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Abstract

The problem of a particle impacting on a wall, a common phenomenon in particle-laden flows in the minerals and pro-
cess industries, is investigated computationally using a spectral-element method with the grid adjusting to the movement of
the particle towards the wall. Remeshing is required at regular intervals to avoid problems associated with mesh distortion
and the constantly reducing maximum time-step associated with integration of the non-linear convective terms of the
Navier–Stokes equations. Accurate interpolation between meshes is achieved using the same high-order interpolation
employed by the spectral-element flow solver. This approach allows the full flow evolution to be followed from the initial
approach, through impact and afterwards as the flow relaxes. The method is applied to the generic two-dimensional and
three-dimensional bluff body geometries, the circular cylinder and the sphere. The principal case reported here is that of a
particle colliding normally with a wall and sticking. For the circular cylinder, non-normal collisions are also considered.
The impacts are studied for moderate Reynolds numbers up to approximately 1200. A cylindrical body impacting on a wall
produces two vortices from its wake that convect away from the cylinder along the wall before stalling while lifting induced
wall vorticity into the main flow. The situation for a sphere impact is similar, except in this case a vortex ring is formed
from the wake vorticity. Again, secondary vorticity from the wall and particle plays a role. At higher Reynolds number, the
secondary vorticity tends to form a semi-annular structure encircling the primary vortex core. At even higher Reynolds
numbers, the secondary annular structure fragments into semi-discrete structures, which again encircle and orbit the pri-
mary core. Vorticity fields and passive tracer particles are used to characterize the interaction of the vortical structures. The
evolution of the pressure and viscous drag coefficients during a collision are provided for a typical sphere impact. For a
Reynolds number greater than approximately 1000 for a sphere and 400 for a cylinder, the primary vortex core produced
by the impacting body undergoes a short-wavelength instability in the azimuthal/spanwise direction. Experimental visual-
isation using dye carried out in water is presented to validate the predictions.
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1. Introduction

Many processes in the minerals and process industries involve the transport and processing of particle-
laden fluids. Particle impacts on walls are a source of heat transfer augmentation as well as erosive wear
and deposition [1]. Surprisingly, very little visualisation of the fluid mechanics due to the impact of particles
on surfaces has been undertaken. The recent article by Eames and Dalziel [2] shows that when a rigid body
collides with a surface, a layer of dust on the surface can be resuspended due to the effects of two different
mechanisms. The first is ballistic in nature. The collision breaks cohesive bonds between the dust particles
and, if the kinetic energy is sufficiently large, this can lead to the ballistic ejection of particles from the wall.
For dust ejection by sand particles, experiments by Rice et al. [3], and Shao et al. [4] related the mass ejection
rate to the collision rate and the energy loss per collision. The second mechanism leading to dust ejection is
hydrodynamic, which is the focus of this article. At particle Reynolds numbers in excess of approximately
100, diffusion is insufficient to prevent the wake of the rigid body overtaking it on impact. The resultant vortex
structure(s), originating from the separated flow behind the body, can cause significant dust resuspension. The
resuspension occurs after a significant time delay as the wake vorticity advects from behind the body to
the wall; this provides a spectacular effect in experimental visualisations. Eames and Dalziel [2] examined
the behaviour experimentally in some detail as the Reynolds number was varied between 300 and 3500. They
also provided analysis primarily directed towards resuspension characteristics of different dust types and layer
thicknesses rather than the fluid dynamics, of primary concern in this paper.

Note that particle impacts with walls also have importance for other areas such as fouling, and the enhance-
ment of heat transfer due to the convection of fluid towards and away from the surface through the action of
the wake structures. In addition, the associated momentum transport may significantly affect the bulk flow of
multi-phase fluids.

In this paper the numerical method is described and applied to the fluid dynamics associated with normal
impacts of generic two- and three-dimensional bodies. The predictions are compared with experimental dye
visualisations, which highlight the vortical structures and the induced flow separation at the wall.
2. Methodology

2.1. Numerical method

The numerical approach is based on the spectral-element method e.g., [5]. The particular formulation
employed here is based on a nodal representation and hence it is effectively a high-order Galerkin finite-ele-
ment approach. The domain is subdivided coarsely into a set of discrete macro-elements (h-discretisation).
Internally within elements, higher-order Lagrangian polynomial interpolation is used to approximate solution
variables (p-discretisation). The node points correspond to Gauss–Legendre–Lobatto quadrature points,
which produces considerable efficiency gains in the evaluation of the integrals formed by applying the
weighted residual method to the Navier–Stokes equations, and leads to a diagonal mass matrix. The spatial
discretisation is based on quadrilateral elements although other possibilities exist which maintain the spectral
convergence properties of the method. Of course, a key advantage of hp-type methods is that the domain can
often be discretised once-only with a sub-optimal macro-element mesh and then an accurate converged solu-
tion can be obtained by increasing the order of intra-element polynomial interpolation at runtime until con-
vergence is achieved. Since mesh construction is often time-consuming and user-intensive, this strategy can be
of considerable benefit.

The problem considered requires the solution of the time-dependent incompressible Navier–Stokes equa-
tions in a domain with moving geometrical elements. The equations are discretized in time through a tradi-
tional three-step splitting approach [6], which treats convection, pressure/continuity and diffusion terms as
sequential sub-steps. Second-order time accuracy for the velocity field is achieved by applying first- or sec-
ond-order pressure boundary conditions. Both axi-symmetric and Cartesian versions of the code have been
validated extensively for domains without moving boundaries e.g., [7], [8]. Full details of the method can
be found in these references and Karniadakis and Sherwin [5].
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The modification required to treat moving boundaries is based on the ALE (Arbitrary Lagrangian–
Eulerian) method described in, for example, Warburton and Karniadakis [9]. The Navier–Stokes equations
and continuity equation, modified to account for the movement of mesh points, is given by
ou

ot
þ ðu� umÞ � ru ¼ �rp þ mr2u;

r � u ¼ 0:
Here u is the fluid velocity, um is the velocity of the mesh, p = P/q is the kinematic pressure, P is the pressure, q
is the fluid density and m is the kinematic viscosity. The partial derivatives are relative to the moving mesh. The
mesh velocity is constrained to match the velocity at moving or stationary boundaries, but can be freely cho-
sen internally. Preferably it should be chosen to lead to minimal mesh distortion as the flow evolves. For the
problem considered here, it is difficult to ensure maintenance of a high-quality mesh during the entire evolu-
tion. Remeshing is typically required several times during the approach of the body to the wall to minimise the
effects of both excessively skewed elements and the continual reduction in the maximum time-step due to the
increasingly strong Courant condition. This is true even though the non-linear step is treated semi-implicitly,
as discussed below.

Remeshing can be done efficiently using the same high-order tensor-product Lagrangian interpolation
employed by the spectral-element scheme within elements. This involves finding each element in the old mesh
containing each node point in the new mesh and using polynomial interpolation based of Newton iteration
to transfer the solution from the old to the new mesh. In practice, a series of meshes is constructed with the body
at different distances from the wall. The flow is evolved for a predetermined time on the first mesh and then the
calculation is halted and the velocity field transferred to the next mesh in the sequence. The flow computation is
then restarted with the new mesh. This happens several times as the body approaches the wall. The whole process
is automated using batch instructions for the time integrations and interpolations allowing the flow to be
evolved from the initial impulsive start, through impact and the eventual decay of the vorticity field post-impact.

Apart from the modification of the standard spectral-element implementation to include the spatially
dependent mesh velocity, there are two other important modifications required. Although the splitting method
is well-known, the equations are supplied here to assist with the following discussion detailing the changes
involved for the moving mesh.

The Navier–Stokes and continuity equations given above are discretised in time by integrating over a time-
step as follows
Z tþDt

t

ou

ot
dt ¼ uðnþ1Þ � uðnÞ ¼ ðuðnþ1Þ � ^̂uÞ þ ð^̂u� ûÞ þ ðû� uðnÞÞ

¼ �
Z tþDt

t
ðu� umÞ � rudt �

Z tþDt

t
rpdt þ m

Z tþDt

t
r2udt;
where the subscript (n) refers to the time level and we have introduced intermediate velocities û and ^̂u. Hence,
we can break the integration down into three sub-steps treating advection, pressure/continuity and diffusion,
respectively
û� uðnÞ ¼ �
Z tþDt

t
ðu� umÞ � rudt; ð1Þ

^̂u� û ¼ �
Z tþDt

t
rpdt; ð2Þ

uðnþ1Þ � ^̂u ¼ m
Z tþDt

t
r2udt: ð3Þ
Generally, the righthand side of the advection sub-step is treated using a second- or third-order Adams-
Bashforth approximation, e.g., for second-order
û� uðnÞ ¼ �Dt
3

2
ððu� umÞ � ruÞðnÞ � 1

2
ððu� umÞ � ruÞðn�1Þ

� �
: ð4Þ
No explicit boundary conditions are required or applied to this equation.



M.C. Thompson et al. / Applied Mathematical Modelling 30 (2006) 1356–1369 1359
An equation for the pressure can be obtained by taking the divergence of the pressure sub-step equation
and enforcing that r � ^̂u ¼ 0, which, in turn, ensures that the continuity equation is satisfied at the end of
the full timestep provided that the velocity field at the previous step was divergence-free. The pressure equa-
tion is then given by
r2pðnþ
1
2Þ ¼ 1

Dt
r � û ð5Þ
and the intermediate velocity update is then given by
^̂u ¼ û� Dtrpðnþ
1
2Þ: ð6Þ
Again, no velocity boundary conditions are required for this equation. The pressure equation requires bound-
ary conditions, which are obtained by dotting the NS equations with the surface normal. The only term con-
tributing from any boundaries for the cases considered is from the diffusion term. Karniadakis et al. [6]
describe a stable treatment of this term. Zeroth-order pressure boundary conditions, n Æ $p = 0 where n is
the surface normal, lead to a first-order accurate velocity approximation. A first-order boundary condition
sets n Æ $p(n+1/2) = m n Æ $2u(n), while the second-order condition is n Æ $p(n+1/2) = mn Æ $2u(n+1/2). Generally,
we use the second-order approximation. With the iterative modification to this time-stepping scheme discussed
below, a convenient approximation for u(n+1/2) is ð1=2Þðuðnþ1Þ

i þ uðnÞÞ, where u
ðnþ1Þ
i is the current iterative esti-

mate at the next timestep. In practice, using the second-order pressure condition tends to reduce the maximum
timestep slightly. Note that for stability reasons it is necessary to use the alternate form of the diffusion term
mr2u ¼ mðrðr � uÞ � r �r� uÞ:

The diffusion sub-step is generally approximated by the second-order Crank–Nicolson method (or the h
variation, see Canuto et al. [10]) giving the following Helmholtz equation
1� 1

2
mDtr2

� �
ðuðnþ1Þ � uðnÞÞ ¼ ð^̂uþ uðnÞÞ: ð7Þ
The spectral-element method involves the application of the Galerkin weighted residual method to each of the
sub-step equations. The shape and weighting functions are Lagrangian interpolating polynomials using ele-
ment nodal points corresponding to Gauss–Legendre–Lobatto quadrature points in the transformed elements.
This leads to sparse matrix equations for the sub-steps associated with pressure and diffusion. For two-dimen-
sional problems on fixed meshes, the matrices are inverted directly using sparse Gaussian elimination or
decomposed into LU (upper and lower) triangular matrix form. Hence, the sub-steps reduce to matrix–vector
multiplies with fixed matrices. For the case here, the mesh points move from timestep to timestep, which
means that the matrices associated with the pressure and viscous sub-steps are a function of time. Hence, it
is necessary to solve new matrix equations at each timestep. This adds some overhead to the computation,
since this is a relative expensive computational component. The expense increases with the order of the inter-
polating polynomials used with elements. Generally, it is better to use a lower polynomial order (say 5th or
6th) and increase the number of elements. However, the increased cost of computing the LU decompositions
of the sparse matrices at each step is somewhat offset by using an iterative method for the non-linear step.
The first iteration uses the explicit Adams-Bashforth form given above but subsequent iterations use
ûiþ1 � uðnÞ ¼ �Dt
1

2
ððui � umÞ � ruiÞðnþ1Þ þ 1

2
ððu� umÞ � ruÞðnÞ

� �
; ð8Þ
where i is the iteration index, so that u
ðnþ1Þ
i is the current estimate of u at the end of a full timestep. Iteration

continues until the solution converges. Generally, only two or three iterations are required. For this problem it
was found that the maximum timestep could generally be set at about 5–10 times the Courant timestep of the
standard splitting approach.

A convenient way to treat non-normal impacts is to only compress the mesh in the normal direction to the
wall and handle the tangential velocity component by solving the Navier–Stokes equations in a frame moving
uniformly tangentially to the wall. A schematic of the problem geometry and parameters is shown in Fig. 1,
showing the physical frame and preferred computational frame. This can be done for both Cartesian and axi-
symmetric coordinate systems, although at this stage we have only obtained results for the Cartesian code.
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Fig. 1. Schematic of the geometry, problem parameters and boundary conditions.
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2.2. Meshing

As described above, several remeshing steps were required as the body approached the wall. Typically, the
cylinder or sphere was initially placed at a starting distance of L = 5D from the wall. In agreement with exper-
iments of Eames and Dalziel [2], we find that for starting distances much greater than this, the wake often loses
symmetry before impact. A sequence of meshes for modelling normal impact is shown in Fig. 2. Only macro-
elements are shown; the mesh is internally subdivided with N · N nodal points. Typically N is between 5 and 9
depending on the Reynolds number. Only the mesh in the vicinity of the body is shown. All meshes used
extend 50D upstream and 25D in the cross-stream direction, leading to small blockage ratios. For a starting
distance of 5D it was sufficient to interpolate between meshes twice as shown in the figure.

Care was taken to ensure that remeshing does not introduce significant errors. As a typical example of the
size of the effect, for the highest cylinder collision example presented here, Re = 400, with N = 6, interpolation
from the rightmost mesh on the second line in Fig. 2 to the mesh above and back again introduces a maximum
Fig. 2. Sequence of meshes used for the impact studies. Only macro-elements near the body are shown. The horizontal arrow shows mesh
evolution with time. The vertical arrows indicate interpolation from one mesh to another.
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change in the velocity components of 0.2%. In addition, the drag force varies smoothly across the remeshing
step.

2.3. Temporal accuracy

For a stationary mesh, the method is formally second-order accurate provided at least first-order boundary
conditions are applied to the Poisson equation for the pressure. Verification of temporal convergence for the
current case was shown as follows. The flow for Re = 100 and N = 6 was initially integrated from an impulsive
start for a non-dimensional time of s = tD/U0 = 1. This was long enough for a recirculating wake to begin to
develop. The polynomial order was sufficiently high to fully resolve the flow for this Reynolds number. The
flow was then restarted and integrated for a further 0.5 time units using different timesteps and pressure
boundary conditions. At the end of this period, the velocity along the centreline in the wake at 0.25D from
the rear of the cylinder was recorded. Fig. 3 shows how the error in the velocity varies with timestep for
the zeroth-order pressure boundary condition. Clearly, the convergence is linear as expected. Using either first-
or second-order pressure boundary conditions give five significant figure accuracy even for the largest time-
steps used (Dt = 0.1). Generally, a timestep of 0.005 or less was used for most of the calculations presented
in this paper.

2.4. Experimental techniques

Experiments of sphere impacts with a wall were carried out in a 60 · 50 · 50 cm3 glass tank filled with
water. A metal ball 19.02 mm in diameter was attached to a fine twisted nylon thread. The thread passed over
a pulley and was wound on a threaded reel driven by a computer-controlled stepper motor. This mechanism
allowed the sphere to be lowered through the water at a specified speed, thereby allowing specification of the
Reynolds number. Fluorescein dye and light from an Argon ion laser were used to visualise the wake vortical
structures and the formation and advection of the vortex ring structures as the wake threaded over the sphere
on impact.

3. Results

3.1. Normal collision of a circular cylinder

A series of simulations were completed for a circular cylinder striking a wall normally. This can be consid-
ered as effectively a two-dimensional particle. For these computations, the initial starting distance was chosen
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to be L/D = 5. Recall that Eames and Dalziel [2] found that, for a spherical particle, at this distance the wake
remained axi-symmetric and steady prior to impact. We also found a similar restriction in our experiments.

Simulations were run for Re = 100, 200 and 400. Fig. 4 shows snapshots of the vorticity field at a sequence of
times post-collision. Since it was assumed the wake remains symmetrical at this starting distance only half the
domain was simulated with a symmetry boundary condition imposed. The wake overtakes the body after impact
and eventually forms into a vortex tube with an almost radially symmetric distribution at long times. As the wake
vorticity passes the cylinder, vorticity of opposite sign is generated at the cylinder surface, which also sheds from
the cylinder and is convected away. In addition, the vorticity originating from the wake also causes opposite-
signed vorticity to be generated at the solid surface below. These two sources of clockwise vorticity encase
the stronger anticlockwise vortex tube. The evolution shows a strong effect of Reynolds number. For
Re = 100, viscous diffusion acts quickly to dissipate the structures, so that at long times, only the remnants of
the vortex tube remain. For Re = 200, the tube remains partially encased by a still strong annulus of clockwise
vorticity. Finally, at Re = 400, the secondary annular vortical structure fragments, in much the same way that
occurs for a vortex ring striking a wall. The stability of the evolving vortical structures will be considered later.

3.2. Oblique collision of a circular cylinder

Fig. 5 shows the evolution of the vorticity field for different impact angles, h, measured from the normal.
For these three simulations Re = 100 based on the normal velocity and distance, and L/D = 5 as before. For
Fig. 4. Vorticity contours showing the vorticity dynamics after the normal impact of a circular cylinder with a wall. Coloured contours
levels are the same for all plots allowing the relative effects of diffusion to be gauged.



Fig. 5. Dynamics of the vorticity field for non-normal impacts. The Reynolds number is 100.
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an impact angle of 30�, the long term vorticity evolution is not very much different from that for a normal
impact. The field becomes more symmetrical at long times. At h = 60�, however, the initial asymmetry is
strongly maintained. The vorticity structure on the far side of the impact point consists of the wake vorticity,
as before, together with considerable opposite-signed vorticity shed from the cylinder as the primary vorticity
passes. These two sources combine together into a vortex pair, consisting of vortices of similar strength. As a
consequence, the pair moves along a circle of large radius allowing the pair to advect almost vertically from
the wall.

3.3. Sphere impacts

3.3.1. Comparison with experiments

Fig. 6 shows a sequence of images comparing experimental dye visualisations with numerical predictions of
the vorticity field for a sphere striking a wall normally at Re = 500 and L/D = 5. The times correspond to
s = 1.5, 4, 8, 16. The primary vortex ring has reached within 10% of its final radial position by the final time.
More detailed results for sphere impacts over a range of Reynolds numbers can be found in Thompson et al.
[11].

3.3.2. Mixing of fluid due to impact

A plot of the positions of passive tracer particles for s = 20 is given in Fig. 7, for a normal sphere impact at
Re = 400 and L = 5D. The particles were initially placed on a regular grid. Their positions were then evolved
from the time that the sphere began to move towards the wall until the primary vortex ring had almost reached



Fig. 6. Comparison of experimental results and numerical predictions for a sphere impact at Re = 500 and L/D = 5. Lefthand side shows
images obtained from dye placed on the sphere. Righthand images are the corresponding numerical vorticity contours.
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its final position. The particle positions were integrated in time using the second-order Adams-Bashforth
scheme, with spectral-element interpolation used to evaluate the velocities. The particles form a spiral pattern
inside the vortex ring similar to the experimental dye visualisations of the previous figure. The total distance
travelled by each particle was also recorded during the evolution. Fig. 8 shows a coloured contour plot of the
total distance moved (left) and the difference between the final and starting position (right) a function of start-
ing position. As expected the maximum movement occurs for particles close to the initial position of the
sphere. There is also a strong effect from the vortex ring system after impact. One interesting question is
how much fluid movement is caused by the movement of the sphere? This can be estimated by summing
the distance moved for each volume element associated with a particle. The ratio of the volume-weighted dis-
tance moved by the fluid relative to the sphere is approximately 7.0. If only the displacement from the original
position is considered, then this reduces to approximately 5.0. Either way, moving the sphere through the fluid
results in considerable fluid rearrangement.



Fig. 7. The position of initially regularly spaced tracer particles at s = 20 after the impact of a sphere with a wall. The lefthand image
shows the vorticity pattern at this time. Re = 400 and L/D = 5.

Fig. 8. Coloured contour plot showing the integrated distance (left) and difference between the initial and final positions (right) of tracer
particles as a function of initial position. Re = 400 and L/D = 5.
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3.3.3. Spheres at terminal velocity striking a wall

An interesting case not previously examined is that of a sphere falling under gravity so it reaches its termi-
nal velocity and the flow field is fully developed prior to impact. At present only axisymmetric cases are con-
sidered. Since a sphere wake remains axisymmetric until Re = 212 e.g., Thompson et al. [7], we consider the
Re = 200 case. At this stage we are not considering the deceleration of the sphere caused by increased fluid
forces when the sphere gets close to the wall.

Fig. 9 shows a plot of the pressure (Cp) and viscous (Cm) force coefficients before and after impact. Far from
the wall, Cp = 0.417 and Cm = 0.364, giving a total drag coefficient of 0.78 in good agreement with the exper-
imental result of Roos and Willmarth [12]. The force coefficients remain relatively constant until the sphere
gets within about half a diameter from the wall. During the final stages prior to collision, both the viscous
and pressure forces increase substantially as the fluid near the wall is squeezed out from the gap between
the sphere and wall. After the sphere decelerates to zero velocity impulsively at impact, the force coefficients
reverse sign. The viscous force continues to push the sphere towards the wall, as the wake continues to pass
over the surface of the sphere. The pressure force changes sign again after impact so that the force is directed
away from the wall. However, post-impact the dominant force contribution is from viscous drag. This is not
surprising as during this period the effective Reynolds number gradually reduces to zero.
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In Fig. 10(a) the evolution of the vorticity at the centre of the main vortex ring is shown for Re = 200, both
for L/D = 5 and for when the wake is essentially in equilibrium prior to impact, i.e. L/D!1, as discussed
above. It takes some time for a distinct vortex ring to develop, hence only results for s > 1.5 are given. Initially,
there is little difference in strength between the two vortex structures, despite the significant difference in pre-
collision wake strength and length. This is probably due to the similar vorticity density in both wakes near the
rear of the sphere. However, at longer times the wake for L/D!1 can continue to supply circulation at a
higher rate, and for longer, and hence the decay of the central vorticity is slower in this case. Fig. 10(b) shows
the vorticity distribution for both cases at s = 10 using the same contour levels. This highlights the relative
similarity of the vortical structures despite the difference strengths.

3.4. Three-dimensional instabilities

Previous experiments by Eames and Dalziel [2], which focused on dust ejection, showed that above a
Reynolds number of about 1000, the vortex ring system formed during sphere impact developed a three-
dimensional instability. Our own experiments and simulations also show this to occur. Fig. 11 shows an exper-
imental dye visualisation together with a computer-generated isosurface visualisation of (perturbation) radial
vorticity. In both cases Re = 1200 and L/D = 5. The instability wavelength is of the order of 1D or less. This is



Fig. 11. Left: Dye visualisation of the development of the instability for a sphere impact. (Note the negative image is shown.) Right:
positive and negative isosurfaces of radial vorticity obtained from the seeded three-dimensional computation at a similar time. For both
cases Re = 1200 and L/D = 5.
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much shorter than the dominant wavelength of the instability examined by Swearingen et al. [13] for vortex
rings interacting with a solid surface. In that case, the instability can be associated with the straining of weaker
secondary vortex rings by the primary vortex ring as it orbits. For typical vortex ring wall impacts studied by
Orlandi and Verzicco [14] and Swearingen et al. [13], the fragmenting of the secondary vorticity shed from the
wall as it orbits is similar to the situation shown in Fig. 4 at s = 20 for Re = 400, for the two-dimensional par-
ticle impact. These secondary vortex rings develop a longer wavelength instability under the strain field of the
primary ring. This mechanism probably contributes at longer times for sphere impacts if the secondary vor-
ticity surrounding the primary core fragments, and may dominate for higher Reynolds number collisions. The
shorter wavelength instability has been examined in some detail in Thompson et al. [11] for sphere collisions,
with the conclusion that it is likely related to a centrifugal instability due to the opposite-signed secondary
vorticity surrounding the primary ring.

It appears that this short-wavelength instability will also occur in the two-dimensional analogue, i.e. a cir-
cular cylinder striking a wall. This possibility was examined numerically by transferring the velocity field for
the Re = 400 impact, as shown in Fig. 4, to a three-dimensional spectral spectral-element code and evolving
Fig. 12. Isosurface plot showing the development of the three-dimensional instability outside the primary vortex core after a cylinder
collision with a wall. Isosurfaces of the spanwise vorticity shows the location of the main vortex tubes. Axial vorticity isosurfaces show the
short wavelength instability developing near the location of the orbiting secondary vortex tube. In addition, the position of the cylinder is
shown and the wall vorticity beneath the primary cores can be seen. Here, Re = 400, L/D = 5 and s = 11.
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the flow further. To encourage the growth of three-dimensionality, the velocity field was seeded with a low-
level white-noise perturbation. The spanwise domain size was chosen to be 16D and 128 Fourier planes were
used.

The flow was integrated until s = 11. Fig. 12 shows a visualization of the perturbation axial vorticity field at
the final time. This vorticity component was zero initially. Iso-surfaces of spanwise vorticity are also shown to
indicate the position of the primary vortex tube and encircling secondary tubes. Clearly, the perturbation is
maximum in the vicinity of one of the secondary vortex tubes, similar to the situation found for the sphere
impact. The dominant wavelength is considerably less than 1D, also in agreement with sphere impact studies.
The secondary vortex tube has very little kinking at this stage, hence the straining mechanism proposed by
Swearingen et al. [13] is yet to have much effect. However, measurements of the overall amplification of the
axial perturbation vorticity over this time interval indicates it is comparable to that observed for the sphere
impact case at Re = 1200, for a comparable interval. Since experiments [15], [2] show that the three-dimen-
sional instability can be observed for Re J 1000 for sphere impacts with typical background noise levels,
it seems reasonable to conclude that a similar instability may be observed at lower Reynolds numbers of
Re = 400 or less for cylinder impacts.
4. Conclusions

A series of numerical predictions of the impact (and sticking) of both a circular cylinder and a sphere have
been undertaken, with validating experiments. The spectral-element method incorporating a deforming mesh
based on the ALE (Arbitrary Lagrangian–Eulerian) method has successfully predicted the formation and evo-
lution of vortex tubes (for the cylinder) or rings (for the sphere), validated by dye visualisation experiments.
The spreading vortex ring or tubes cause significant fluid mixing near the wall leading to dust resuspension. It
is expected that the heat transfer properties would be also significantly modified by the influence of the vortical
structures. In particular, collisions at large impact angles may lead to strong vortex pairs developing, which
may advect and transport fluid to considerable distances from the impact zone.

As the Reynolds number is increased above approximately 1000 for a sphere or 400 for a cylinder, three-
dimensionality appears in the spreading vortex ring/tube. The instability has a wavelength of less than the par-
ticle diameter and most of the amplification occurs during the initial 10 time units after impact. At later times,
and possibly at at higher Reynolds numbers, the vortex straining instability proposed by Swearingen et al. [13]
probably also plays a strong role.

Although the present studies are fundamental in nature and idealised, they do indicate that the hydro-
dynamics associated with particle impacts on walls can be significant, and can be an important factor in heat
and mass transport, and particle resuspension, in lightly loaded flows relevant to mineral and process
industries.
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