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ABSTRACT

The three-dimensional wake structure behind a circular cylinder has been computed using a
high-order spectral-element technique. The two modes of three-dimensional instability, des-
ignated as Modes A and B, both found experimentally but not previously computationally,
have been captured. Mode A appears first at a Reynolds number slightly less than 200.
As the Reynolds number is increased there is a transfer of energy to Mode B which has a
wavelength approximately one quarter of that of Mode A.

INTRODUCTION

Despite the fact that the flow past a circular cylinder has been studied for well over one
hundred years, and that the geometrical configuration is a particularly simple one, this
problem is still under intensive investigation today. Indeed within the last ten years, due to
the efforts of many research groups (Williamson 1988b 1991a 1991b, Hamache and Gharib
1989, Norberg 1994, Eisenlohr and Eckelmann 1989), the experimental relationship between
Strouhal and Reynolds number has been now determined to within one percent, at least
within the two-dimensional shedding regime. The previous discrepancies between different
experimental teams seem to have stemmed from various factors including small aspect ratio
cylinders, end effects and oblique modes. The new “universal” results represent a challenge
for computationalists who in the past have relied on the variation in the experimental results
to justify their predictions.

At a Reynolds number of approximately 180, the two-dimensional periodic Strouhal vor-
tex wake undergoes a transition to three-dimensionality. This was observed by (Roshko
1954, 1955) in the form of irregularities in the wake velocity fluctuations. Recent experi-
ments undertaken by Williamson (1988b) have demonstrated that the transition to three-
dimensionality involves two modes of formation of streamwise vorticity in the near wake.
The two modes are dominant over different Reynolds number ranges.

When the wake first becomes three-dimensional, at Re =~ 180 (Re = usD/v, where v is
the kinematic viscosity, D is the cylinder diameter and wu, is the freestream velocity), Mode
A vortex shedding appears. This is characterised by regular streamwise vortices appearing in
the wake, with a spanwise wavelength of approximately 3 cylinder diameters. At Re = 230,
a second mode (Mode B) appears, consisting of a more irregular array of streamwise vortices
with a mean spanwise wavelength of about 1 cylinder diameter. Between Re = 230 and



Re = 260, there is a steady transfer of energy from Mode A to Mode B. At each of these
transitions, a discontinuity in the Strouhal number versus Reynolds number curve occurs.
The appearance of Mode A is hysteretic, while that of Mode B is not.

Until recently there have been few numerical studies published on the three-dimensional
wakes due to the significant computational resources required to properly resolve the flow
structures. One investigation undertaken by Karniadakis and Triantafyllou (1992) concen-
trated on the stability of the wake of a circular cylinder over a Reynolds number range up
to 500, rather than a detailed study of the different modes that appear. The emphasis was
on examining the route to fully turbulent flow followed by this (and similar) flows. Compu-
tational restrictions led them to use a fairly coarse mesh with a spanwise domain size that
was too short to capture Mode A. They suggest that the route to wake turbulence is via
period-doubling.

In this paper, some preliminary results from numerical experiments examining both two-
and three-dimensional flows are presented. The results of the simulations are compared with
experimental results.

PROBLEM FORMULATION AND NUMERICAL METHODS

The governing equations are the incompressible time-dependent Navier-Stokes equations in
primitive variable form. The equations are discretised using a time-split spectral/spectral-
element method as described by Karniadakis and Triantafyllou (1992) and Tomboulides et
al. (1992) and references cited therein. Consequently only a brief overview will be presented
here.

Time-Stepping Scheme

The momentum equations are integrated forward in time by a three-step procedure. The
steps account for the convection, pressure and diffusion terms respectively. The equation
treating the convection term is treated explicitly because of its nonlinear nature. The equa-
tions for the diffusion and the pressure are treated implicitly. If memory is available the
matrices involved can be inverted in a preprocessing step. Otherwise, efficient iterative
techniques for symmetric problems can be used (i.e., conjugate gradient methods). For the
calculations described in this paper only direct solvers were used.

The convection equation is integrated forward in time by the third-order Adams-Bashforth
method and the diffusion equation is treated by the Crank-Nicholson scheme. In the second
step, the pressure is evaluated. A Poisson equation is formed by taking the divergence of
the equation for the pressure substep and continuity is enforced at the end of the substep.
Second-order overall time accuracy is achieved by using a higher-order pressure boundary
condition as described in Karniadakis et al. (1991).

Spatial Discretisation

The spectral-element technique (Karniadakis and Triantafyllou 1992) is employed for the
two-dimensional (streamwise) flow (i.e., the z-y planes). A typical (two-dimensional) spectral-
element mesh is shown in Fig. 1. It consists of a K = 60 macro elements. Each element is
mapped into a computational square and high-order Lagrangian polynomial interpolants are
used to approximate the solution variables in each direction. The Galerkin finite-element
method is applied to form equations for the solution variables at the nodal points. The in-
tegrals of the flow equations multiplied by the local weighting functions are (approximately)
evaluated by Gauss-Legendre-Lobatto quadrature. This approach is particularly economical




computationally in that only a limited number of element nodes contribute to the equations
formed at a particular node. For example, the “Mass” matrix is diagonal in this case; this
would not occur if Gauss-Legendre quadrature was used, for example. Further economy
is gained by using static-condensation techniques. This method relies on the fact that the
equations for the internal nodes of each element only depend on the boundary nodes, and
hence the matrix equations can be decoupled into two sets; one involving the element bound-
ary nodes, and K ,small matrix equations for the internal nodes of each element. The latter
K equations can be evaluated after the first (larger) matrix equation is solved. Bandwidth
minimisation scheme can reduce the bandwidth (and hopefully overall size) of the matrices
and sparse matrix solvers are used to solve the large systems of equations involved. Due
to the form of the splitting scheme the matrix inversions only need to be performed at the
beginning of the calculations.

A Fourier spectral discretisation is employed in the spanwise direction. This has signifi-
cant computational benefits. The equations for each Fourier mode decouple, leading to small
matrix equations for each mode rather than a large coupled matrix equation with a large
bandwidth that would be much more computationally expensive. An efficient implementa-
tion can be achieved on parallel architecture machines due (in part) to this decoupling. For
the work described here, though, the computations were performed in double precision on a
serial Silicon Graphics workstation rated at about 12 Megaflops with 12 Megawords of main
memory.

TWO-DIMENSIONAL STUDIES

As mentioned previously, experimental studies indicate the wake becomes three-dimensional
at a Reynolds number around 180. Two-dimensional simulations below this Reynolds number
should adequately reproduce the results of experimental measurements which are believed
to be within 1% for the Strouhal number (Williamson 1991a). At higher Reynolds numbers,
two-dimensional computations can provide a comparison for three-dimensional computations
and experiments.

Strouhal Number

In previous computational studies, an often-quoted test of accuracy for cylinder flow com-
putations has been the variation of Strouhal number with Reynolds number. Williamson
(1991a) has given a least-squares fit to the universal Strouhal number curve for the low
Reynolds number regime as '

A
St=—+ B+ C Re, (1)
Re

where A = —3.3265, B = 0.1816 and C = 0.00016.

The three-dimensional computations require a considerable amount of CPU time and
memory and hence for this preliminary study at least, the three-dimensional runs were done
on a small mesh. The aim of this section is to verify that the computational scheme can
reproduce two-dimensional experimental results to within experimental error and to establish
the effect of using a domain smaller than desirable.

Karniadakis and Triantafyllou (1992) found in their numerical experiments that, over a
limited number of tests, the Strouhal number (a) increased with decreasing inflow length,
(b) was insensitive to the outflow length (between 36 and 70 cylinder radii), (c) increased
with decreasing domain width. They also confirmed that the level of resolution that they
used was sufficient by showing that increasing the resolution per element did not affect the
Strouhal number. '



Table 1: Dependence of Strouhal number on polynomial order for small mesh at
Re = 200 for a constant timestep of 0.01. (Two-dimensional simulation)

Element size (N x N) Strouhal Number

X d 0.2036
Tx7 0.2101
9x9 0.2107
11 x 11 0.2107
13 x 13 0.2108

The domain is described by three main parameters: the number of elements (X'), and in-
flow length and domain width (X;) and the outflow length (X,). In addition, the distribution
of elements within the domain also will strongly influence the overall accuracy of the results.
The mesh used for the three-dimensional calculations is shown in Fig. 1. This has X; = 7R
and X, = 24.5R. Some larger meshes were used to try to reproduce the two-dimensional
results as accurately as possible. They used this mesh as a basis together with either or both
of (a) an expandable layer of elements to extend the inflow length and domain width and
(b) elements extending the outflow length.

Figure 1: Left: Two-dimensional view of three-dimensional mesh system showing
the spectral element discretisation. This mesh has K = 60 elements.

The effect of the number of nodes per element in each direction (N) is shown in Table
(1). (Note that the order is the interpolating polynomial is N — 1.) For a calculation at
Re = 200 on the mesh shown in Fig. 1 the Strouhal number has converged to better than
0.1% by N =9. '

The Strouhal number is sensitive to the size of the domain. An accurate determination
(to within the error in the experimental values) requires the outer boundary to be placed
approximately 50R from the cylinder. The inflow and outer boundary conditions will obvi-
ously affect this conclusion. For the present computations, the inflow and outer boundary
conditions are taken from the potential flow solution. Also, the outflow boundary conditions




are taken to be dv/dn = 0 and p = 0. For all these runs the shedding becomes truly periodic
at the Strouhal frequency with no other identifiable frequency components.

Figure 2 shows computations of the St—Re relationship for two different mesh systems:
the mesh shown in Fig. 1 (round symbols) and a mesh corresponding a larger domain (X; =
50D, K = 106, X, = 42.5R) (square symbols). Each mesh has 9 x 9 nodes per element. The
curve of best fit to the experimental data, given by equation (1), is shown for comparison.
The results for the large domain are within 1% of the experimental values for the two-
dimensional shedding range. For the smaller mesh, the results are within about 7%. It
is believed that the restricted domain should not alter the essential physics underlying the
development and interaction of the three-dimensional structures although it might influence
variables such as the Reynolds number at which three-dimensionality first occurs.
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Figure 2: Variation of Strouhal number with Reynolds number. The square sym-
bols indicate results for large domain (106 9 X 9 elements, X; = 50D, X, = 42.5R)
and the rounded symbols are for the small mesh used for the 3D calculations
(60 9 x 9) elements. The solid curve shows the experimental result (Williamson
1991a).

Other Tests

Although spectral-element/spectral methods possess the property of exponential convergence
(i.e., converging faster than any power of the number of nodes), in practice, this asymptotic
convergence rate may have little relevance. Unless the number of nodes per element is large
enough so that flow features can be resolved by the functional representation, these methods
can be worse than using much lower-order methods. A recent case in point is Kaiktsis et
al. (1993). This paper presents results for flow past a backward-facing step and predicts
unsteady behaviour at Re =-800. This prediction appears to be a result of inadequate
resolution. Most other computations using different methods indicate the flow is steady and
importantly calculations using a very similar spectral-element code with more nodes per
element also indicate a steady flow (Gresho et al 1993).

The Strouhal number may not be a very sensitive indicator that a particular mesh system
has sufficient resolution to adequately resolve the flow field. It may, for instance, depend
more on the grid resolution in-the neighbourhood of the cylinder and not the downstream



resolution. An alternative test is to look at the variation of the velocity field at a point some
distance downstream of the cylinder. Figure 3 shows the dependence of the extremes of the
u component of the velocity against the element order /N. These values are taken at a point
7R downstream of the cylinder at Re = 200. Clearly, the curves are beginning to flatten out
at N =9. '
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Figure 3: Dependence of the extremes of u(7,0) on polynomial order N for mesh
A at Re = 200.

THREE-DIMENSIONAL SIMULATIONS

Numerical simulations of the onset of three-dimensionality have been reported previously
by Karniadakis and Triantafyllou (1992) and Tomboulides et al. (1992). In their studies,
emphasis was placed on the stability analysis and transition to turbulence. In the current
study, the focus is on the appearance of the two three-dimensional instability modes, A and
B, and the transfer of energy between the two modes as the Reynolds number is increased.
The topology of the three-dimensional structures is also examined.

Simulation at Re = 250

To investigate the development of the three-dimensional instability a computation was
- performed at Re = 250, with 24 Fourier modes and a spanwise periodicity length of wD.
This domain width was chosen from the observations of Williamson (1988b) who observed
the spanwise wavelength for Mode A to be approximately 3D. The computation was started
from the periodic field taken from a two-dimensional simulation. The initially zero w velocity
component was perturbed by a random amount at each point (at a level of 10™*) to accelerate
development of the three-dimensionality. After six Strouhal shedding cycles plots of isosur-
faces of the streamwise vorticity clearly show the appearance of coherent three-dimensional
structures with a spanwise wavelength of 7. The magnitude of the streamwise vorticity is
very low at this time. The maximum value over the field is about 0.02. After fifteen cycles,
the structures are much stronger still with a wavelength of 3D. At 25 cycles, the structures
have almost reached maximum strength (max(ws = /w2 4 w2) ~ 3). There also appears to
be some finer scale structure developing at this time.




Figure 4: Isosurfaces of pressure (p = —0.3) and streamwise vorticity (e = 2£0.3)
at Re = 250. The pressure isosurfaces indicate the positions of the Strouhal
vortices. The circular cylinder is also shown. Left: Structures after 25 Strouhal
periods showing predominantly Mode A shedding. Right: After 40 cycles the
spanwise wavelength is much shorter corresponding to Mode B shedding. The
cylinder width depicted is 2wD. (The computational domain width for these
calculations was wD).

Figure 4 (left) is an isosurface plot visualising the three-dimensional structures in the
wake. The figure shows pressure isosurfaces for p = —0.3 and streamwise vorticity contours
for w, = +0.3. The pressure isosurfaces are shown to highlight the predominately two-
dimensional Strouhal vortices. The streamwise vorticity isosurfaces are strongly developed at
this time (¢ = 25 Strouhal cycles). They connect between the Strouhal vortices. The cylinder
section shown is twice the actual computational domain width. The spanwise wavelength is
7D which is consistent with the experimentally observed wavelength for Mode A shedding.

After about 40 Strouhal periods from initiation of the three-dimensional disturbance, the
three-dimensional structures change in character. Figure 4 (right) shows the iso-surfaces at
that time. The spanwise wavelength has been reduced to 7/4 ~ 0.8 diameters. This is more
typical of the Mode B shedding observed experimentally.

The simulation was continued for approximately 100 Strouhal cycles and did not show
any sign of reaching a steady periodic state. The u and w velocity traces at (1.88,-0.69) are
shown in Fig. 5 (The Strouhal period is approximately 10.) There is no obvious indication
of period-doubling as was found by Karniadakis and Triantafyllou (1992) and Tomboulides
et al. (1992) who used a domain width of only half of that used for the present simulations
and therefore could not resolve Mode A. Computations using the smaller spanwise domain
(7D /2) do indicate period-doubling at this Reynolds numbers in line with the results from
these papers. It is not clear whether the period-doubling exists when the two modes are
present together. Indeed, to some extent, at this Reynolds number it appears that the
three-dimensional structures seem to alternate between the two different modes. This is
consistent with the experimental findings for the transition region between the two shedding
modes. In this Reynolds number range, (230 < Re < 260), experimental results show two
peaks in the frequency spectrum presumably corresponding to the coexistence of the two
modes (Williamson 1991a).

Simulation at Other Reynolds Numbers

A computation at Re = 200 was carried out starting from a fully-developed three-dimensional
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Figure 5: Time evolution of the u (left) and w (right) velocity components at
(1.88,-0.69) at Re — 250.

velocity field from the simulation at Re = 250. After a transition period, the velocity field
settles down to periodic state corresponding to Mode A shedding. A simulation at Re = 210
gives a similar result but in this case the streamwise vortex structures are stronger.

Effect of Domain Width

In order to test the preferred spanwise wavelength of Mode A, a computation was performed
with a domain width of 27D and 48 Fourier modes at Re = 250. As before, a perturbed
two-dimensional velocity field was used to begin the simulation. The results were similar to
those found with the narrower domain with the Mode A wavelength again equal to 7D.

CONCLUSIONS

Three-dimensional simulations of the flow past an infinite, two-dimensional circular cylinder
show features similar to those found experimentally. In particular, the computations predict
the two shedding modes which occur for different Reynolds number ranges and give spanwise
wavelengths consistent with the experimental values. There are indications that the two
modes can coexist for intermediate Reynolds numbers (i.e., Re = 250) which is also consistent
with experiments.

Computations are currently underway using larger and more refined meshes to try to
understand the transition process more fully.
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