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An automatic adaptive refinement technique has been coupled to the multigrid approach to 
produce an efficient and stable solution strategy for solving the steady-state incompressible 
Navier-Stokes equations. Solutions have been obtained for the driven cavity and flow over a 
backward-facing step, for Reynolds numbers up to 5000 and 800, respectively. The refinement 
criterion is based on the local truncation error. The solution error is monitored and automatic 
refinement can continue until it is reduced to a satisfactory level. For driven cavity flow at 
Re = 1000, the adaptive refinement approach reduced the computer memory and CPU time 
to 20 and 40% of the requirements of the “pure” multigrid method. The primitive-variable 
formulation of the Navier-Stokes equations is used so the method can be extended easily to 
three dimensions. Application to other nonlinear elliptic problems is equally possible. 6 1989 

Academic Press, Inc. 

1. INTRODUCTION 

In the last few years considerable progress has been made in the development of 
numerical methods for solving the steady-state incompressible Navier-Stokes equa- 
tions. This has resulted in techniques which are both more stable and more efficient 
in that less computer time and/or memory are required to obtain a solution. 
Among the most successful approaches is the multigrid method which uses a 
sequence of coarser grids to accelerate the convergence. Notable contributions using 
the multigrid approach include articles by Ghia et al. [l], Fuchs and Zhao [2], 
and Vanka [3-51. Other authors have employed various adaptive gridding techni- 
ques. These methods attempt to distribute the gridpoints so that the truncation 
error of the discretized differential equations is small everywhere. This paper 
describes a method which combines the multigrid method with automatic adaptive 
gridding to provide the basis of a stable and very efficient solution strategy. 
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Ghia et al. [l] used the vorticity-streamfunction formulation of the Navier- 
Stokes (NS) equations and employed the strongly coupled implicit technique of 
Rubin and Khosla [6] as their smoothing operator. Very good convergence rates 
were achieved. For driven cavity flow, converged solutions were obtained in 
approximately 20 to 100 equivalent fine grid iterations as the Reynolds number 
(Re) was varied from 100 to 10000. They found that the multigrid procedure 
decreased the computational time required by a factor of four over a single grid 
calculation. 

Fuchs and Zhao [2] obtained solutions to the incompressible NS equations in 
primitive-variable form with a multigrid technique. They employed an upwind 
finite-difference formulation with a “distributive Gauss-Seidel” (DGS) as the 
smoothing operator. Relaxation of various inflow velocity profiles for 3-dimensional 
duct flows were examined for Re up to 2000. Of interest was their use of parabolic 
outflow conditions and a stretched grid in the streamwise direction. 

The articles by Vanka [3-53 describe a multigrid method based on the primitive- 
variable formulation of the NS equations. Upwind differencing was used so the 
solutions are only first-order accurate; however, very fine grids are used. Vanka 
uses “symmetrically-coupled Gauss-Seidel” (SGGS) as the basic solver (smoother). 
This technique attempts to satisfy continuity for each cell at each step and appears 
more robust than the DGS approach (Brandt and Dinar [7], Fuchs and Zhao 
[a]), which has difficulty when the cell face fl‘iixes do not match well. The 2-dimen- 
sional driven cavity has been treated for Re < 5000 [3]. Because it is based on the 
primitive-variable formulation (as opposed to the vorticity-streamfunction formula- 
tion), the method is easily extended to three dimensions: indeed Vanka has 
obtained results for the 3-dimensional driven cavity problem [4]. The method 
has also been extended to include a turbulence model [S]. For a typical case, the 
multigrid solution technique is approximately 25 times as efficient as any of the 
common single grid techniques. 

Recently, Barcus, Scheuerer, and Peric [S] presented a multigrid method based 
on the finite-volume formulation of the Navier-Stokes equations and flux averaging 
as the restriction operator. The smoother is an uncoupled strongly implicit solver 
(Stone [9]) and results similar to those of Vanka were obtained. They used a 
correction scheme rather than the full approximation storage scheme. 

Adaptive grid methods are an efficient way of finding solutions to problems 
which need refinement only in small localized regions of the domain. With these 
methods, the grid is adjusted or refined to accurately resolve small structures 
without placing too many grid points in regions where the variation is smooth. 
Many fluids dynamics problems can be treated advantageously using this technique. 
High Reynolds or Mach number flows generally have thin regions of substantial 
velocity variation such as boundary layers and shock waves. Those regions require 
much finer mesh spacing than the majority of the domain. For such problems, 
adaptive grid techniques are much more efficient than uniform tine-grid solution 
techniques. Adaptive techniques can be classified into two main categories: “global” 
and “local” methods. 
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In the former class, the total number of grid points is generally fixed. The mesh 
is adjusted so that the highest grid point densities occur in regions in which the 
solution has the most rapid variation. These methods are called “global” since the 
entire computational domain is involved in the adjustment process. The various 
approaches differ in the method of moving, and the criteria for distributing, the grid 
points. 

With the local refinement techniques, grid points are added or deleted locally so 
that the solution is obtained to a specified accuracy. The total number of grid 
points generally changes. The way grid points are added or removed varies from 
method to method. Reviews of the various strategies can be found in articles and 
reports by Thompson [lo], Anderson [ 111, Hedstrom and Rodrigue [12], and 
Caruso [ 131. 

The adaptive grid approach used in this work is a local refinement technique. It 
closely follows the work of Caruso [ 131 who used local adaptive refinement to 
compute laminar backward-facing step flows for Reynolds numbers up to 800. The 
approach involves overlaying patches of fine grid in regions where the truncation 
(or solution) error is large. A solution is then calculated on the composite grid. The 
(automatic) patching and solving continues until the solution error estimate is 
reduced to a satisfactory level. 

2. METHOD 

In this section first- and second-order finite difference approximations to the NS 
equations are presented. Then the “defect” or “deferred” correction scheme is 
described enabling second-order accurate solutions to be obtained while 
approximately maintaining the convergence properties of first-order schemes. 
Following this, the multigrid implementation is discussed. Then, a brief review of 
the adaptive scheme is given. And finally, the incorporation of the adaptive strategy 
into a multigrid framework is described. 

2.1. The Primitive Equations 

The dimensionless incompressible steady-state NS equations in conservation 
form may be written 

- ---= 2!+2&+$), a(uu) + a(uv) 
ax ay 

(2.1.1) 

- -= -g+L&+!& a(uv) + a(vv) 
ax ay 

g+@=o, ay 

(2.1.2) 

(2.1.3) 

where u and v are the x and y velocity components and P is the pressure. (These 
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equations were made non-dimensional by: X = x/L, j = y/L, U = uJU, V = v/U, and 
P= P/(pU’). Here L and U are typical length and velocity scales and Re = UL/v is 
the Reynolds number with v the viscosity coefficient. The overbars denoting the 
non-dimensionalised variables have been dropped for simplicity.) These equations 
are discretized on a staggered grid, (see Fig. l), using the finite volume approach 
of Patankar [ 141. Second-order accuracy is achieved by using a “defect-correction” 
technique (e.g., Auzinger and Stetter [15], Stetter [ 161, Hemker [17]). Initially, 
first- and second-order schemes are described and then an outline of the defect- 
correction procedure is given. 

2.2. The Power Law Method 

This finite-volume approximation chosen for the convection and diffusion terms 
is due to Patankar [14, IS]. It is based on a power-law fit to an exponential solu- 
tion of the l-dimensional convection-diffusion equation. It is similar to the scheme 
of Allen and Southwell [ 191. This power-law scheme acts very much like Spalding’s 
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FIG. 1. Staggered grid arrangement showing the locations of ~1, u, and P. Note the irregular spacing 
at the boundaries of the domain. 
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hybrid scheme [20] except that the transition from central to upwind differencing 
as a function of cell Reynolds number (Re,, = u Ax/v) is gradual. (Here Ax denotes 
the cell width.) It is first-order accurate for high Reynolds numbers. 

The scheme can be viewed as a finite-volume approach on a uniform grid. Its 
application to the x momentum equation is as follows. The (north, south, east, and 
west) volume fluxes are computed from: 

Fn = (vi, I,] + vi, j) Ax/Z (2.2.la) 

KY= (ui+l,,- 1 +ui,i-l)Ax/% (2.2.lb) 

Fe = Cut + I. j + ui, j) A~/29 (2.2.lc) 

F,, = (~i,i + u,- l,j) Ay/2. (2.2. Id) 

The coefficients of the discrete approximation to the momentum equations are 

A,=dnX 

A,=dssf 

(2.2.2a) 

(2.2.2b) 

A,=deS 

A,,,=dwX (2.2.2d) 

and 

A,.=A,+A,+A.+A... 

The “power-law” function X is defined as 

X(z) = max(O, (1 - O.lz)‘), 

and the remaining undefined coefficients are given by 

dn = Ax/(Re Ay), 

ds = Ax/(Re Ay), 

de = Ay/(Re Ax), 

dw = Ay/(Re Ax). 

(2.2.2e) 

(2.2.3) 

With these definitions, the x momentum equation can be written as 

Acui,j- CAnut,j+ 1 + Asu,,,-~ I + A,‘,+ 1.1 +A,,,u,~,,~]+A~(P~,~-P~~,,~)=O. (2.2.4) 
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The formulation for the y momentum equation is analogous and can be derived by 
symmetry. Finally, the continuity equation is approximated by central differences 

(~,,-ui-,,i)Ayf(~,,-~j,j~,)A~=O. (2.2.5) 

2.3. Central Dlyferencing 

Second-order central-difference approximations to the x and y momentum equa- 
tions can be written 

+ dY(pi+ 1,~ - p, j) = O, 

-- v~.~+l-2v~,j+vi,j-~) 
r2iy( 

(2.3.1) 

+ Ax( Pi,j + 1 - P,i) = 0. (2.3.2) 

The differencing of the continuity equation is still given by Eq. (2.2.5). These equa- 
tions are linearized when employed in the iteration scheme. 

Special treatment is needed at the boundary cells where the staggered grid is non- 
uniform (see Fig. 1). For the u-grid the vertical spacing varies near horizontal walls. 
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The term a2u/ay2, which is important near horizontal 
by 

a% 2~~,~-3~,,~+~,,~ 
ayz= 

3/4(4Y)2 . 

solid walls, can be estimated 

(2.3.3) 

Similarly for the y momentum equation, the term 8’u/ax2 needs to be treated in the 
same fashion. 

2.4. The Defect-Correction Procedure 

For calculating convection-dominated flows many workers have opted for hybrid 
or upwind finite-differences in preference to higher order schemes such as central 
differences. Two distinct problems lead to this choice. First, use of central differen- 
ces may result in a “wiggly” solution when Redx > 2. In practice, when Reds varies 
over the domain, this criterion (based on the maximum local value of Re,,), tends 
to be too restrictive. Wiggles do not occur unless the maximum local Redr is 
significantly larger (e.g., Kim and Moin [21]). Second, when Re,,> 2, the 
coefficient matrix of the discretised system is no longer diagonally dominant and 
classical iteration techniques like Gauss-Seidel may not converge. First-order 
approximations do not suffer from either of these problems since they effectively 
limit the maximum Re,, to two by adding artificial diffusion; however, they accom- 
plish this by sacrificing accuracy. One way around the iterative instability is to 
modify the iterative method. First-order (upwind) values are used on the left-hand 
side of the equation and the difference between first- and second-order approxima- 
tions taken at the previous iteration step is used on the right-hand side. At con- 
vergence, the solution is second-order accurate but the convergence properties are 
similar to those of the first-order approximation. (However, see the results section 
for a discussion of this point.) 

The application of the technique is demonstrated as follows. Assume that the 
solution of the equation 

Y(u)=f (2.4.1) 

is required. Denote by L?;,,(u) a first-order approximation and by 9$,)(u) a 
second-order approximation to J?(U) based on a grid of cell size h. A second-order 
accurate solution 3” can be obtained by the procedure 

=qh)w+‘) =f+ wfh,b”)--%,b”)~~ (2.4.2) 

where un is the solution after the nth step. At convergence, zP+ ’ = zP = urn satisfies 

=q,,W)=f: (2.4.3) 

Of course, the solution may contain spatial oscillations. 
For sufficiently smooth problems, Hackbusch [22] has shown that this proce- 
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dure yields a second-order accurate solution after the first two defect correction 
iterations (i.e., after n =2). This has been shown to be true by Hemker [17] for 
solving the Euler equations. However, instead of iterating Eq. (2.4.2) to convergence 
at each “step,” the latter author instead prefers to perform only one multigrid 
relaxation cycle per defect correction step. This is the approach taken by the 
present authors. 

This “defect-correction” need not be based on central differences. Other 
approximations such as third-order upwinding, e.g., “QUICK” (Leonard [23]) can 
be used. In this work only central differences have been tried. Experience shows that 
the differences in results generated by the latter two methods are small (Avva, 
private communication [ 241). 

When this procedure is used in conjunction with the multigrid technique, the 
correction is directly applied only to the equations on the finest grid. Since the 
coarse-grid equations are approximations to those on the line grid, there is no 
inconsistency. At convergence the solution is second-order accurate. 

2.5. Multigrid Implementation 

Recently, considerable material has been written concerning the multigrid techni- 
que. Detailed descriptions can be found in various articles including: Brandt [25], 
Vanka [3-51, Fuchs and Zhao [2], and Hackbusch and Trottenberg [26]. The 
FAS-FMG (full approximation scheme-full multigrid) algorithm originally 
developed by Brandt [25] and since used by many investigators, including Vanka 
[3-51 and Ghia et al. [ 11, is used for this work. This is a generalisation of 
the original “correction scheme” to non-linear problems. An adaptive or 
“accomodative” (rather than a fixed) multigrid cycling algorithm is applied. This is 
also similar to that used by the previously mentioned authors. 

The multigrid technique employs a sequence of grids to accelerate the con- 
vergence of iterative methods. For this work “standard-coarsening,” i.e., doubling 
the mesh spacing in both the x and y directions from one grid to the next coarsest 
grid, is used. 

The cycle is as follows. Relaxation sweeps are performed on an initial grid 
(usually the finest). If the smoothing rate is low, i.e., 

R” + l/Rn > p, (2.5.1) 

where R” denotes the average u or u change from the (n - 1)th step to the nth, then 
the calculation proceeds to the next coarsest grid. (Other workers use different 
criteria. For instance, Vanka examines the ratio of weighted average residuals from 
the x and y momentum equations and the continuity equation. Although this is 
better, no problems were encountered with the above method and the convergence 
rate is not affected.) 

The convergence rate of the multigrid procedure is insensitive to the value chosen 
for p. The amount of work required is almost the same for any ,u in the range 
0.24.8. This can be explained through the following argument. 
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On each grid level at least two relaxation sweeps must be performed before the 
smoothing rate can be calculated and relaxation can be continued at a coarser grid 
level. However, after the first two iterations the smoothing rate usually deteriorates 
rapidly. Consequently, unless ,u is large (i.e., close to unity), the relaxation process 
will not continue at the finest grid level for more than two or three relaxation 
sweeps before switching to the next coarsest level. Therefore, since the number of 
line grid relaxation sweeps broadly determines the overall multigrid work require- 
ment, changing p over a wide range has little effect. For the calculations reported 
in this paper, p was set at 0.6. 

If the convergence rate is slow, so that Eq. (2.5.1) is true, the current approxima- 
tion to the solution is interpolated, or restricted, to the next coarsest grid. The 
restriction operator is described in a later section. The residuals of the momentum 
and continuity equations are also restricted. On the coarse grid (k), the equations 
solved are approximations to the line grid (k + 1) equations. They can be symboli- 
cally expressed as 

where 

(2.5.3a) 

and on the finest grid (k = M) the original problem is solved, i.e., 

FM=fM. (2.5.3b) 

Here, 9k represents the difference operator on grid k, It” is an interpolation 
operator from grid k to k + 1, and U, represents u, u, or P on grid k. 

Local relaxation schemes tend to reduce the short wavelength error components 
much faster than those of longer wavelength. The purpose of the coarse grid itera- 
tions is to reduce the long wavelength errors. These can be resolved on the coarser 
grids on which relaxation sweeps are cheaper. The strategy behind the coarse-grid 
iteration process is more easily seen if Eq. (2.5.2) is rewritten as 

~Uk-~(zkkflUk+l)=z~+‘(~+I-~+IUk+l). (2.5.4) 

The left-hand side is the difference between the coarse-grid operator acting on the 
coarse-grid solution and the coarse-grid operator acting on the interpolated line- 
grid solution (which is held fixed). Thus Eq. (2.5.2) can be interpreted as an equa- 
tion for the correction from the interpolated line-grid solution. The right-hand side 
is the interpolated residual of the line-grid equation. After the line-grid solution 
has been found the residual will be zero and the solution to Eq. (2.5.4) becomes 
u =zk+‘.y k + i as required. When the residual is non-zero, it acts as a forcing term 
fo: thekcoarse-grid correction. After Eq. (2.5.2) is solved to the necessary accuracy 
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(this is discussed below), the correction to Uk must be transferred back 
(prolongated) to the fine grid, i.e., 

u “eW 
- u;y, +I;+, kfl- (u,-z;+‘u;‘~,). (2.5.5) 

This is vital for the success of the scheme. Changes in the variables are transferred 
back to liner grids rather than the variables themselves. 

The coarse-grid solution is transferred to the fine grid when 

where 

Ek < 6Ek + I, (2.5.6) 

Ek=;(/~/~)‘l’. (2.5.7) 

(The superscript n denotes the iteration number and N, and N, are the number of 
u and u gridpoints, respectively. 0 is a velocity scale.) The parameter 6 determines 
how far a coarse grid solution is converged before being used to correct the solution 
on the tine grid. Clearly if it is too large, the coarse grid iterations will be ineffective 
at reducing the long wavelength error components, while if it is too small, some of 
the coarse grid work will be wasted. The optimum range is quite broad. A value of 
6 = 0.3 was found to give a good convergence rate over a wide range of Reynolds 
numbers and grid sizes. Varying 6 over the range (0.14.5) has little effect on the 
overall convergence rate. 

Note that on the coarsest grid (which is usually a-2x 2 grid), the same solver is 
used. Some workers have employed direct methods or Newton iterations; however, 
this was found unnecessary. 

2.6. The Smoothing Operators 

The smoothing operators are very similar to Vanka’s [3]. Two types were tried; 
a block solver and a line-block solver. Brandt [27] suggested that, to obtain a 
good smoothing rate with the multigrid approach, it is necessary for the unknowns 
be updated in a locally coupled manner. Brandt’s DGS technique updates the con- 
tinuity equation separately, but applies corrections that ensure continued satisfac- 
tion of the x and y momentum equations at each point. Vanka’s procedure is 
slightly different. It solves for four velocity components (at the four cell faces) and 
the pressure at the centre of the cell simultaneously for each cell. This scheme has 
very good smoothing properties. 

The first scheme is a variant of Vanka’s SCGS scheme. The x and y momentum 
equations for the four cell faces (cf. Fig. 1) together with the continuity equation 
about the cell centre can be expressed as: 

c Arlilkj+,Ui+k,j+,+AY(Pi,,-Pi~l.,)=O, 
’ 

(2.6.la) 
lkl + 111 < 1 
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c Ayr;~,~+,“i+,+,,j+,+dy(Pi+,,j-Pi,j)=O, (2.6.lb) 
lkl + l/l < 1 

c A~i-lk,i+,Vi+k,j+!+AX(Pi,,-P,,j~l)=O, (2.6.1~) 
Ikl+ III< 1 

c AY’ii+k,lj+/Oi+k,j+l+I+AX(Pi,j+l-Pi,j)=O, (2.6.ld) 
Ikl + l/l< 1 

(Ui+ l,j- Ui,j) AY + (u,,j+ 1 - ui,j) Ax=O. (2.6.le) 

The A’s are functions of the velocity components: the current values are used. The 
A’s are given by Eq. (2.2.2a)-(2.2.2e), where the following associations have been 
made: Ai,j=A,, Ai,j+l=An, Ai+l,j=A,, Ai,,-l=As, and Ai-l,j=A,. These 
equations can be written: 

, (2.6.2) 

-Ax Ax 0 

where the R”,“‘s represent the remaining terms from Eq. (2.6.la)-(2.6.le). (This 
equation differs from Vanka’s only by the inclusion of the off-diagonal terms in the 
first four rows. It was expected that this would speed up convergence slightly since 
the systems is “more implicit.” Tests indicate that the actual convergence rate is 
similar for the two variations.) 

The system (2.6.2) can be solved easily using Gaussian elimination. The velocity 
components and the pressure are updated using under-relaxation: 

(24, u)“~~ = (u, u)Old + rcu,vj((u, u)’ - (2.4, u)O’“) (2.6.3a) 

P “=w = pold + r J p’ - po’d ). (2.6.3b) 

The relaxation coefficient rcu, “I may depend on Reynolds number and on whether 
the defect correction is applied or not. The optimum value for rp is always very 
close to unity. All results presented in this paper were obtained with rp = 1. This 
method is called symmetrically coupled Gauss-Seidel (SCGS). 

Approximately optimal values for r(,, “) are given in Table III (see results section). 
The optimum value is a function of the Reynolds number but only weakly depend- 
ent on the grid size. Figure 2 shows the time required to reach convergence as a 
function of rcr “) for driven cavity flow at Re = 1000 for a 16 x 16 grid. 

In the second scheme the variables for a whole line of cells are updated 
simultaneously. If the sweep is in the y direction and the variables are ordered 
in the following way, ui-l,j> v,.,, Pi,, ui,j-1, u,,,, ~i+l,,~ P;+l,j, u~+I.,-I~ u~+z.~$ 

Oi+2,j, pi+2,j3 vz+2,j-19 ui+3,jt ...1 the resulting matrix system has a banded struc- 
ture. This system was solved by a specially written banded-matrix solver designed 
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RELAXATION PARAMETER r(u,v) 

FIG. 2. Work units required for convergence as a function of relaxation parameter (r,,,,,)). A 16 x 16 
grid was used at Re = 1000. 

to take advantage of the sparsity of the bands. This line-block solver was used with 
alternating zebra-sweeping. The order of sweep was: even horizontal lines, odd 
horizontal lines, even vertical lines, odd vertical lines. This approach, called sym- 
metrically coupled alternating line (SCAL), was expected to be more robust when 
the cell aspect ratio is far from unity and the flow is predominantly uni-directional. 
Indeed, this technique is more robust than SCGS for the backward-facing step flow; 
for driven cavity flow the difference is not significant. It is important to note that 
the cost of using the line solver is only about 50% larger than for the SCGS solver 
per sweep (cf. Table I). With the line solver the multigrid method is less sensitive 
to the relaxation coefficient (rcU, “,) ( cf. Fig. 2). Both methods were applied to the 
power-law (PL) and central-difference (CD) defect-correction discretizations. 

2.7. Prolongation and Restriction 

The routines for passing information between grids were written so that the 
effects of altering the order of the interpolation could be studied. Two-dimensional 

TABLE I 

CPU-times per Sweep for a 32 x 32 Grid on 
a VAX-l l-750 Computer 

Solution method CPU-time (s) 

SCGS-PL 
SCGS-CD 
SCAL-PL 
SCAL-CD 

5.3 
5.7 
7.3 
9.5 

Note. The scheme was coded in double 
precision. 
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Lagrange interpolation with four, nine, and 16 points, giving errors O(dx*, dy’), 
0(dx3, dy3), and 0(dx4, dy4) were used. At the edges of the domain, the distribu- 
tion of the interpolation points is not symmetrical for the higher order schemes. As 
seen from Table II, the use of more accurate higher order interpolation schemes 
actually degrades the convergence rate. The table gives the equivalent number of 
tine-grid iterations for the SCGS-PL and SCGS-CD schemes for different restriction 
and prolongation operators. Only tests using second- and third-order interpolation 
are listed: the fourth-order approach has even worse convergence characteristics. 

The tests indicate that it is especially bad to use high-order interpolation for the 
coarse to fine grid transfer (prolongation). This may be due to the introduction of 
high-frequency noise that the line grid iterations have to remove. There is no signili- 
cant difference between the results for the 4- and 9-point restriction operators. All 
further results were obtained using 4-point Lagrange interpolation (equivalent to 
bilinear interpolation) for both prolongation and restriction. In the future, 
weighted-average restriction operators (which are the adjoints of the prolongation 
operators) will be assessed (e.g., see [ 1, 71). 

2.8. The Adaptive Grid Technique 

The adaptive technique used is based on the work of Caruso [13] who in turn, 
modified the approach of Berger [28]. It uses a sequence of overlapping grids of 
increasing fineness. The adaption criterion is based on the truncation error; the 
solution error is also monitored. The grid can be refined until the solution error 
estimate is below some desired level. The procedure is described below. 

The solution is computed on an intermediately fine grid spanning the whole 
domain and stored for later use. Following this, the problem is solved on a grid 

TABLE II 

The Effect of Interpolation Order on the Convergence Rate of the Multigrid Method 

Prolongation/ 
Restriction 

order Scheme 0.2 0.3 0.4 0.5 0.6 

(27 2) 
(3.3) 
(3,2) 

SCGS-PL 
SCGS-PL 
SCGS-PL 

100.70 68.73 51.91 41.00 38.17 
>lOO > 150 
75.63 54.28 42.56 >lOO 

CL 2) SCGS-CD 145.86 105.44 95.28 Div 

(293) SCGS-CD 160.17 Div 

(373) SCGS-CD >200 Div 
(3,2) SCGS-CD 142.50 118.22 Div 

Note. The values indicate the work required to achieve convergence. A 16x 16 grid was used with 
Re = 1000. The convergence criterion was max(du, Au) < lo-“. 
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with twice the grid spacing in both the x and y directions. From these two solu- 
tions, the solution error can be estimated by the Richardson method. 

It is assumed that the solution error can be expressed as a Taylor series 

e(x;h)=u(x;O)-u(x;h) 

=hPF(x)+hYG(x)+ . . . . (2.8.1) 

where u(x; 0) is the exact solution, h is the mesh size, and p is the order of the 
method. This expansion is valid for solutions with continuous derivatives. For 
elliptic systems, this is the case. 

If the grid spacing is doubled in both x and y, the solution error becomes 

e(x;2h)=u(x:O)-u(x;2h) 

=(2h)"F(~)+(2h)~G(x)+ . . . . (2.8.2) 

Subtracting Eq. (2.8.1) from (2.8.2) and dividing the result by 2p - 1 gives an 
estimate of the solution error 

qx; h) = 
u(x;h)-u(x;2h) 

2p- 1 

Then comparing Eqs. (2.8.1) and (2.8.3) gives 

qx; h) = e(x; h) + 0(/v), (2.8.4) 

so the estimate is accurate to order q. 
This approach can be applied to estimate the solution error for each of the three 

variables U, u, and P. However, as a staggered grid is used, the locations of the 
variables on the coarse grid do not coincide with those on the line grid so interpola- 
tion to fine-grid locations is required. Also, the primitive equations do not fix the 
pressure absolutely but only determine it to within an arbitrary constant; only 
pressure differences are important physically. Therefore solution error estimates for 
the pressure cannot be accurate. 

The truncation error is defined by 

z(x; h) = %C4x; 0),4x; 01, (0% O))l -J (2.8.5) 

where L&[ ... ] = f represents the u or u momentum equation or the continuity 
equation. However, as the exact solution is unknown, the true solutions are first 
estimated by 

qx; 0) = u(x; h) + c-(x; h), (2.8.6) 
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and used in place of u(x; O)..., to give 

qx; h) = &[ii(x; O), qx; O), (B(x; O))] -f (2.8.7) 

In this way the truncation errors for the three governing equations are estimated. 
For each equation, the grid points at which the truncation error estimate is 

above some predetermined value (say r*) are marked. The marked gridpoints are 
then clustered into groups. A point is added to a group if it is within certain x and 
y distances (d, and d,) of any other point within the group. (This operation can be 
expensive unless the number of marked gridpoints is small.) Once the clustering is 
completed, boundary aligned rectangles enclosing all grid points of each group are 
drawn. The boundaries are extended by a safety margin from the x and y extremes 
of the enclosed points. A check to ensure that these rectangles do not overlap is 
made. If overlapping occurs, the offending rectangles are combined into a new rec- 
tangle. Checking for overlapping continues and rectangles are combined, until the 
set of rectangles is disjoint. These rectangles are then covered with grids of spacing 
half that of the previously finest grid. (Only boundary aligned subgrids are con- 
sidered.) A method in which the regions are chosen in accord with an estimate of 
their effect on the solution will be tried in the future. 

The solution is then computed on the combination of the new subgrids and the 
grid at the previous level. At convergence, the solution on the overlapped compo- 
nent of the coarse grid should coincide with the fine grid solution. This can be 
achieved by adding forcing terms to equations on the coarse grid in the overlap 
region(s). 

Suppose that the equations to be solved on the coarse grid can be represented by 

%J4x; 2h), 4; 2h), (P(x; 2h))l =f: 

When overlapping occurs these are modified to 

%Cdx; 2h), . ..I = %~[u’(x; h), u’(x; h), (P’(x; A))], 

where u/(x; h), u’(x; h), and P’(x; h) are obtained by interpolating the fine-grid 
variables to the coarse-grid variable locations. This correction is very similar to the 
multigrid correction and provides the basis of the adaptive-multigrid approach. 
(For linear equations it is possible to demonstrate exact equivalence at con- 
vergence.) The line-grid boundary values are obtained from the coarse grid. 
However, the solution at these points changes as the iteration proceeds because, 
although the truncation error criterion is satisfied there, the solution error may be 
large. Thus Eqs. (2.8.8) are used to update the solution variables on the coarse grid 
and iteration between the coarse and fine grids is performed. 

The choice of the clustering distances d, and d,, together with r*, determines 
the part of the domain covered by the refined grid components. Choosing d, and 
d, to be very small can result in the mesh structure at the new level becoming 
fragmented, especially if the truncation error estimate is noisy. Very large values 
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of d, and d, result in a single refined grid component covering the entire domain. 
For the results described in Section 3, d, and dy vary with level. They are set to 
twice the x and y cell widths of the currently finest grid, respectively. 

Overall convergence requires the use of “mass-conservative” interpolation to 
evaluate the u and u boundary values for the subgrids. The mass fluxes into, and 
out of, subgrids must be consistent with values on the “parent” grids. However, 
after any iteration sweep continuity is not necessarily satisfied on a cell by cell basis; 
this is only true at convergence. 

To clarify this, consider Fig. 3 which shows a section of the grid at an internal 
boundary. If linear interpolation is used, the mass flux will be consistently trans- 
ferred during the line to coarse interpolation. The mass flux into coarse-grid cell i, 
which is proportional to u:’ dxC, should equal the flux into the fine-grid cells j and 
j+ 1, which is proportional to (L$+ $+ ,) dxf. For a uniform grid, this reduces to 

II:’ = ;( t( + u$+ , ), (2.8.9) 

which is just linear interpolation. The coarse to fine grid transfer, however, does not 
guarantee conservation. In that case linear interpolation gives, for example, 

t$ = & + $urp 1. (2.8.10) 

Neither global nor cell by cell conservation is satisfied. Various modifications are 
used to ensure at least global conservation. The method adopted here is to use 
linear (or higher order) interpolation as a first approximation and then to correct 
the velocities so that conservation is satisfied on a cell by cell basis. This is done 
by insisting that Eq. (2.8.9) holds for the coarse to fine transfer as well, i.e., 

;(I(+ uf+ ,) = UT. (2.8.11) 

FIG. 3. Interpolation at a coarse-grid/fine-grid interface. For details see the text. 
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Thus the interpolated tine-grid vertical velocity components can be calculated from 

(2.8.12a) 

and 

(2.8.12b) 

where v{’ and vf+ , ’ are intermediate estimates. The same can be done at the verti- 
cal boundary for the horizontal velocity components. 

This procedure may seem somewhat ad hoc (or least lacking a strong theoretical 
foundation) and one has to wonder about its effect on the accuracy of the adaptive- 
multigrid results. Two points need to be borne in mine. First, if the initial interpola- 
tion is done with a higher order scheme, it is expected (and indeed found) that mass 
conservation between grids nearly is satisfied, and the adjustment is very small. 
Second, at the boundaries of the relined grids, the coarse grid gives adequate 
resolution anyway; this is part of the refinement criterion. Thus the interpolation 
procedure does not degrade the accuracy significantly. 

To make the computed code efficient with minimal complication, attention must 
be paid to the data structures. The framework used was developed by Berger [28] 
and modified for elliptic problems by Caruso [13]. Details can be found in an 
article by Berger [29]. 

2.9. Combined Adaptive-Multigrid Method 

The adaptive grid method just described fits in very well with the multigrid solu- 
tion process. The addition of finer mesh components spanning only parts of the 
domain was described early in multigrid history (e.g., Brandt [25], who called it 
segmental refinement), but the idea has not been put into practice often. Bai [30] 
applied segmental refinement to Poisson’s equation in two dimensions. However, he 
specifies the local refinements a priori so his method is not truly adaptive. He 
suggests that automatic refinement can be done straightforwardly. Becker and Trot- 
tenberg [31] considered 2-dimensional subsonic potential flow around an aerofoil. 
They used segmental refinement with the refinement criterion depending on the 
local discretization error. Very good smoothing rates were achieved. 

To describe the adaptive-multigrid algorithm it is probably easiest to use an 
example. Consider driven cavity flow (cf. Section 3). Before starting, a grid level S 
is chosen after which adaptive refinement will be allowed. The S grid should be suf- 
ficient so that the solution and truncation errors, based on the solution at this and 
the previous grid level, are reasonably smooth. (This step is not a necessary part of 
the adaptive approach. The main reason for it was to ensure that there would be 
a solution covering the entire domain which could be used for contouring.) The 
algorithm is then as follows. 
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First, the solution is found on a very coarse grid (e.g., a 2 x 2 grid). This solution 
is stored and interpolated to the next finest grid (a 4 x 4 grid, for this example). The 
multigrid method is used to solve the problem on the combined grid system (the 
2 x 2 and the 4 x 4 grids). This solution is also stored. The procedure continues until 
the solution is found at level S. Then the truncation error estimates for the three 
equations are evaluated and used in the refinement process. Clustering of grid 
points which have truncation errors above the threshold is carried out and line grid 
patches are added to the grid system. Multigrid is then used to find the solution on 
this composite grid system. If there is more than one component grid at the last 
level, a smoothing sweep consists of one sweep over each subgrid. The smoothing 
rate (defined by Eq. (2.5.1)) which determines whether to move to a coarser grid 
level, is based on the average u and u changes on the set of subgrids. The procedure 
can be considered a multigrid process in which the tine grid covers only part of the 
domain; the solution in the remainder of the domain can be obtained by interpolat- 
ing the coarse-grid solution. (However, note that the “coarse-grid solution” changes 
as finer levels are added.) It is the limited extent of the line grid that provides the 
efficiency of the method. 

If the injection and prolongation are done consistently and care is taken to make 
sure that mass is conserved at grid boundaries, the multigrid process is convergent. 
After convergence on a given set of grids, a new estimate is made of the solution 
and truncation errors using the current solution and the previously stored solution. 
Further grid refinement is allowed only on the previously refined grids. Thus, new 
subgrids lie entirely within previous subgrids. This procedure continues automatically 
until the solution error is reduced to a satisfactory level (or until the available com- 
puter memory is exhausted). This method can be regarded as a standard multigrid 
method in which the solution on part of the grid is obtained by interpolation from 
the coarser grid. Since the greatest part of the cost of multigrid methods is 
associated with line grid iterations and the finest grid occupies only a small portion 
of the solution domain, this method has considerable advantages in both speed and 
memory. 

An important additional refinement needs to be made when using the central-dif- 
ference defect correction. When using the standard multigrid method, the grid must 
be sufficiently tine to achieve adequate resolution of the solution, otherwise the con- 
vergence rate is impaired considerably. This is especially true for high Re cases (see 
the next section.) With the adaptive scheme described above, this is a problem since 
intermediate solutions are computed on coarse grids. This shortcoming can be cir- 
cumvented by not iterating to convergece on the intermedciate grids. Only a fixed 
amount of work is performed at each grid-level and, if convergence is not achieved, 
then the solution process continues on the next grid level. Convergence is required 
only at the highest grid levels. Naturally, this modification makes the intermediate 
error estimates unreliable. However, in practice it is not a problem. The con- 
vergence rate is usually rapid initially but slows as the solution nears convergence. 
The most important consideration is that refined grids are inserted where they are 
needed. Providing the inaccurate error estimates results in these refinement regions 

581,82/l-8 
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being larger than they would be otherwise, which is the likely outcome, there will 
be no detrimental effect to the accuracy of the final solution. 

3. RESULTS 

Results have been obtained for two flows; driven cavity and backward-facing step 
flow. Both these cases have been studied extensively and are well documented in the 
literature [ 1, 3, 4, 13, 21, 32, 33-361. The main emphasis of the results will be with 
regard to the convergence properties of the method rather than the details of the 
solutions. 

Some results obtained with a “pure” multigrid method will be examined first. 
This will establish a benchmark which can be used to examine the improvements 
in efficiency resulting from adaptive refinement. Results from an adaptive-grid 
method (effectively equivalent to embedded refinement without multigrid) can be 
found in Caruso [ 131. 

3.1. Driven Cavity Flow: Multigrid Results 

Driven cavity flow has long been a standard test problem for Navier-Stokes 
codes. In the last ten years accurate results have been obtained by various authors 
[ 1, 3,6, 32, 33, 341 and there is general agreement on the solutions for Reynolds 
numbers up to about 10,000 in two dimensions. Recently, experimental results have 
become available (e.g., [35, 371). They indicate that for moderately low Reynolds 
numbers (Re N 1000) the flowfield becomes 3-dimensional with the appearance of 
Taylor-Gortler vortices. Some 3-dimensional numerical simulations have predicted 
these structures [4,21, 353. Consequently, high Reynolds number 2-dimensional 
numerical simulations are now only of interest as a test problem for Navier-Stokes 
codes. 

The numerical setup consists of a 2-dimensional square cavity with zero velocity 
boundary conditions except at the top where u is a constant. The streamline pattern 
for the 2-dimensional cavity at Re = 5000 is shown in Fig. 4. The top of the cavity 
moves at a constant speed (U = 1) to the right. This figure shows the primary eddy, 
the three secondary eddies, and the beginnings of tertiary eddies at the two lower 
corners. Details on eddy positions, reattachments lengths, etc. can be found in 
Refs. [l, 32, 331. 

Table III presents some results obtained with the non-adaptive multigrid method 
for driven cavity flow for three different Reynolds numbers (Re = 100, 1000, and 
5000) and for grid sizes from 8 x 8 to 256 x 256. The entries are the number of work 
units to reach convergence. (A work unit is the equivalent amount of computational 
work needed to do one iteration sweep on the finest grid using the multigrid 
smoother and is the standard way of presenting multigrid convergence results.) The 
convergence criterion required the maximum change in u or v between fine-grid 
iteration sweeps to be less than 10d4. Typically, the average change is around 10e5. 
The table also indicates the value of the relaxation parameter I~,,,). Several impor- 
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4. Streamlines for Re = 5000 cavity flow. 
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X 

Re 

TABLE III 

Work Units Required to Obtain Convergence for the Multigrid Scheme. 

Scheme (rl,,,J 8x8 16x 16 32 x 32 64X64 128x128 256x256 

100 SCGS-PL (0.6) 17.75 18.72 19.88 20.35 19.24 
SCAL-PL (0.6) 13.00 15.44 22.16 28.89 
SCGS-CD (0.5) 21.56 24.53 21.66 19.67 19.40 
SCAL-CD (0.5) 15.50 16.56 28.70 27.67 

1000 SCGS-PL (0.6) 23.44 38.17 48.78 43.18 42.77 
SCAL-PL (0.6) 14.25 18.88 23.19 29.24 27.93 
SCGS-CD (0.4) 72.19 95.28 114.05 66.58 44.30 
SCAL-CD (0.4) 41.25 54.31 88.11 46.99 

5000 SCGS-PL (0.3) 88.13 
SCAL-PL (0.5) 23.50 
SCGS-CD (0.2) 324.14 
SCAL-CD (0.2) 111.09 

156.71 
41.50 50.65 

140.56 72.39 

Nofe. Work units are equivalent to line grid iterations. The convergence criterion was 
max(du, du) < 10e4. 
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tant trends are evident. Typically, for single grid solvers at the higher Reynolds 
numbers, hundreds or even thousands of fine grid iterations are required to obtain 
a solution. On the finest grids for each Reynolds number, the work required to 
obtain a solution by using multigrid increases from about 20 units for Re = 100 to 
about 70 for Re = 5000. This shows both the efficiency of the multigrid approach 
and its relative insensitivity to the Reynolds number. The table also indicates that 
the number of work units required for convergence is only a weak function of the 
grid size, a result consistent with the theoretical prediction that the number of work 
units should not depend upon the size of the grid. For the higher Re cases, with the 
central-difference smoothers and large enough grid sizes, the number of work units 
actually decreases significantly as the grid size is increased. This effect was men- 
tioned by Ghia et al. [I]. It can be seen for the Re = 1000 case using the SCGS-CD 
scheme for grid sizes 32 x 32, 64 x 64, and 128 x 128. A possible explanation is that 
the grid spacing must be sufficiently fine to resolve the fine-scale structure. 
Otherwise, the solution may be slightly “wiggly” and convergence may be hindered. 
(However, central difference wiggles could only be detected for the coarsest grids 
for each Reynolds number.) Note that although the central-difference solutions are 
more expensive to obtain for a given grid size, they are considerably cheaper when 
compared in terms of equal accuracy. 

Table IV gives the value of the streamfunction at the centre of the primary eddy 
( !PLi,) for the upwind and centred difference schemes at the same Reynolds num- 
bers and grid sizes used in the previous table. This parameter is a fairly sensitive 
indicator of the accuracy of the solution. These values can be compared to those 
obtained by Ghia et al. [l] who used a second-order vorticity-streamfunction 
approach with a grid size of 128 x 128 for the Re = 100 and 1000 cases, and 
256 x 256 for the Re= 5000 case. (For the finest grids used for each Reynolds 
number, other parameters such as secondary and tertiary vortex strengths and reat- 

Re 

TABLE IV 

Values of the Streamfunction at the Centre of the Primary Vortex 

Scheme 8x8 16 x 16 32 x 32 64 x 64 128 x 128 256 x 256 Y’,!& 

100 PL - 0.0843 -0.0956 -0.1010 -0.1028 -0.1034 -0.1034 
CD -0.0945 -0.1002 -0.1025 -0.1033 -0.1034 -0.1034 

1000 PL - 0.0440 -0.0619 -0.0807 -0.0995 -0.1114 -0.1167 -0.1179 
CD -0.0718 - 0.0908 -0.1054 -0.1150 -0.1178 -0.1179 

5000 PL - 0.0229 - 0.0349 -0.0487 -0.0657 -0.0843 -0.1190 
CD - 0.0639 -0.1139 -0.1181 -0.1190 

Note. This table gives a comparison of the lirst (PL) and second (CD) methods as a function of grid 
size. Y& are values taken from Ghia et al. [1] who used a second-order streamfunction vorticity 
approach. 
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tachment positions agree very well with the values given in Cl].) This table shows 
that the central difference solution converges much more rapidly (with grid size) 
than the upwind solution. For the higher Reynolds number cases, it is necessary to 
use approximately 16 times the number of grid points with an upwind scheme to 
achieve the same accuracy obtained with a central difference scheme. 

3.2, Driven Cavity Flow: Multigrid with Adaptive Refinement 

The advantage of using adaptive gridding is twofold. First, there is a reduction 
in the amount of work required to achieve convergence and, second, the amount of 
computer memory required to obtain a solution to the same accuracy is con- 
siderably smaller. These factors are examined in Table V. 

This table compares adaptive-multigrid results with pure multigrid results. The 
runs were done with the SCGS-CD smoother for Re = 100 and 1000, and the 
SCAL-CD smoother for Re = 5000. The effect of using different values of the trun- 
cation error refinement criterion (r*) is shown. For Re = 100 and 1000, no segmen- 
tal refinement was allowed until after the 32 x 32 grid, and for Re= 5000, the 
64 x 64 grid. In all cases listed only two adaptive refinement levels were used. 

TABLE V 

Convergence Results for the Adaptive-Multigrid Code 

T* =O.lO 
Uniform grid 

T*=o.o5 5* = 0.01 multigrid result 

Re=lOO 

Re=lOOO 

Re=5000 

Strength of 
primary vortex 

Equivalent 
work units 
% memory 

required 

Strength of 
primary vortex 

Equivalent 
work units 
% memory 

required 

Strength of 
primary vortex 

Equivalent 
work units 
% memory 

required 

-0.1030 -0.1031 -0.1033 -0.1034 

4.8 5.7 13.5 19.4 

15 55 loo 

-0.1173 -0.1176 -0.1178 

17.0 23.5 44.3 

20 43 100 

-0.1179 

51.5 

26 

-0.1181 

72.4 

loo 

Note. No adaptive refinement allowed until after the 32 x 32 grid for Re = 100, 1000, and the 64 x 64 
grid for the Re = 5000 cases. In each case two refinement levels were used. 
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This was done to limit computational costs and so that a direct comparison could 
be made with computed uniform line-grid solutions. The uniform multigrid results 
are taken from Tables III and IV. The parameter used to indicate the accuracy of 
the adaptive multigrid results is again the primary vortex strength !Yg,. 

Figure 5 shows the grids used for the Re = 5000 calculation. From the “base” 
64 x 64 grid level refinement is necessary at the two top corners (where there are 
singularities) and in the regions occupied by the two secondary eddies at the lower 
corners. The grid refinement was done automatically. 

Consider the results for Re = 1000 obtained with a refinement criterion of 
r* = 0.10. The value obtained for YLi, for this run was -0.1173, while pure multi- 
grid calculations gave - 0.1054, -0.1150, and - 0.1178 respectively for grid sizes 
32 x 32, 64 x 64, and 128 x 128. (Recall that adaptive refinement was allowed only 
for two levels after the 32 x 32 grid level.) This comparison indicates that the adap- 
tive multigrid result is almost as accurate as the result obtained with pure multigrid 
using a 128 x 128 grid. However, the amount of memory and the CPU-time 
required are reduced to about 20 % and 40 %, respectively. The advantage becomes 
greater as higher accuracy is demanded or the Reynolds number is increased. 
Three-dimensional calculations would also have greater gains. 

3.3. Backward-Facing Step Flow: Multigrid with Adaptive Refinement 

The flow over a backward-facing step is another heavily studied numerical test 
case (e.g., [36,21]). This is a 2-dimensional flow in a channel which has a sudden 
expansion on one side. The velocity profile upstream of the step is parabolic and 
the step height is half the channel height. Figure 6 shows the backward-facing step 

FIG. 5. Composite adaptive grid used for the Re = 5000 calculation. The base grid was 64 x 64 and 
two refinement levels were allowed. 
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PARABOLIC INFLOW 

REATTACHMENT 
POINT 

FIG. 6. Backward facing step flow geometry and definition of the parameters involved. 

geometry and defines the flow parameters. Experimental results for this particular 
flow configuration have been given by Armaly ef al. [38] and numerical results can 
be found in a number of papers [ 13,21,36]. There is a good agreement between 
the computation and experiment at low Reynolds numbers (Re = uH/v < 400, where 
u is the mean inflow velocity, H is the channel height, and v is the viscosity) but 
for higher Re, the results begin to deviate. Apparently this is due to 3-dimensional 
effects [Zl]. 

Table VI shows the calculated reattachment lengths (normalized by the step 

TABLE VI 

Reattachment Length x,+- as a Function of Reynolds Number for the Backward Facing Step Problem 

xR at level 

Re T* XL 5 6 I %A Work units 

133 0.05 12.0 4.0 4.0 3.9 0.002 10.2 

261 0.05 20.0 6.5 6.5 6.5 0.002 11.3 

400 0.01 27.0 8.5 8.7 8.8 0.005 10.0 

600 0.01 36.0 10.1 10.7 10.8 0.02 37.0 

800 0.01 40.0 10.4 11.9 12.1 0.04 130.0 

Note. xX are values obtained by Caruso [ 131 using a second order adaptive grid approach. The work 
required to obtain these results is given. I, is the estimated average solution error for U. 
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height) for Reynolds numbers up to 800. The coarsest grid was 8 x 2 in all cases. 
Hence the grid size at grid level 5, for example, would be 128 x 32. Adaptive reline- 
ment was only allowed at the final two levels for these runs. The parameter xL gives 
the extent of the grid in the x direction. These results were obtained with the SCAL- 
PL smoother. (Unfortunately some convergence difficulties were experienced with 
the central-difference smoothers when the Reynolds number exceeded 400. This is 

currently under investigation.) It can be seen that the predicted reattachment 
lengths (xR) are very close to the values obtained by Caruso [13] (given by xg in 
the table). The latter were obtained with a central-difference scheme using adaptive 
gridding without multigrid and agree with results of Kim and Moin [21] who used 
a central-difference scheme on a 101 x 101 grid. 

Table VI also gives the estimated average error in u obtained from the calcula- 
tions. Even though the grids are very line, for the higher Reynolds number runs, the 
average u errors are still fairly large. Furthermore the reattachment length is still 
changing significantly at the final refinement levels. For instance, for Re = 800, the 
estimated value of xR changes from 10.4 at level 6 (a 256 x 64 grid), to 11.9 at level 
7 (equivalent to a 512 x 128 grid). It would be expected that the values of u close 
to reattachment change significantly between these two solutions, which is indeed 
the case. Since the finest grid solutions are close to the true solutions (as can be 
seen from a comparison of the xR’s with literature values), these solution error 
estimates are probably overestimates. 

Figure 7 shows the streamline plots for Reynolds numbers 133, 267, 400, and 600. 
At Re = 600 a secondary separation bubble is clearly visible on the top wall of the 

Re = 400 

FIG. 7. Streamlines for the backward-facing step problem for a range of Reynolds numbers. The grid 
systems used in obtaining the solutions are also shown. (The areas covered by the final three levels are 
shown in black, grey, and white, respectively.) 
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duct. This has also been found by Kim and Moin [21] and Caruso [ 131. The com- 
puted solutions also show a very weak bubble for the Re = 400 case. At Re = 800 
the secondary separation bubble is longer and stronger. 

Figure 7 also shows the structure of the grid systems used in obtaining these 
solutions. The final three levels are shown as black, grey, and white, respectively. 
For all four Reynolds numbers, the resolution needs to be higher in the inlet region 
near the top of the step. This can be attributed to the singularity at that point. The 
higher Reynolds number cases also require increased resolution around the 
reattachment point of the main eddy. 

Consider the grid system for the Re =400 case. The refined grid structure is 
fragmented, probably due to a noisy truncation error estimate coupled with the 
choice of r*. Increasing the clustering distances d, and d,, would result in some of 
the grid fragments coalescing. Despite the fragmentation, however, the solutions 
field is smooth and the calculated reattachment length agrees with accepted value. 
For the other cases examined, for both the driven cavity and backward-facing step 
problems, the overall structure of the grid system is not very dependent on the 
exact values of d, and d,,.. For example, for the driven cavity problem at Re = 5000 
gridpoints are marked at each of the corners of the domain leading to the addition 
of subgrids there (see Fig. 5). For any of these subgrids to amalgamate with any 
other would require “large” values of d, and d, (approximately 25 % of the domain 
length). Smaller values lead to an identical grid structure to that shown in the 
figure. 

4. DISCUSSION AND CONCLUSIONS 

The automatic adaptive refinement technique when used with multigrid shows 
itself to be a very efficient means of obtaining steady-state Navier-Stokes solutions. 
Considerable memory savings as well as a reduction in the total CPU time are 
achieved. The automatic refinement approach is based on estimates of the trunca- 
tion error; therefore the solution error is monitored. Thus the refinement can 
continue until the solution error is reduced to a satisfactory level. Alternatively, a 
fixed number of refinement levels can be specified. 

The extension to three dimensions is quite straightforward since the smoothers 
are based on the primitive-variable formulation of the Navier-Stokes equations. 
Another worthwhile extension would be to allow for arbitrary geometries through 
coordinate transformations. There are no apparent difficulties preventing this 
development. 
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