Note that here ‘optimal mode’ refers
to the modes associated with the product of the forward and backward (adjoint)
Navier–Stokes evolution operator, or alternatively the eigenvectors from the singular
value decomposition of the evolution operator, as discussed in Barkley et al. (2008).
The term ‘dominant’ refers to the optimal mode which is amplified maximally.
However, in this paper the term ‘first few dominant modes’ is used. This indicates
the modes with the highest growth factors (for a particular Reynolds number and
growth time). ‘Modes’ can also refer to global instability modes depending on the
context.

The equations are discretized in space using the spectral-element approach. The
current implementation of the software has been applied previously to various related
problems, such as the wakes of cylinders (Thompson, Hourigan & Sheridan 1996;
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FIGURE 2. (a) Typical computational mesh employed for the time-dependent simulations.
Only the macro-elements are shown. These elements are further subdivided into n × n nodes,
where n is at least four for the current simulations. The inflow length is 10H, the plate length
is 60H, top and bottom boundaries are at ±40H. (b) Zoomed view of mesh near leading-edge
corners.

Thompson, Leweke & Williamson 2001b; Leontini, Thompson & Hourigan 2007),
spheres (Thompson, Leweke & Provansal 2001a), tori (Sheard, Thompson & Hourigan
2003, 2004) and stenotic flows (Griffith et al. 2008, 2010). A fuller description of
the spectral-element approach to linear stability analysis, including Floquet analysis, is
provided in Ryan, Thompson & Hourigan (2005). In terms of the current problem,
the extension to the code to extract optimal growth modes has been validated
by comparison with predictions from Butler & Farrell (1992) and Blackburn et al.
(2008a). The current implementation is based on the description in Thompson et al.
(2006). A significant advantage of the spectral-element method is the ability to select
the resolution at runtime by selecting the number of nodes in the macro-elements.

The temporal discretization employs a classical splitting scheme suggested by
Chorin (1968); the current implementation is detailed in Karniadakis, Israeli &
Orszag (1991). The nonlinear advection step is performed first, followed by the
step accounting for the effect of the pressure gradient, which also imposes
flow incompressibility, and finally the diffusion step. First-order pressure boundary
conditions are imposed at the no-slip boundary at the surface of the plate (Karniadakis
et al. 1991) and this leads to a velocity field that is second-order accurate in time
and satisfies mass conservation at the no-slip boundaries. This temporal convergence
behaviour has been established for the current code in previous studies. Also note that
the Courant restriction on the time step generally means that more than 1000 time
steps are required per shedding period (for the unsteady case).

This problem is relatively expensive in computational terms because of the sizeable
regions with large velocity gradients requiring high resolution. In particular, there
are geometric singularities at the leading-edge corners and relatively fine boundary
layers extending all of the way to the outflow boundary. The leading-edge corners are
particularly demanding since the velocity gradient near that region is very high as the
shear layer separates there.
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Figure 2 shows the spectral-element mesh used for the simulations. Note that only
macro-elements are shown. Internally macro-elements are further subdivided into n× n
node points. For the simulations presented in the paper, n is at least four. The
mesh concentration is particularly high in the neighbourhood of the leading-edge
corners to resolve the separating shear layers, and close to the plate to resolve
the vortical structures as they convect downstream. Overall this mesh employs
12 080 macro-elements. The cross-stream boundaries are set at 40 step heights from
the plate, giving a blockage ratio of 1.25 %. The upstream and outflow boundaries are
situated 10H and 60H from the leading-edge, respectively. At the upstream and side
boundaries, the velocity is set to U∞ and at the outflow boundary du/dn = 0. For the
optimal perturbation mode simulations the perturbation velocity is set to zero at all
computational boundaries, for the reasons discussed in Barkley et al. (2008).

This mesh is the final of a sequence of meshes examined to verify resolution and
domain size to accurately capture the flow dynamics. An initial mesh was constructed
based on experience from similar problems. For that mesh the resolution was found
to be inadequate both near the leading-edge corners and in the boundary layers.
Since the spectral-element approach is only C0 continuous at element boundaries, this
can easily be discerned from whether the vorticity, i.e. a derivative of the velocity,
is continuous across element boundaries for a reasonable internal resolution. Four
meshes were constructed before a satisfactory compromise between localized mesh
concentration and total mesh points was achieved. Increasing the internal resolution
can then be systematically investigated to determine the nodes per element required to
fully resolve the flow (i.e. better than 1 % in quantities such as the force coefficients,
critical Reynolds numbers or pointwise velocity components). There was some effort
to ensure the outflow boundary was placed sufficiently far downstream such that it
was not unphysically affecting the results. To do this the outflow length was increased
from 30H to 60H, and it was verified that this did not affect growth multipliers
for the optimal perturbation analysis by more than 1 %. However, because some
simulations were performed to extract global temporal modes at higher Reynolds
numbers (Re > 500), for which the reattachment length is considerably longer, it was
decided to maintain the longer outflow length for all of the simulations. Finally, the
influence of the inflow length was also investigated. A test for Re = 350 and τ = 24
indicated that doubling the inflow length also resulted in less than a 1 % change to the
calculated growth multiplier.

3. Results
3.1. Two-dimensional baseflow

As described in the introduction above, this flow is very sensitive to external
perturbations. For finite-length plates, at Reynolds numbers above a few hundred,
the passage of vortices from the leading edge past the trailing edge is sufficient to
maintain a feedback loop maintaining strong leading-edge shedding (Nakamura, Ohya
& Tsurata 1991; Ozono et al. 1992; Hourigan et al. 2001). For certain plate lengths,
the phasing of leading-edge vortices passing the trailing edge is such that the timing
of the induced perturbation at the upstream separating shear layer leads to strictly
periodic shedding. For each of these preferred lengths there is a discrete but different
number of vortices between the leading and trailing edge. In between these preferred
plate lengths the timing of pressure pulses supporting this feedback loop does not
lead to a purely periodic shedding (Ozono et al. 1992; Tan et al. 1998). The case
studied here is that of a semi-infinite plate so that this feedback mechanism does not
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FIGURE 3. (a) Reattachment length of the separation bubble as a function of Reynolds
number from various experimental studies. Where the experimental curves turn over, the flow
undergoes transition to unsteady shedding. Reattachment lengths from the current simulations
are also shown. (b) Streamlines showing the recirculation zones for Re= 400.

apply. In practice, this is difficult to achieve using a numerical model because the
domain needs to be truncated at some point. This downstream truncation has a similar
effect to using a finite-length plate, in that as the vortices exit the domain this can
perturb the upstream shear layer causing it to roll up. The effect is lessened for longer
plate lengths, since the extra outflow length allows the convecting vortices to diffuse
more before they exit the domain. For the chosen domain outflow length of 60H, the
flow evolves smoothly to a steady state for Reynolds number up to greater than 450.
At Re > 500, the flow does not approach an asymptotic steady state but rather the
separation bubble sheds vortices quasi-periodically.

Figure 3 shows the behaviour of the reattachment length with Reynolds number
in the steady flow regime. This figure also shows results from previous experimental
studies (Lane & Loehrke 1980; Ota, Asano & Okawa 1981; Sasaki & Kiya 1991)
for comparison. It shows that experimentally, the separation bubble becomes unsteady
in the Reynolds number range 260 < Re < 330 depending on the experiment. For
higher Reynolds numbers, the separation length indicates the time-mean value, which
asymptotes to be between 4–5H. Notably the current numerical predictions fall
between the experimental results of Lane & Loehrke (1980), Ota et al. (1981) and
Sasaki & Kiya (1991). Numerical simulations with higher resolution had no effect on
the predictions of the separation bubble lengths to graphical accuracy.

3.2. Global instability modes
As indicated, the direct two-dimensional time-dependent simulations indicate that the
flow remains steady up to a Reynolds number of ∼500. This is well past the point at
which various experiments show that the flow is both unsteady and three-dimensional.
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FIGURE 4. (a) Growth rate of the dominant three-dimensional mode as a function of the
wavenumber for different Reynolds numbers for the global stability analysis. The dominant
mode has a real growth rate, i.e. the three-dimensional transition occurs through a steady-
to-steady transition. Interpolating the curves gives the transition Reynolds number as 393
corresponding to a spanwise wavelength of 15.7H. (b) Depiction of the three-dimensional
mode using isosurfaces of spanwise perturbation vorticity to highlight the mode structure.
This case corresponds to Re = 400 and λz = 15H, which is close to the maximally amplified
wavelength. Two wavelengths are shown for clarity.

A global linear stability analysis of the steady flow was performed to investigate the
onset of three-dimensional flow. The results are shown in figure 4. Growth rate curves
are plotted as a function of spanwise wavenumber for various Reynolds numbers.
Three-dimensional transition occurs between Re = 380 and 400 through a ‘regular’
bifurcation, i.e. steady to steady flow. This is in line with the transition behaviour for
the flow over a backward-facing step. In that case, the three-dimensional transition
also occurs well before the transition to unsteady flow as shown by Barkley et al.
(2002). Extrapolating between the curves at Re = 380 and 400 indicates that three-
dimensional transition occurs at Recrit = 393 at a spanwise wavelength of 15.7H. This
wavelength can be compared with those for a number of other similar geometries
explored by other researchers. Barkley et al. (2002) found a critical wavelength of
6.9 step heights for the flow over a backward-facing step. The mode structure is
similar, in that the unstable mode consists of counter-rotating cells when looking down
from above. (See figure 10 of that paper.) In Gallaire, Marquillie & Ehrenstein (2006)
for transition in the flow over a smooth bump, the steady three-dimensional mode had
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FIGURE 5. Energy amplification of the dominant two-dimensional perturbation mode as a
function of non-dimensional time τ for various Reynolds numbers.

a critical wavelength ∼12.6 bump heights. Hence, the current analysis at least seems
qualitatively consistent with the similarly long wavelengths found in previous studies.

Thus, both transition to steady three-dimensional flow and the transition to unsteady
flow occur at significantly higher Reynolds numbers than the effective unsteady, three-
dimensional transition seen in experiments.

3.3. Optimal growth solutions
As discussed above, the sensitivity of this flow to perturbations is well known.
Apparently similar flows such as stenotic flow (Blackburn et al. 2008b; Griffith
et al. 2008), flow over a backward-facing step (Blackburn et al. 2008a) and flow
over a bump (Marquet et al. 2008) show substantial energy amplification of optimal
perturbation modes for moderate Reynolds numbers. Superficially at least these flows
are similar in that there is an attached recirculation region bounded by a no-slip
boundary on one side and a thin shear layer emanating from a separation point on
the other. A small perturbation initially located near the separation point can undergo
significant amplification as it advects along the shear layer.

The situation can be quantified by determining the set of perturbation modes that
result in maximal growth over a given time interval τ . This can be done for different
time intervals and different Reynolds numbers resulting in the energy amplification
factor (G(τ,Re)) of the dominant mode shown in figure 5. As the Reynolds number
increases, for the same advection time, there is a rapid increase in the energy
amplification of the dominant mode. For Re = 450, the energy growth is almost
seven orders of magnitude, indicating why it is difficult to obtain a steady flow at
such Reynolds numbers in experiments, since the projections of background noise onto
the optimal growth modes amplify to large levels as they are advected with the flow.
The maximum growth occurs for larger values of τ as the Reynolds number increases.
This is consistent with the increase in separation bubble length with Reynolds number.
The perturbation mode is amplified in the shear layer as it traverses the separation
zone. Further downstream the mode decays, consistent with the fact that the flow
is globally stable at these Reynolds numbers. Figure 6 shows a close up of the
perturbation energy field for the dominant optimal mode for Re = 350 and τ = 24 in
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FIGURE 6. Shaded contour plot of the local perturbation energy of the optimal two-
dimensional mode for Re = 350, τ = 24, showing the perturbation is concentrated at the
leading-edge corner.
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FIGURE 7. Maximum energy amplification as a function of Reynolds number from optimal
growth analysis assuming two-dimensional perturbations.

the vicinity of leading-edge corner. The maximum amplitude occurs close to the shear-
layer separation point at the leading-edge corner. Note that the maximum amplitude of
the downstream pointing lobe is directed along the bisector of the recirculation zone.
Outside of the region depicted in the figure the amplitude of the mode is low.

Figure 7 shows the maximum energy amplification with respect to τ at each
Reynolds number as a function of the Reynolds number. The slope of the curve is
approximately linear above Re = 250, with a gradient of 2.5 × 10−2, i.e. 2.5 orders of
magnitude energy growth for a Reynolds number increase of 100.

Figure 8 indicates how the different optimal modes corresponding to different values
of τ relate. The perturbation vorticity fields are shown for τ = 2 and τ = 24, both for
a Reynolds number of 350. The latter is close to the time interval that gives maximum
amplification as can be seen from the figure, which also shows the envelope curve
indicating the maximum amplification for each value of τ . The perturbation fields for
the two cases both indicate that the initial distribution leading to optimal growth is
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FIGURE 8. The evolution of the perturbation energy with time for the optimal two-
dimensional modes corresponding to τ = 2 and τ = 24, for Re = 350. The maximal growth
curve is also plotted for comparison. The initial vorticity fields for the two modes are shown
in the insets.

FIGURE 9. Evolution of the optimal two-dimensional initial disturbance with time for τ = 2
and Re = 350. Times correspond to t = 0, 0.4, 0.8, 1.2, 1.6 and 2.0. The solid line indicates
the separating streamline. Only the top half of the domain is shown to save space. The
downstream boundary is at x= 16H.

concentrated close to the leading edge of the plate. The field for the smaller value
of τ has a shorter wavelength, or at least leads to a shorter wavelength as the field
advects downstream as shown in figures 9 and 10. This is consistent with the thinner
shear layer close to the separation point. That is, it can be related to the fact that the
preferred Kelvin–Helmholtz instability wavelength scales on the thickness of the shear
layer. Thus, this perturbation field grows quickly initially but further downstream as
the shear layer thickens, it grows more slowly than a longer wavelength perturbation
would. Consequently, for larger τ , it should be expected that the effective optimal
mode wavelength would be longer. This behaviour is borne out by the amplification
curves for the two cases, showing the growth of both initial perturbation fields with
time.
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FIGURE 10. Evolution of the optimal two-dimensional initial disturbance with time for
τ = 24 and Re = 350. Times correspond to t = 0, 3, 6, 9, 12, 15, 18, 21 and 24. The solid
line indicates the separating streamline. Only the top half of the domain is shown to save
space. The apparently large amplitude of the mode upstream of the leading edge is slightly
misleading, and due to the choice of contour levels. The mode amplitude is maximum close to
the leading-edge corner as indicated in figure 6. The downstream boundary is at x= 16H.
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FIGURE 11. (a) Energy growth per unit time for the two-dimensional linear stability mode
based on the velocity profile taken through the centre of the separation bubble (x/H = 5.33)
as a function of streamwise wavelength (λx/H) for Re= 350. (b) Vorticity distribution for the
linear mode with λx/H = 4, which is close to the most amplified wavelength.

To explore this further, the one-dimensional linear stability of the horizontal velocity
profile taken through the middle of the separation bubble was determined, in spite of
the fact that the flow is not closely one-dimensional and that the whole separation
bubble could not contain many wavelengths. Figure 11 shows the energy growth
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FIGURE 12. The first four two-dimensional optimal growth modes at Re= 350 for τ = 24,
which gives close to the maximum energy growth for this Reynolds number.

rate as a function of the streamwise wavelength. The fastest growing mode has a
wavelength of approximately λx = 4H. The corresponding frequency is 0.115. The
spanwise perturbation vorticity distribution is shown at the right of this figure. This
shows that the instability is basically a Kelvin–Helmholtz mode slightly modified at
the no-slip boundary by the presence of the boundary. Clearly the mode shape is
very similar to the vorticity distribution of the optimal perturbation mode after it has
advected to the middle of the bubble (see the fourth image of figure 10). At that
time (t = 9), the effective wavelength of the perturbation wavepacket is close to 3H,
although the entire wavepacket only consists of about two wavelengths. The figure
shows that for λx = 3H the one-dimensional linear mode is still strongly amplified,
with the growth rate less than 10 % below the maximum value. Indeed, it should
be expected that the optimal mode wavelength would be less than the preferred
one-dimensional linear stability wavelength because as the optimal mode traverses
the shear layer upstream of the middle, the thinner shear layer will lead to higher
amplification of shorter wavelengths. The energy amplification rate of the optimal
perturbation mode at t = 9 is approximately 1.5; this is not far below the value of 1.8
for the idealized convective mode for λx = 3H shown in figure 11.

Figure 12 shows the first four optimal growth modes for Re = 350 and τ = 24. The
mode shapes are similar, with the perturbation field concentrated near the leading edge.
The first two modes are effectively an antisymmetric and symmetric version of the
same mode, and similarly for the third and fourth modes. The growth multipliers for
these modes are 1.664, 1.654, 1.325 and 1.227× 104, respectively. Figure 13 shows the
evolved perturbation field at t = 24 for the first two modes. Again, these are effectively
antisymmetric and symmetric versions of the same mode.
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FIGURE 13. Vorticity fields corresponding to the evolution of the first two optimal modes at
Re= 350 for t = τ = 24. The downstream boundary is at x= 20H.
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FIGURE 14. Energy amplification of two-dimensional optimal modes for finite amplitude
disturbances due to nonlinear saturation. The initial mode corresponds to τ = 24, Re = 350.
The triangles correspond to a perturbation level of ∼3 % and the circles to a perturbation level
of 30 %. The results for the 0.3 % case lie on the solid line. Refer to the text for details.

3.3.1. Nonlinear saturation
Figure 14 shows the effect of saturation of a finite-amplitude optimal perturbation

as it advects downstream. This figure shows the relative energy growth of the
perturbation field extracted from a direct simulation of the steady flow seeded with the
dominant optimal perturbation mode corresponding to τ = 24 and Re = 350. Different
amplitudes of the optimal mode are used to perturb the initial steady flow. To quantify
this, the maximum local specific kinetic energy at any point in the domain for the
steady base flow is 0.774 units, and the upstream flow specific energy is 0.5 units,
since the background velocity is set to 1 unit. The optimal mode amplitude is only
significant near the leading edge of the plate as indicated in figure 6. The maximum
local specific energy of the arbitrarily scaled optimal mode used for the reference case
is 0.453 × 10−3 units, which occurs close to the leading-edge corner. Figure 14 shows
the actual growth from perturbing the initial steady flow with the optimal mode at
the reference level (triangles) and 100 times the reference level (circles). The optimal
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FIGURE 15. The effect of perturbing the flow with the optimal mode at different perturbation
amplitudes. The vorticity field at t = 15 is shown for perturbation levels of 0.3, 3 and 30 %.
The two-dimensional disturbance used to perturb the flow corresponds to the dominant
growth mode for τ = 24 and Re = 350. The downstream boundary is at x = 25H. See the
text for further details.

growth curve is shown for comparison. Thus, for the first case the maximum local
energy is at a relative level of ∼10−3, i.e. the maximum local velocity perturbation
is approximately

√
10−3 ∼ 1/30, or ∼3 %. Similarly, for the more highly perturbed

case, the maximum local perturbation is ∼30 %. Figure 15 shows the evolved vorticity
for the full flow field at t = 15 for maximum perturbation amplitudes of 0.3, 3 and
30 % of the base velocity. The lowest amplitude case effectively shows the induced
linear perturbation to the otherwise steady vorticity field caused by the linear growth
of the optimal perturbation mode as the perturbation advects downstream. The two
high-amplitude cases show the nonlinear saturation of the perturbed flow. The main
outcome of the nonlinear evolution of the optimal mode is, not surprisingly, the
development of a strong vortex roller, as typically seen in experiments at this and
higher Reynolds numbers (e.g. see the references given in figure 3). These results
also seem to be broadly consistent with the fact that experimentally it is not possible
to observe a steady flow at Reynolds numbers higher than ∼300–350 (again see the
references shown in figure 3), despite the fact that the flow is globally linearly stable
at such Reynolds numbers and indeed much higher Reynolds numbers (see further
analysis below).

3.3.2. Three-dimensional optimal growth modes
Up to this point, the optimal growth has been examined assuming that the

perturbation field is two-dimensional. Of course, it is not necessarily the case that
a two-dimensional perturbation gives the highest growth. The analysis extends to
examine three-dimensional optimal modes assuming a sinusoidal spanwise dependence.
Figure 16 shows the prediction of the energy amplification against τ for different
spanwise wavelengths at Re = 350. Clearly, a two-dimensional mode does not give
maximum growth. Further analysis using quadratic interpolation from results for
longer wavelengths indicates that for Re = 350, the maximum amplification occurs for
a spanwise wavelength of 11.7H at τ = 26. The corresponding energy amplification
factor is 0.200 × 105, which is only ∼20 % larger than the maximum for a two-
dimensional mode of 0.165× 105.

The initial perturbation field of the three-dimensional modes are very similar
to the optimal two-dimensional perturbation fields, at least in terms of spanwise
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FIGURE 16. Energy amplification of the dominant three-dimensional transient mode as a
function of non-dimensional time τ for Re= 350. The different curves correspond to different
spanwise wavelengths. Note that the λz = 10 curve overlays the λz = ∞ curve for lower
values of τ , but this part has not been drawn to reduce clutter.

FIGURE 17. Comparison of the evolved two-dimensional and three-dimensional optimal
perturbation modes for Re = 350, τ = 24 and t = 24. Top and middle images show the
spanwise perturbation vorticity field for the two-dimensional and three-dimensional cases.
The lower image shows the streamwise perturbation vorticity for the three-dimensional case.
The downstream boundary is at x= 20H.

perturbation vorticity. However, there are some differences which become visible
as the perturbation field evolves as it advects downstream. Figure 17 shows the
spanwise perturbation vorticity of the evolved fields for Re = 350, τ = 24, at t = 24
for the two-dimensional (top) and three-dimensional (middle) cases. The lower image
shows streamwise perturbation vorticity for the three-dimensional mode. For the three-
dimensional analysis, the spanwise wavelength is 10H. For the spanwise vorticity
images, the fields show similar vortical structures near the plate boundary and further
away, but in between the middle image shows that like signed vorticity is connected
together. The streamwise perturbation vorticity for the three-dimensional case shows a
set of elongated angled vorticity structures. Possible physical generation mechanisms
for similar flows have been discussed in various papers (Pauley, Moin & Reynolds
1990; Alam & Sandham 2000; Jones, Sandberg & Sandham 2008; Marquet et al.
2009; Marxen & Rist 2010). Figure 18 provides three-dimensional visualizations for
the spanwise and streamwise vortical structures for the three-dimensional case.
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(b)

(a)

FIGURE 18. Visualizations of the perturbation spanwise (a) and streamwise (b) vortical
structures for the evolved dominant optimal perturbation mode. Here Re = 350, τ = 24,
t = 24 and λz = 10H. Flow is left to right and two wavelengths are shown.

3.4. Growth from triggering by different types of disturbances
Real flows, of course, are subject to a variety of disturbances that may perturb the flow
and substantially alter the behaviour of the flow from the ideal case. Examples include
flow turbulence, acoustic perturbations and structural vibration, and flow-induced
vibration. In numerical simulations, low resolution can lead to premature triggering
of convective instabilities (Kaiktsis et al. 1991). For the geometry here, the effect of
low-level noise at the inflow is considered, such as was examined previously, e.g. by
Blackburn et al. (2008a) for the backward-facing step. Of course, it should be borne
in mind that the main emphasis of the paper is on transient growth analysis which
focuses on the evolution of discrete wavepackets while the addition of inflow noise
is a form of continuous forcing. However, it seems plausible that at any instant the
noise field could be projected onto the optimal perturbation modes to help describe its
subsequent downstream evolution.

3.4.1. Effect of upstream noise
Blackburn et al. (2008a) examined the effect of background noise at inflow on

the triggering of shedding from the separating shear layer for a backward-facing step.
For the present flow, two-dimensional simulations were performed with the vertical
inflow velocity component continuously perturbed, at each time step and at each
grid point, using Gaussian noise for a range of standard deviations to determine the
level required for sustained shedding. The actual root-mean-square (r.m.s.) noise level
was then measured near the front of the plate. This was done for various Reynolds
numbers and noise levels. Figure 19 shows the effect on the flow in the vicinity of the
separation zone for different perturbation levels for Re= 350. At a r.m.s. noise level of
0.1 %, there is only a minor influence on the downstream flow although the effect of
perturbing the flow is still quite noticeable. Increasing the r.m.s. noise level to 0.5 %
results in shedding of vortices from the separation bubble. The effect is stronger as the
noise level is increased to 1 %. Interestingly, as discussed previously, for experiments
Re = 350 appears to be just past the upper limit of steady flow. These results are
consistent with that observation. For instance, noise levels in water tunnels can be up
to 1 % or more (Sasaki & Kiya 1991), and these results indicate that noise is amplified
sufficiently at such an upstream noise level to sustain strong shedding of vortices from
the shear layer.
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FIGURE 19. Typical vorticity patterns produced from different levels of upstream
fluctuations for Re = 350. Top to bottom correspond to r.m.s. perturbation amplitudes of
0.1, 0.5, 1.0 and 2.0 %, respectively. The greyscale map and overlaid contours show spanwise
vorticity. The downstream boundary is at x= 20H.
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FIGURE 20. (a) Time series of the vertical velocity component well downstream of
reattachment (x, y) = (20.91, 1.32) showing velocity fluctuations as the shed vortices pass.
(b) Power spectrum of the velocity component. This case corresponds to Re= 350 using a 1 %
r.m.s. velocity perturbation.

Figure 20 shows a time sequence of the vertical velocity component well
downstream of the separation bubble (20.9H, 1.32H) together with the power spectrum
of the signal. This is for Re = 350 at a 1 % noise level. The time signal shows
considerable randomness but with a dominant frequency component shown in
the power spectrum. The dominant peak corresponds to a frequency 0.125. This
corresponds quite closely to the reciprocal of the time for the optimal perturbation
mode wavepacket shown in figure 10 to advect forward through a single wavelength,
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FIGURE 21. Typical vorticity patterns for a fixed perturbation amplitude of 0.1 % as the
Reynolds number is varied. Top to bottom correspond to Re= 350, 400 and 450, respectively.
The greyscale map and overlaid contours show spanwise vorticity. The downstream boundary
is at x= 20H.

approximately eight time units, also giving f = 1/8 = 0.125. A similar match up was
also found for the flow over a backward-facing step by Blackburn et al. (2008a).

Figure 21 shows the effect of changing the Reynolds number for fixed low-level
inflow noise. For this case the r.m.s. noise was 0.1 %. Increasing the Reynolds
number from Re = 350 to 400 and 450 shows that while there is minor downstream
unsteadiness at Re = 350, for Re = 450 this very low level of upstream noise is
sufficient to produce strong shedding. This is consistent with the optimal perturbation
result of a 2.5 order-of-magnitude increase in energy amplification for each Reynolds
number increment of 100.

4. Conclusions
A number of different experiments examining the flow over a blunt leading-edge

long flat plate indicate that the separation bubble begins to shed vortices for Reynolds
numbers in the range 260 < Re < 330. The stability analysis presented here indicates
that three-dimensional transition to steady flow only occurs at a higher Reynolds
number closer to 400 and that the two-dimensional steady flow is global temporally
stable up to a Reynolds number of approximately 500. Thus, it appears that the
massive amplification of perturbations due to the non-normality of global instability
modes may lead to effective early transition to unsteady three-dimensional flow.
Of course, in the experiments quasi-periodic forcing may also contribute to the
development of shedding of vortices, e.g. blade-passing perturbations from the pump
or fan driving the flow, or the trailing-edge vortex feedback instability from vortex
passing the trailing edge of the plate perturbing the upstream shear layer through
a pressure pulse, or duct resonance (e.g. see Hourigan et al. 2001). However, even
in these cases, the mechanism relies on the receptivity of the shear layer and the
amplification of perturbations as they convect downstream. This is at least partially
quantified through optimal perturbation mode analysis.

This paper quantifies the energy growth of optimal perturbation modes for this
flow problem. At Re = 350, the energy amplification of the dominant optimal mode
is greater than 104, and it increases by 2.5 decades for each 100 unit increase in
Reynolds number. The optimal perturbation field is localized in the vicinity of the
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leading-edge corners. This means that the projection of structured flow perturbations
onto the optimal field can be significant. It is also shown that random noise at inflow
can cause sustained vortex shedding from the recirculation bubble for a r.m.s. noise
level of 0.5 % or more, with some unsteadiness detectable even with a 0.1 % noise
level. Interestingly this ties in well with previous experiments where it has been
observed that the recirculation bubble becomes unsteady in the range 260 < Re < 330.
Often r.m.s. turbulence levels in water tunnels can be up to 1 % or higher at the low
Reynolds numbers relevant to this paper. For example, for the tunnel used by Sasaki &
Kiya (1991) for their studies of the flow over a flat plate, the longitudinal turbulence
level was 2 % at the lowest possible speed dropping to 0.5 % at the higher speeds.
Mills et al. (2003) quote 0.1 % and Lang, Rist & Wagner (2004) give a level of
0.05 %. Thus, even with a well-designed facility and very careful experimentation, it
may not be possible to maintain steady separating and reattaching flow at Reynolds
numbers in the vicinity of 350, even though the flow is globally linearly stable until
much higher Reynolds numbers.

The paper also examines the relationship of the evolved optimal perturbation
modes to linear convective instability modes associated with the velocity profile at
mid bubble. An interpretation is that the initial optimal perturbation distribution is
determined so that it rapidly evolves towards the convective instability mode of the
bubble as the perturbation is convected downstream. In this form it is amplified rapidly
as it convects further downstream along the shear layer; indeed the transient growth
rate is reasonably close to the value given from one-dimensional convective instability
theory.

Of some interest, as noted in the introduction, Ehrenstein & Gallaire (2008) found
that the flapping instability for the flow over a bump could be correlated with a
set of temporal instability modes becoming unstable over a small Reynolds number
range. The frequencies of the modes were separated by a constant increment, so that
a combination of the modes will lead to beating. Both the dominant mode frequency
and the constant frequency difference between the modes seemed to be well correlated
with the observed shedding and beating frequencies from DNS. Cherubini et al. (2010)
found similar behaviour for the flow separation induced by suction and blowing. For
the current case, well-resolved direct simulations indicate that the two-dimensional
steady flow remains stable up to Reynolds number of approximately 500. However,
the investigation of the effect of noise at inflow indicates that at Re = 350 even a
0.1 % r.m.s. noise level is sufficient to trigger some unsteadiness of the separation
bubble, due to substantial amplification of optimal modes. The optimal perturbation
mode analysis shows that increasing the Reynolds number to the onset of global
transition at 500, will increase the sensitivity to noise by a factor

√
(102.5)

150/100 ' 75,
i.e. almost two orders of magnitude. Thus, to experimentally investigate this global
transition would require a r.m.s. noise level of approximately 0.001 % or better, which
is seemingly beyond expectations for water tunnels. From a different point of view, it
suggests that experimentally at least, individual global temporal modes are not going
to directly contribute to transition to unsteady flow, although they will contribute
indirectly through contributing to optimal growth modes due to non-normality.
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