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PREDICTION OF VORTEX JUNCTION FLOW UPSTREAM OF A SURFACE MOUNTED OBSTACLE
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ABSTRACT

The structure of the flow near the junction of a surface-
mounted obstacle and channel wall is calculated using a three-
dimensional multigrid solver for the incompressible Navier-
Stokes cquations. In particular, the change in flow topology as
a function of Reynolds number is investigated.

INTRODUCTION

The flow structure in the vicinity of a cylinder-end wall junc-
tion has been investigated experimentally by several authors.
Investigation of both laminar and turbulent flows indicates that
the structure of upstream flow scparation and of the necklace or
horseshoce vortex systems is qualitatively similar in both cases.
However, the details of the flow behaviour, such as the num-
ber of necklace vortices and whether the system is steady, do
depend on cylinder geometry and flow conditions. Such flows
arc of interest for applications such as bridge picr scour.

Gregory and Walker (1951) used smoke to visualise the
"horseshoe" vortex system that wraps around the cylinder base.
They noted that the strength of the vortex system depends on
the Reynolds number and the ratio of cylinder height to bound-
ary layer thickness when this ratio is approximately unity or
smaller. Sedney and Kitchens (1975) observed similar behav-
ior. Figure 1 shows schematic representations of the observed
behaviour of two configurations obscrved during their study.

Baker (1979) used smoke to visualise the laminar flow
around a cylinder mounted normally to a flat plate. Both
stcady and unstcady vortex systems were observed.  Three
different behaviours were identified: (1) steady horseshoe vor-
tex systems with 1,2 or 3 vortices together with the induced
counter-rotating vortices attached to the wall between cach
pair of primary vortices; (2) horseshoe vortex systems which
exhibit regular oscillatory motion; and (3) horseshoc vortex
systems which exhibit irregular unsteady motion.

Devenport and Simpson (1987) cxamined the turbulent
flow in a boundary layer around the nosc of a wing-body
junction using surface visualisation and a 3 component lascr-
doppler system. They found that the there were two distinct
regions of flow divided by a line of low strcamwisc shear:
the upstream region characterised by weak backflow, and the
downstream region by intense recirculation. The authors sug-
gested that this is consistent with instantancous large-scale fluc-
tuations in size and position of the junction vortex.

Greeo (1990) used hydrogen bubble flow visualisation and
hot-film probes to attempt to parameterise the different possible

“ behaviours as a function of cylinder geometry and flow condi-

111

i
—
B .
e e
/, “_—{__’__—
- —
it e M | NN
— N\
= NN

5 *_" —:.’:";::::—\. S
————570)
| @A

AN :
T G 2y Nf A GRS S ]

®)

TSP

Figure 1: Side-view schematic of streamline pattern in the
symmetry plane for flow past a small surface mounted ob-
stable: (a) six-vortex configuration; (b) four vortex configura-
tion. (From Sedney and Kitchens, (1975))

tions. Five distinct laminar tlow regimes were found to exist
depending on a complicated relationship between free-stream
velocity, cylinder diameter, viscosity and streamwise location.

Recently, Deng and Piquet used an 80x45x45 grid to com-
pute the horseshoe vortex structure for a turbulent flow past
a wing-body junction. Comparison of calculated skin friction
patterns with experimental oil flow visualisations show that the
position of the upstream saddle point is well predicted as well
as the location of the dividing line separating horseshoce vortex
leg tlow from the exterior flow. However, the boundary layer
thickness is overpredicted, and the streamwise vortices under-
predicted most probably duc to inadequate resolution away
from the acrofoil.

In this paper, the laminar flow past a surface mounted cube
in a channel is computed for a range of Reynolds numbers. The
mesh is concentrated immediately upstream of the obstacle to
achicve the greatest resolution of the vortex (or vortices) near
the cube-wall junction.

COMPUTATIONAL METHOD

The incompressible Navier-Stokes equitions are discretised us-
ing the finite-volume approach. The power-law approximation
is used for the convection and diffusion terms (Patankar, 1974)



which uses an approximation to the exponential solution for
a onc dimensional convection diffusion equation. It behaves
like the hybrid scheme except that the transistion from central
to upwind differencing is smooth. For some lower Reynolds
number runs second-order accuracy is obtained by using the
defect correction approach. Unfortunately, the central differ-
ence defect correction could not be used for higher Reynolds
numbers because the convergence rate of the multigrid itera-
tion scheme is affected adversely unless very fine meshes are
uscd (Thompson and Ferziger, 1989). Details of the particular
implementation of the multigrid method to the incompressible
Navier-Stokes equations also can be found in that article.

The domain consists of a section of square cross-section
channcl of height 2 and length 15. A cube of linear dimension
0.5 is placed on the floor of the channel one third of the way
along. The inlet and outlet flow is parabolicin both y and z. The
flow is assumed to be symmetric in z about the centreplane of
the cube so the flow is only computed in one half of the channel.
Half of the mesh points in cach direction lie in the uniformly
spaced submesh (-1 s x < 1,0 sy < 0.50 s z s 0.5). The
(half)-cube lies between (0 < x < 0.50 = y = 0.5 and 0 =
z = 0.25) inside this submesh. The mesh points are distributed
to give good resolution immediately upstream and around the
cube. Mesh sizes up to 128 x 128 x 64 are used for most of
the calculations with 257 x 129 x 65 used for the computations
at Reynolds number 1250. The Reynolds number Re = UD/v
is defined in terms of the cube width (D) and the maximum
inflow velocity (U).

Computational Accuracy

Calculations were performed for Reynolds numbers up to 1250
in steps of 125 and below 125 in steps of 12.5. Figure 2 shows
plots of the horizontal velocity along a vertical line 0.6 body
widths in front of the obstacle on the centreplane for Re = 1250.
The line passes approximately through the centre of the primary
vortex. Different mesh sizes are compared. There is only a
slight difference between the profiles for the finest meshes. At
this Reynolds numbcr, the computed velocity field is probably
accurate to within a few percent upstream and at the sides of the
obstacle. At lower Reynolds numbers the accuracy is better.
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Figure 2: Velocity profiles at x = 0.60 upstream of the cylin-
der for Re = 1250.

RESULTS

Flow Regimes

The topology of the velocity field is a sensitive function of
Reynolds number. Figure 3a shows the particle paths on the
centreplane upstream of the body for Re = 100. In this case
there is no upstream vortex. This presumably is because vor-
ticity convected from upstream can be cross-annihiliated by
opposite-signed vorticity which is generated by the adverse
pressure gradient at the channel floor and then diffuses through
the boundary layer. The upstream streamlines converge to-
wards a stable bifurcation line which attaches to the channel
floor.
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Figurc 3: ‘Top to bottom: Streamline pattern on the upstream
centreplane for Re = 100, 112.5, 250 and 1250, respectively.
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At a slightly higher Reynolds number the flow topology
changes character.  Figure 3b shows the streamline pattern
at Re = 112.5; here a stable focus is starting to form. This
structure represents the beginnings of a horseshoe vortex. The
focus is not the only change to the topology; an associated sad-
dle point has also formed. This is the point at which incoming
flow cither moves up towards the focus or down towards the
reattachment point on the channcl floor.

At Re = 250, (figurc 3c), the focus is much stronger but the
basic flow topology remains the same. An interesting feature,
as pointed out recently by Hung ct al.  (1992), is that the
commonly cnvisaged flow topology, (c.g., figurc 1), is incorrect
in an important detail. The furthest upstream singular point on
the floor of the channel is, in fact, a point of attachment and not
a point of flow scparation. This appears to have been originally



noticed by Visbal (1991) who performed numerical simulations
of laminar flows over cylinders. This property occurs for all
Reynolds numbers considered in this paper. From the smoke
flow visualisations (e.g., Thwaites (1960), Baker (1979)), it is
not obvious whether the point is an attachment or separation
point. However, close examination of the smoke visualisations
indicates that the patterns are consistent with flow attachment
there. The misinterpretation has probably occurred and been
sustained by the belief that flow separation is what one would
cxpect intuitively. The property is difficult to deduce from the
flow visualisations alone as evidenced by the large number of
authors who have misinterpreted the smoke visualisations and
the surface oil patterns.

Between Re = 625 and Re = 750, a secondary horseshoe
vortex begins to form together with an opposite-signed vortex
situated near the floor of the channel between the primary and
secondary horseshoes. The formation of the secondary focus
is accompanicd by the development of another saddle point.
The general topology is depicted in figure 3d which shows the
strcamline pattern for Re = 1250. The pattern is very similar
to that depicted in figure 1b except for the extra saddle point
between the secondary horseshoe and the furthest upstream
tloor attachment point (S of figure 1). Again this is a point of
attachment and not separation.

Flow Around the Cylinder and Downstream

Figurc 4 shows the flow patterns in planes passing through the
vertical centreline of the obstacle. The streamlines are calcu-
lated by sctting the component of velocity normal to the plance
to zcro. From top to bottom, the diagrams show the flow pat-
terns in the channel centreplane, and at 30, 60 and 90 degrees to
the centreplane for Re = 1250. The legs of the primary horsc-
shoe vortex are clearly visible in the last figure and indeed
much further downstream. At this Reynolds number the much
weaker secondary clockwise horseshoe vortex is absorbed into
the primary as the flow is convected downstream and the anti-
clockwise vortex between the primary and secondary has been
pushed away from the obstacle but stays close to the channcl
floor. At higher Reynolds numbers the secondary clockwise
vortex is much stronger and the flow visualisations indicate
that the legs of the horseshoe maintain their identity further
downstream (Greco, 1990).

Flow Parameters

Figure 5 shows the movement of the primary vortex as the
Reynolds number is increased. The vortex moves outwards
from the obstacle very slowly as the Reynolds number is in-
creased. The results arce broadly consistent with the experimen-
tal results of Baker (1979, figure 12).

Figure 6 shows the variation of the distance from the front
of the cube (x,) to the upstream attachment point as a function of
Reynolds number. The dependence seems to be approximately
lincar until the appearance of secondary vortices. At higher
Reynolds numbers the dependence is weaker.

DISCUSSION

At very low Reynolds numbers, there is no focus in the sep-
aration planc. As it nears the "cylinder”, the flow is pushed
downwards and back upstream towards a bifurcation linc which
attaches to the floor of the channei. At a critical Reynolds num-
“ ber, a little above 100 in this case, the flow topology changes
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Figurc 4: Flow patterns in vertical planes passing through
the cube vertical centreline. Top to bottom: 0, 30, 60 and
90 degrees, respectively, measured from the symmetry plane.
Re =1250.

character. The biturcation line splits, with some incoming fluid
forced into a focus, (the beginnings of the primary horseshoe
vortex), and the rest moving downwards towards the attach-
ment point. This topology prevails until, at a Reynolds number
of approximatcly 600, the bifurcation linc again splits forming
a further focus and saddle point. At approximately the same
Reynolds number, a counter-rotating vortex forms between the
primary and sccondary horseshoe vortices.

The dynamics of the situation can be described as follows.
Boundary layer vorticity is convected continuously towards the
cylinder from upstream at an approximate rate ;UZ, where U
is the velocity at the top of the boundary laycer (c.g., Morton
and Evans-Lopez (1986)). Clearly this vorticity cannot collect
at the front of the cylinder without bound. According to the
vorticity equation

= +v-Vw=w-Vv+vW,

it can be convected, and stretched and reoriented, into the legs
of the horseshoe vortex/vortices and it can diffusce and cross-
annihilate with opposite-signed vorticity generated (by pressure
gradicents) at boundaries. The stretching and convection terms
do not limit the growth of vorticity. If the flow were inviscid,
then Kelvin’s theorem would apply and vortex lines travelling
from upstream then must wrap around the obstacle to form the
horseshoe vortex. Cross-diffusion of opposite-signed vorticity
is nceded to limit the growth of the horseshoe vortex.
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Figure 5: Movement of the primary vortex as a function of
Reynolds number.
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Figure 6: Movement of the upstream attachment point as a
function of Reynolds number. '

Morton and Evans-Lopez (1986) show that there is gener-
ation of opposite-signed vorticity duc to pressure gradicnts at
the channel floor at the same rate as it is convected from up-
stream. At low Reynolds numbers, diffusion from the channel
floor is sufficiently rapid to prevent a focus from forming. As
the Reynolds number is increased, this is no longer true and
the primary vortex begins to form. This process is self-limiting
in that the stronger the primary vortex, the stronger the ad-
verse pressure gradient set up bencath it, and the greater the
diffusive flux which cross-annihilates the clockwisc vorticity.
Eventually a Reynolds number is reached at which ditffusion
can no longer transport the anticlockwise vorticity fast enough
through the boundary layer. At this point convection begins to
take over. The anticlockwise vorticity gencrated bencath the
primary vortex begins to conveet upstream and rolls up into
the anticlockwise focus that forms between the primary and
sccondary clockwise horseshoc vortices.

Figure 7 shows the change in vorticity at the centre of
the primary vortex as a function of Reynolds number, At
low Reynolds number the strength of the vorticity increases
‘rapidly as vorticity transport and subscquent cross-annihilation

114

is mainly due to diffusion. At higher Reynolds numbers, when
the secondary foci begin to form, the wall vorticity is convected
away from the boundaries into the boundary layer, enhancing
mixing and decreasing the rate of increase of primary core
vorticity.
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Figure 7: Vorticity at the centre of the primary foci as
function of Reynolds number.
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