
Journal of Fluids and Structures (2001) 15, 607}616
doi:10.1006/j#s.2000.0369, available online at http://www.idealibrary.com ondoi:10.1006/j#s.2000.0369, available online at http://www.idealibrary.com on
THE PHYSICAL MECHANISM OF TRANSITION
IN BLUFF BODY WAKES

M. C. THOMPSON

Department of Mechanical Engineering, Monash University
Clayton, VIC 3800, Australia

T. LEWEKE

Institut de Recherche sur les Phe&nome%nes Hors Equilibre
49, rue Fre&de& ric Joliot-Curie, B.P. 146, F-13384, Marseille Cedex 13, France

AND

C. H. K. WILLIAMSON

Sibley School of Mechanical & Aerospace Engineering, Cornell University
Ithaca, NY 14853-7501, U.S.A.

(Received 24 September 2000, and in "nal form 28 December 2000)

The physical nature of the initial transition to three-dimensionality of #ow past a circular
cylinder has been the subject of considerable debate in the literature. Of several proposed
mechanisms, the possibility of classi"cation as an elliptical instability is re-examined in this
article. Detailed Floquet analysis of the transition shows clear evidence of the growth of an
elliptic instability in the forming vortex cores followed by ampli"cation by the strong strain
"eld in the hyperbolic region between the forming and shed vortices. In fact, it appears that the
wake immediately behind the cylinder shows distinct signs of a cooperative elliptic instability as
found previously for interacting counter-rotating vortices. Further downstream, after the
vortices have been shed into the wake, the instability again grows in the cores. Three-
dimensional simulations provide a semi-quantitative estimate of the &&elliptic content'' of
instability, and con"rm that elliptic instability seems to be dominant in the initiation and
maintenance of the 3-D perturbation. ( 2001 Academic Press
1. INTRODUCTION

THE TWO-DIMENSIONAL WAKE of a circular cylinder undergoes a hysteretic transition to
three-dimensional #ow at a Reynolds number Re";D/l (where ; is the free-stream
velocity, D the cylinder diameter, and l the kinematic viscosity) of approximately 190. The
initial instability causing this transition gives rise to the "rst of a sequence of two shedding
modes, now generally referred to as modes A and B, which lead to the rapid evolution to
fully turbulent #ow [see, e.g., Williamson (1996a) and Henderson (1997)]. These modes have
distinct unstable spanwise wavelength bands and di!erent topologies. There are strong
indications that the equivalent of mode A is the initial transition mode for a range of
two-dimensional cylindrical bodies, from square cylinders (Robichaux et al. 1999) to long
plates with aerodynamic noses (Hourigan et al. 2001). In addition, modes with the corre-
sponding two distinct spatio-temporal symmetries have been observed in plane wakes both
experimentally and numerically (Meiburg & Lasheras 1988). Figure 1 shows visualizations
of modes A and B in the cylinder wake, obtained from direct numerical simulations (see
Section 3.2).
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Floquet stability analysis indicates that mode A "rst becomes unstable for a spanwise
wavelength of j"4D at Re"190 (Barkley & Henderson 1996). This is consistent with
experimental #ow visualizations of Williamson (1988), which show the spanwise wavelength
to be between 3 and 4D. Interestingly, the unstable band of wavelengths becomes broad as
the Reynolds number is increased, which may be the underlying cause of dislocations in
wakes as observed by Williamson (1992, 1996a, b). At Re"260, the Floquet analysis shows
that the two-dimensional wake becomes unstable to a second shedding mode, mode B
(Barkley & Henderson 1996). The critical wavelength in this case is about 0.8D, again
consistent with experimental observations of Williamson (1988). In a real #ow, this
transition occurs at a lower Reynolds number (Williamson 1988), because the development
of mode A shedding substantially alters the assumed two-dimensional base #ow, so that by
Re"230}240 the wake shows clear evidence of both modes, and of their non-linear
interaction. Unlike mode A, mode B appears to remain unstable over a relatively small
wavelength band, even at much higher Reynolds numbers. The remnants of mode B can be
observed both visually and through spanwise cross-correlation measurements at
Re"1000, when the wake is certainly fully turbulent (Wu et al. 1996).

Despite the large number of experimental, theoretical and numerical studies of this
3-D transition, the precise physical nature of the secondary instabilities is not
fully understood and has generated much debate. Several possible mechanisms have
been proposed. Leweke & Provansal (1995) used a Ginzburg}Landau equation to
model the wake as a collection of coupled oscillators. They proposed that the transition
was due to a Benjamin}Feir instability found in such systems of oscillators. This was
consistent with experiments into the dynamics of the wake; however, this instability
has a vanishing spanwise wavenumber inconsistent with the observations of Williamson
(1988), and numerical predictions of Barkley & Henderson (1996) of a "nite wavenumber.
Brede et al. (1996) suggested that the strong curvature of the streamlines in the near-wake,
and especially of the braid regions between the rollers, was consistent with a centrifugal
instability. However, no conclusive evidence was supplied to support this speculation.
Karniadakis & Triantafyllou (1992) suggested that the route to turbulence was through
period-doubling of the mode B instability. This conclusion was based on numerical
computations on a narrow spanwise domain which suppresses mode A, whereas in a real
#ow its existence alters the evolution, leading to a faster (and di!erent) route to turbulence
(Hourigan et al. 1995).

Williamson (1996b) realized that the two distinct instabilities should be associated with
two di!erent length-scales of the two-dimensional wake #ow. The two obvious wake
length-scales are the core size of the KaH rmaH n vortices and the width of the braids between
the rollers. He suggested that mode A instability was associated with an elliptic instability of
the vortex cores, and that mode B instability was associated with an instability of the braid
region (which includes the braid shear layer within the near-wake vortex formation region).
Leweke & Williamson (1998b) showed that elliptic instability theory predicts the approxim-
ate spanwise wavelength of the mode A instability and is consistent with both the topology
and the waviness of the core vortices. Henderson (1997) was critical of this proposed
mechanism for two main reasons. The numerical simulation of the Floquet mode indicated
that the instability is complex, showing strong growth both inside and outside the vortex
cores, and hence it would not seem reasonable to classify it in terms of a simple instability of
an idealized #ow. The primary objection, however, was that the mode appears to have the
largest amplitude outside the region in which elliptic instability theory indicates it should
grow.

In this paper, we present further evidence that the principal physical origin of mode
A instability can be attributed to an elliptic instability of the vortex cores.



Figure 1. Visualizations of mode A (left, Re"210) and mode B (right, Re"250) shedding in the cylinder wake.
The green and blue isosurfaces represent positive and negative streamwise vorticity. The #ow is from left to right.

The front of the circular cylinder is shown at the left of each plot.

Figure 3. (a) Contour plot of the perturbation spanwise vorticity corresponding to the Floquet mode with
spanwise wavelength of 4D at Re"190. (b) Stretching directions of the local strain. The heavy blue lines are
indicative of the mean stretching direction through the vortex cores. In both plots, the positions of the wake

vortices are indicated by the red lines marking vorticity levels of $0.2;/D.
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2. REVIEW OF THE ARGUMENTS

The theory of elliptic instability has been developed by Pierrehumbert (1986), Bayly (1986),
Landman & Sa!man (1987), Wale!e (1990) and others. In its basic form it considers the
somewhat idealized case of two-dimensional #ow with elliptic streamlines, which are
generated by a superposition of a solid-body rotation with constant vorticity u, and plane
strain of magnitude e. The #ow is (i.e., the streamlines are) elliptic if the eccentricity
parameter b"2e/DuD is less than 1, and hyperbolic if b'1.

It has been shown by various authors, that such unbounded linear #ows are three-
dimensionally unstable for all values of b, except b"1 (plane Couette #ow), which is
marginally stable. The mechanism of instability is an ampli"cation of inertial waves in the
rotating frame of reference of the base #ow through a resonant interaction with the strain
"eld. For inviscid #ow, the growth rate p

i
of the most unstable perturbation is given by

p
i

e
"G

f (b)+ 9
16

(1!bm)n for 0(b(1 (elliptic flow),

"J1!b~2 for b'1 (hyperbolic flow).
(1)

The approximate expression for the elliptic growth rate, with m"2)811 and n"0)3914,
was computed by a least-squares "t of this functional form to the numerical result presented
by Landman & Sa!man (1987). The expression for the hyperbolic instability are given by
Lagnado et al. (1984) and Lifshitz & Hamieri (1991). Importantly, although the growth rate
depends on the orientation of the three-dimensional perturbation wave vector, it does not
depend on its magnitude; i.e., all wavelengths j are equally unstable. Also note that the
growth rate is directly proportional to the magnitude of the strain.

Of course, the wake #ow behind a circular cylinder is not an inviscid unbounded linear
#ow. As shown in Figure 2, the wake consists of "nite regions of elliptic #ow (primarily the
KaH rmaH n vortices), and regions of hyperbolic #ow (primarily the braid regions between the
vortices). It is known, however, from studies by Wale!e (1990) and Leblanc & Godeferd
(1998), that there exist localized modes of elliptic and hyperbolic instability that would "t
into these regions and e!ectively &&see'' a uniform elliptic or hyperbolic #ow. The "nite core
size of the KaH rmaH n wake vortices e!ectively imposes a length scale (the core diameter, which
is of the order of D) on the elliptic instability. This, in turn, leads to an e!ective upper limit
on the spanwise wavelength because the length scales in the cross-stream plane and
spanwise direction are coupled. [Recent comprehensive accounts on elliptic instability in
"nite-size vortices in a small strain, i.e. with b;1, are given by Eloy & Le DizeH s
(1999, 2001).] In addition, the in#uence of viscosity imposes a lower limit on the allowable
spanwise wavelengths. It was shown in Leweke & Williamson (1998b) that the expected
spanwise wavelength of an elliptic instability of the KaH rmaH n vortices is j+3D, given
estimates of the average value of b (+0)6, which is relatively high), and estimates of the
Figure 2. Relation of elliptical #ow regions (b(1, shown in grey) to the wake vortices (solid lines). The
non-elliptic regions are hyperbolic regions (where the strain dominates).
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vortex core diameter from direct numerical simulation of the two-dimensional #ow. This is
respectably in line with the observed experimental determination of j"3}4D and the
Floquet analysis of Barkley & Henderson (1996) (j"4D at onset). The corresponding
growth rate can also be evaluated, again using estimates from DNS of the various
dependent parameters. In particular, the strain rate was measured to be eD/;+1 at the
center of the near-wake KaH rmaH n vortices. The estimated viscous growth rate of elliptic
instability in the cylinder wake around Re"200 is pD/;+0)4 [see Leweke & Williamson
(1998b) for more details on these estimates].

Other strong supporting evidence is the apparent existence of invariant stream tubes as
indicated by dye visualizations, surrounding the vortex cores, which remain unperturbed
despite strong internal waviness of the cores (Leweke & Williamson 1998b). This peculiar
spatial structure is a characteristic feature of the elliptic instability perturbation.

3. NEW RESULTS AND DISCUSSION

In this section, we shall present and interpret some new evidence on the nature of the initial
instability from well-resolved Floquet stability analysis and direct numerical simulations of
the transition.

3.1. FLOQUET ANALYSIS OF MODE A TRANSITION

Floquet analysis determines three-dimensional stability of a periodic two-dimensional base
#ow by solving the linearized Navier}Stokes equations for the perturbation velocity and
pressure "elds. The present implementation is similar to that described in Barkley &
Henderson (1996). The aim is to determine the growth of spanwise sinusoidal perturbations
over one shedding period, as a function of Reynolds number and wavelength. The stability
is determined by the Floquet multiplier, the multiplication factor connecting the amplitude
of a given mode from one cycle to the next. When a multiplier exceeds unity, the
corresponding mode becomes unstable. As determined by Barkley & Henderson (1996), the
"rst Floquet multiplier becomes greater than 1 at the transition Reynolds number of 190,
with a three-dimensional unstable mode of wavelength j"4D.

Figure 3(a) shows the Floquet instability mode at a certain time in the shedding cycle for
Re"190 and for a Floquet wavelength of 4D. For these parameters, the corresponding
Floquet multiplier was determined to be approximately unity, consistent with the analysis
of Barkley & Henderson (1996). It is this instability mode that is responsible for the
transition to three-dimensional #ow. In e!ect, the saturated Floquet mode corresponds to
mode A.

The plot shows the perturbation spanwise vorticity. Several features of the #ow have
been marked. Immediately downstream of the cylinder, the wake shows local vorticity
distributions reminiscent of the pattern characteristic of elliptic instability. The
initial vortex structure in the lower half of the wake, shows the separation of positive
and negative perturbation vorticity in the direction of the principal axis of strain [see
Figure 3(b)], corresponding to a movement of the centre of the forming roller in
the same direction, as is expected for elliptic instability. On the top half of the wake, there is
another separation of positive and negative vorticity, again aligned with the strain "eld. The
two localized perturbations together appear to be similar to the cooperative elliptic
instability of two interacting counter-rotating vortices (Leweke & Williamson 1998a). In
particular, they show the same topology and alignment with the local strain "eld. At this
stage of vortex formation, both local perturbations are embedded in elliptic regions of the
#ow.
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Figure 4(a) shows a greyscale plot of the local growth rate of the instability calculated
using results from Landman & Sa!man (1987). The vorticity and strain distributions are far
from the constant values assumed in this study, nevertheless, the distribution is suggestive
that the elliptical regions shown in Figure 3(a) are likely to be (elliptically) unstable.

The magnitude of the local strain is given in Figure 4(b). Interestingly, apart from the
separating shear layers attached to the cylinder, the strain is large in the hyperbolic region
between the two elliptic regions in the top half of the wake at the rear of the cylinder. This is
important because the inviscid growth rate roughly scales with the strain rate, so high strain
is an indication of high growth rates for both elliptic and hyperbolic instabilities.

Figure 5 shows a sequence of the images of the development of the spanwise vorticity
perturbation close to the back of the cylinder. Initially, the perturbations develop in each
elliptic region resulting in the generation of positive and negative perturbation vorticity on
each side of the core centre. This is indicative of the movement of the core in the direction of
principal strain as occurs for elliptical instability. For both the "nite-size vortex examined
by Wale!e (1990), and the cooperative elliptic instability studied by Leweke & Williamson
(1998a), the perturbation growth (at least for a reasonable time) is limited to the elliptical
regions of the #ow. This is not true in this case. Here, although the initial development of the
instability occurs in the forming vortex cores, the individual perturbations merge and grow
strongly between the elliptical regions. This is not surprising as the region between the
forming vortex structures, and especially towards the downstream limits of the structures, is
strongly strained as can be seen from Figure 4(b). It appears that this high strain rate leads
to strong ampli"cation of the perturbation. As the merged perturbation is advected
downstream, it appears to lag behind the advected vortex cores. This is probably due to
a combination of two factors: (i) the mean wake velocity defect of the perturbation on the
side of the cores closer to the wake centre line is advected downstream less quickly than the
more o!-centred parts or the cores themselves; (ii) the instability is preferentially ampli"ed
in the highly strained hyperbolic region between vortex structures from the same side of the
wake. The end result is that, after the vortex has been shed into the wake, the maximum
amplitude of the instability is in the braid regions rather than the vortex cores. This
maximal amplitude occurring between the forming vortices and in the braid regions was
noticed by Henderson (1997), and helped lead to the conclusion that the instability should
not be classi"ed as elliptic. It needs to be pointed out that unless resolution is adequate and
the contour levels are chosen carefully, the initial development of the instability in the core
regions can easily be overlooked.

As the vortices move further downstream, out of the formation region, they maintain
their alignment and shape to a large extent and so are ideal candidates for a second elliptic
instability. Initially, they are relatively perturbation-free, but the background perturbation
Figure 4. Contour plots of (a) the viscous growth rate predicted from elliptic instability theory (Landman
& Sa!man 1987), and (b) the strain magnitude showing that the strain maintains a high value in the hyperbolic

region (between the two elliptic regions in the top half of the wake, immediately behind the cylinder).



Figure 5. Development of the instability during the shedding process. Relative to the "rst (a), the subsequent
images (b}f) are 0.04, 0.08, 0.12, 0.24 and 0.32 shedding periods later, respectively.
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"eld leads to the rapid development of elliptic instability in the cores. Although the cores, by
no means, have constant local vorticity and strain "elds, they clearly show a perturbation
"eld consistent with the vorticity distribution expected from elliptic instability. This rapid
growth only occurs for a short time. Approximately one period further downstream, viscous
growth rate calculations indicate that the instability is only marginally unstable. This is
consistent with the observed development shown in Figure 3(b) (and further downstream).

It is possible to estimate the growth rates for the initial cooperative and the downstream
elliptic instabilities from the simulations. This was done by measuring the rate of change of
the circulation in each half of the bipolar spanwise perturbation vorticity of the cores over
approximately one quarter of a shedding cycle. The line integral de"ning this circulation
was evaluated numerically for at least "ve consecutive snapshots in time spaced 0)05 cycles
apart. For the initial cooperative core instability, and downstream elliptic core instability,
the growth rate was calculated to be pD/;"0)39 and 0)42, respectively. Although there is
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some uncertainty in these estimates, they are in good agreement with the theoretical
estimate pD/;+0)4 given above.

In summary, an interpretation of the evidence is that there are two elliptic instabilities,
contributing to the mode A transition. The "rst occurs immediately at the back of the
cylinder as the KaH rmaH n vortices are forming, and the second further downstream as the
vortices are shed into the wake. Although the "rst instability does not persist in the elliptic
region, and appears to be ampli"ed in the hyperbolic region, it seems likely that the
spanwise wavelength is selected according to the scale of the KaH rmaH n vortices in line with
elliptic instability theory. Both when the perturbation is initially forming in the core regions,
and when it is undergoing ampli"cation in the hyperbolic region, it appears that the growth
is due to the action of the strain "eld. This is consistent with the physical mechanism
responsible for both elliptic and hyperbolic instability.

3.2. THREE-DIMENSIONAL DIRECT NUMERICAL SIMULATION

As further support for the importance of the elliptical nature of the instability, direct
numerical simulations were performed. The same three-dimensional spectral/spectral-ele-
ment code used for previous wake transition simulations (Thompson et al. 1996) is used
here. Spectral elements are used in the cross-stream planes and a Galerkin Fourier
expansion in the spanwise direction. Care was taken to ensure adequate resolution and
domain size to capture the essential physics of the mode A transition. However, due to space
limitations, these validation studies are not described here. The spanwise domain size was
chosen to be 4D to approximately match the most unstable wavelength of the spanwise
mode at transition. This limits the possible wavelengths represented by the Fourier
expansion to be 4D/n (n"1, 2,2). Of these wavelengths only j"4D is unstable at the
Reynolds number of the simulations.

A three-dimensional simulation of mode A at Re"200 was started by extending the #ow
"eld from a previous two-dimensional simulation to the three-dimensional domain. To
initiate the development of three-dimensionality, the "eld was perturbed by adding random
noise at a relative level of 10~4 to the velocity "eld. The #ow was then evolved for su$cient
time (approximately 10 shedding cycles), so that it e!ectively consisted of the two-dimen-
sional base #ow plus the most unstable Floquet mode. At this stage, the relative amplitude
of perturbation "eld is still very small and the evolving #ow is well within the linear regime
where the growth is governed by the Floquet multiplier.

At this point in the temporal development of the mode A #ow, the perturbation "eld was
decomposed into two mutually exclusive components. The "rst perturbation "eld is only
nonzero where the two-dimensional #ow (shown in Figure 2) is elliptic (b(1), and the
second where it is hyperbolic (b'1). From these two perturbation "elds, two three-
dimensional #ow "elds were constructed by adding the spanwise-averaged (two-dimen-
sional) base #ow to the elliptic and hyperbolic perturbation "elds, respectively. Thus, the
"rst #ow "eld contains the elliptic part of the perturbation, while the second contains the
hyperbolic part. This split-up was performed at a random time in the shedding cycle. The
results that follow may, to a certain degree, depend on the choice of this time, a point which
was not investigated further so far. (Formally, regions with b(1 may also develop
instabilities linked to centrifugal e!ects. However, no attempt was made here to further
isolate these e!ects from those of the elliptic instability.)

Using the two "elds as initial conditions, the #ow was evolved for several more shedding
cycles. Figure 6(a,b) show isosurface visualizations of the perturbation spanwise vorticity
after 2)4 shedding cycles, for the two initial "elds. The isosurface level is the same in both
cases. These visualizations show that the vorticity "eld that has evolved from the initially



Figure 6. Isosurface visualization of the perturbation spanwise vorticity after removing (a) the hyperbolic or (b)
the elliptic component of the Floquet mode and evolving the #ow for 2.4 shedding periods.
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elliptic "eld recovers towards the complete Floquet mode much more quickly than the
initially hyperbolic one. In particular, starting from the &&elliptic'' conditions, the perturba-
tion in the hyperbolic braids, initially set to zero, reappears very rapidly. On the contrary,
with the &&hyperbolic'' initial "eld, i.e., in the absence of the elliptic core deformations, the
perturbations in the braids actually decrease in the "rst few cycles of the simulation. Thus, it
appears that the elliptic instability of the vortex cores in the wake formation zone has
a dominant in#uence on the development of the instability.

The &&degree of ellipticity'' can be approximately quanti"ed through the following argu-
ment. Let '

0
, '

1
, '

2
,2 be the Floquet modes of the linearized Navier}Stokes equations,

where the modes have been ordered according to magnitude of the eigenvalues (the Floquet
multipliers) from largest to smallest. In particular, '

0
corresponds to the only growing

mode, i.e., the one responsible for the mode A transition. To form the two initial "elds, this
Floquet mode is split into two mutually exclusive components '

e
(elliptic) and '

h
(hyper-

bolic): '
0
"'

e
#'

h
. We can now expand these two components in terms of all the Floquet

modes:

'
e
"+ a

i
'

i
and '

h
"+ c

i
'

i
. (2)

From the de"nition of '
e

and '
h
the following relationships exist between the expansion

coe$cients: a
0
#c

0
"1 and a

i
#c

i
"0, for i'0. E!ectively, a

0
/c

0
determines the ratio of

elliptic to hyperbolic &&contents'' of the growing Floquet mode. After each shedding period,
the amplitude of each Floquet mode is multiplied by its Floquet multiplier, i.e., after many
shedding cycles the perturbation evolves towards '

0
, the multipliers of the other modes

being less than 1. Thus, the ratio a
0
/c

0
is given by the ratio of the amplitudes of the two

growing perturbations starting from the elliptic and hyperbolic conditions described above,
after the same number of periods. In the present simulations, this ratio was measured eight
shedding cycles after initialization, which is su$cient to damp out the contribution from the
stable Floquet modes ('

i
, i'0), whose multipliers are all smaller than 0)2 at Re"200

(Barkley & Henderson 1996). The result is a
0
/c

0
"2)03. In this sense, the Floquet mode

responsible for mode A transition may be characterized as being about two-thirds elliptic
and one-third hyperbolic.

4. CONCLUSIONS

It is useful, where possible, to attribute a #ow transition to a simple physical mechanism
applicable to idealized #ows, because it aids with providing a physical understanding of the
transition. This is valuable for interpreting other related (or unrelated) transitions. It is with
this aim that we have attempted to interpret the transition to three-dimensionality for #ow
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past a circular cylinder. Importantly, there is now considerable evidence that the same
transition scenario applies to a whole range of two-dimensional body geometries. Certainly,
the transition is complex, the instability is not restricted to the forming vortices and the
KaH rmaH n vortices in the wake, and even within the cores the ellipticity parameter is far from
constant. In addition, linear stability analysis predicts that the unstable mode grows as
a whole, rather than as a set of e!ectively decoupled regions with their own local physical
instabilities triggering instabilities in other regions. Nevertheless, the evidence presented in
this paper shows that the "rst instability to form as the #uid advects downstream past the
cylinder occurs in the forming vortex cores, with a growth rate and spanwise wavelength
close to those predicted by idealized elliptic instability theory. This initial instability shows
distinct features similar to the cooperative elliptic instability found by Leweke & William-
son (1998a) for two counter-rotating vortices. Because of the complexity of the #ow, it
appears that the nascent perturbation is ampli"ed in the highly strained hyperbolic region
between forming vortices, leading to the observed high perturbation amplitudes in the
braids. A second elliptic instability develops in the cores of the fully formed KaH rmaH n
vortices further downstream. Direct numerical simulations, carried out to analyse the
contributions of elliptic and hyperbolic #ow regions to the three-dimensional transition,
support the interpretation that the elliptic instability is dominant in the initiation and
maintenance of the mode A perturbation.
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