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Vortex ring connection to a free surface
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We perform numerical simulations of the interaction between a vortex ring and a free
surface, and provide a new interpretation of the mechanism by which the vortex ring
connects to the free surface. Large vorticity gradients at the free surface result in the
diffusion of surface-tangential vorticity out of the fluid. This is accompanied by the
diffusion of opposite-signed surface-normal vorticity away from the connection line,
along the free surface, which results in the attachment of the vortex ring to the free
surface. Compared to existing descriptions, this interpretation explains better how the
solenoidal property that vortex lines do not end in the fluid is maintained. By including an
interface vortex sheet at the free surface, the important property of vorticity conservation
is maintained throughout the interaction. The upper part of the vortex ring simply diffuses
out of the fluid, and into the interface vortex sheet, with the total circulation remaining
constant.

Key words: vortex dynamics

1. Introduction

The process of vortex connection to a free surface – where vortex filaments near a free
surface are broken open, and attach to the surface – is an important feature of many
three-dimensional flows (Rood 1994a), including ship wakes (Walker & Johnston 1991;
Sarpkaya 1996), free-surface jet flows (Bernal & Madnia 1989; Walker, Chen & Willmarth
1995) and free-surface turbulence (Pan & Banerjee 1995; Nagaosa 1999; Shen et al.
1999; Herlina & Wissink 2019). In order to elucidate the physical processes leading to
vortex–surface connection, the oblique interaction between a vortex ring and a free surface
has been studied widely, both experimentally (Bernal & Kwon 1989; Song et al. 1991;
Gharib et al. 1994; Gharib & Weigand 1996) and numerically (Lugt & Ohring 1994;
Ohring & Lugt 1996; Zhang, Shen & Yue 1999; Balakrishnan, Thomas & Coleman 2011).

† Email address for correspondence: stephen.terrington@monash.edu

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited. 944 A56-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

52
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:stephen.terrington@monash.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.529&domain=pdf
https://doi.org/10.1017/jfm.2022.529


S.J. Terrington, K. Hourigan and M.C. Thompson

The closely related problem of a spatially modulated vortex pair connecting to a free
surface has also been considered (Dommermuth 1993; Willert & Gharib 1997).

An explanation for the dynamical processes leading to vortex–surface connection has
been provided by Rood (1994a,b), Gharib & Weigand (1996) and Zhang et al. (1999).
As the vortex ring approaches the free surface, a vorticity gradient is created at the
free surface. This results in the diffusion of surface-tangential vorticity out of the fluid,
breaking open the vortex ring (Rood 1994a; Gharib & Weigand 1996). During this process,
surface-normal vorticity from the side regions of the vortex ring diffuses towards the free
surface (Gharib & Weigand 1996; Zhang et al. 1999), so that the open ends of the vortex
loop become attached to the surface.

Recently, we have developed a new formulation for the generation and conservation of
vorticity in three-dimensional interfacial flows (Terrington, Hourigan & Thompson 2022),
based on an earlier two-dimensional description (Brøns et al. 2014; Terrington, Hourigan
& Thompson 2020). This formulation has two main advantages over existing descriptions
of interfacial vorticity dynamics. First, it extends Morton’s (1984) inviscid description
of vorticity generation at two-dimensional solid boundaries, to general interfaces in
three-dimensional flows. Under this interpretation, vorticity creation is an inviscid process,
due to the relative acceleration between fluid elements on each side of an interface,
driven by either tangential pressure gradients or body forces. Second, this formulation
is expressed effectively as a conservation law for vorticity, where, given appropriate
far-field boundary conditions, the total circulation in the flow is conserved. By including
an interface vortex sheet at the free surface, any vorticity lost from the fluid is transferred
into the interface vortex sheet, and the total circulation remains constant.

This formulation of vorticity dynamics provides new insight into the mechanism of
vortex ring connection to a free surface. One main difference between our interpretation
and other descriptions is the mechanism by which the open ends of the vortex ring attach
to the free surface. In our interpretation, the appearance of surface-normal vorticity in the
free surface is associated directly with the diffusion of surface-tangential vorticity out of
the free surface. Effectively, this interpretation treats the breaking of vortex filaments and
the connection of vortex filaments to the surface as due to the same physical process, and
thereby illustrates clearly how the kinematic condition that vortex lines do not end in the
fluid is maintained throughout the interaction.

The purpose of this article is to outline the mechanism of vortex connection to a free
surface, under our formulation of vorticity dynamics. This interpretation is supported by
numerical simulation of the interaction between a vortex ring and a free surface. The
structure of the article is as follows. First, in § 2, we define the problem to be solved,
and outline the numerical methods used. Then, in § 3, we provide a general overview of
the vortex ring connection to a free surface. In § 4, we outline our interpretation of the
mechanism behind vortex connection to a free surface. In § 5, we consider the dynamical
processes that occur in the fluid interior, as the vortex ring approaches the free surface.
Finally, in § 6, we examine the effects of Reynolds and Froude numbers on the vortex ring
connection.

2. Problem description and numerical methodology

In this section, we provide an overview of the numerical methods used to simulate the
connection of a vortex ring to a free surface. This section is structured as follows. First,
in § 2.1, we describe the problem to be solved. Then, in § 2.2, we define the appropriate
boundary conditions for the free surface. Next, in §§ 2.3 and 2.4, we outline the numerical
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Figure 1. Flow configuration considered in this study. A vortex ring of circulation Γ0, radius R0 and core
radius a is positioned at depth H beneath the interface (or free surface), and approaches the interface at angle
α. The computational domain is a box with side lengths Lx, Ly, and Lz,1 (in fluid 1) and Lz,2 (in fluid 2). For
free-surface flows, the upper fluid is ignored, and the interface is replaced with the free-surface boundary.

methods used in this study, while in § 2.5, we present the mesh used for numerical
computations. Finally, in §§ 2.6 and 2.7, we present a validation study for the numerical
methods used in this study.

2.1. Problem description
The flow configuration studied in this article is shown in figure 1, and is similar to the
set-up used by Zhang et al. (1999). We consider a vortex ring with initial circulation Γ0,
ring radius R0 and core radius a, positioned at an initial depth H beneath a free surface. The
vortex ring is inclined, and approaches the free surface at an angle α. While the main focus
of this article is on free-surface flows, we also consider the interaction between a vortex
ring and a fluid–fluid interface. For the two-fluid case, we must consider the fluid domains
below (fluid 1) and above (fluid 2) the interface, while we consider only the lower fluid
(fluid 1) in the free-surface case. The free surface is an approximation for the fluid–fluid
interface, in the limit that density and viscosity of the upper fluid approach zero.

Assuming incompressible flow, the continuity and momentum equations in each fluid
are written as

∇ · ui = 0, (2.1)

∂ui

∂t
+ ui · ∇ui = − 1

ρi
∇pi + g + νi ∇2ui, (2.2)

where subscript i = 1, 2 indicates quantities defined in fluids 1 and 2, respectively.
Density is denoted by ρ, and the dynamic and kinematic viscosities are denoted μ and
ν, respectively. Finally, g is the acceleration due to gravity.

Following Zhang et al. (1999), flow parameters are non-dimensionalised by the initial
circulation (Γ0) and radius (R0) of the vortex ring, and the density of the lower fluid
(ρ1). The following dimensionless parameters are then used to characterise this flow: the
Reynolds number Re = Γ0/ν1, the Froude number Fr = Γ0/g1/2R3/2

0 , the Weber number
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We = R0σ/(ρ1Γ
2

0 ), the initial depth to radius ratio H/R0, and the initial vortex core to ring
diameter ratio, a/R0. The effects of surface tension, σ , are not considered in this article,
thus the Weber number is set to We = 0. For two-fluid flows, the ratios of density (ρ1/ρ2)
and dynamic viscosity (μ1/μ2) across the interface must also be considered.

We generate the initial velocity field using the approach outlined in Zhang et al. (1999).
First, we assume a Gaussian profile for the initial vorticity distribution in the vortex core,

ωaxial = Γ0

πa2 exp
(

r2

a2

)
, (2.3)

where ωaxial is the vorticity component aligned with the vortex core axis, and r is the
distance from the vortex axis. Then a streamfunction is obtained by solving the Poisson
equation

∇2Ψ = −ω (2.4)

with boundary conditions Ψx = Ψy = ∂Ψz/∂z = 0 on the free surface, and Ψ = 0 for all
remaining boundaries. Then the initial velocity field is obtained from the streamfunction:

u = ∇ × Ψ . (2.5)

Note that the Gaussian profile is not a steady-state solution, and the ring undergoes an
adjustment to a more stable profile at the beginning of the simulation (Zhang et al. 1999).

2.2. Interfacial boundary conditions
The following boundary conditions are used for a fluid–fluid interface. First is the
continuity of velocity,

u1 = u2, (2.6)

which is due to both the no-slip and no-penetration conditions. The remaining boundary
conditions are due to the balance of tangential and normal stresses on the interface
(Tuković & Jasak 2012):

μ2(ŝ · ∇u‖)2 − μ1(ŝ · ∇u‖)1 = −∇‖σ − (μ2 − μ1)(∇‖(u · ŝ)), (2.7)

p2 − p1 = σκ − 2(μ2 − μ1)∇‖ · u. (2.8)

In (2.7) and (2.8), ŝ is the unit normal vector to the surface, ∇‖ is the surface gradient
operator, and κ = −∇‖ · ŝ is the mean curvature of the interface. Also, u‖ = u − (u · ŝ)ŝ
is the surface-parallel velocity.

For a free surface, the upper fluid exerts no stresses on the lower fluid, apart from
a constant pressure (Lundgren & Koumoutsakos 1999). Then the tangential and normal
shear-stress balances in (2.7) and (2.8) reduce to the boundary conditions

μ1(ŝ · ∇u‖)1 − ∇‖σ + μ1(∇‖(u · ŝ)) = 0, (2.9)

p2 − p1 = σκ + 2μ1∇‖ · u. (2.10)

2.3. The interTrackFoam solver
A key concern for the numerical simulations performed in this study is accurate
determination of the boundary vorticity flux, which is given by the vorticity gradients
at the free surface (see § 4.1). To this end, interface tracking schemes are preferred, as
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they allow vorticity gradients to be computed using grid points that lie on the interface.
The primary numerical method used in this study is a moving-mesh interface tracking
scheme, interTrackFoam (Tuković & Jasak 2012), from the open-source software package,
foam-extend 4.1 (a fork of the OpenFOAM software). The interTrackFoam solver uses an
arbitrary Lagrangian–Eulerian (ALE) scheme to track motion of the interface, and can be
applied to both single-fluid (free surface) or two-fluid (interfacial) flows.

The interTrackFoam solver is described in Tuković & Jasak (2012), and was validated
against several test cases in that article. It has also been used (sometimes in a modified
form) to study the motion of free-rising bubbles (Pesci et al. 2018; Charin et al. 2019),
Taylor bubbles (Marschall et al. 2014) and transient capillary rise (Gründing et al. 2020). It
has been validated against other numerical methods (Gründing et al. 2020; Marschall et al.
2014), as well as experimental measurements (Marschall et al. 2014), and good agreement
has been obtained.

The interTrackFoam solver uses a finite volume-method, where the incompressible
continuity and momentum equations are integrated across a set of control volumes,∮

∂V
ρin̂ · ui dS = 0, (2.11)

d
dt

∫
V

ρiui dV +
∮

∂V
n̂ · ρi(ui − v)ui dS =

∮
∂V

n̂ · (μi∇ui) dS −
∫

V
∇p̂i dV, (2.12)

where V is the control volume, and n̂ is the outward-oriented unit vector to the
control-volume boundary. Also, u is the fluid velocity, ν is the dynamic viscosity, and
p̂i is the static pressure minus the hydrostatic pressure (p̂i = pi − ρigz). Finally, v is the
velocity of the control-volume boundary, which may be different from the fluid velocity.
Once again, subscript i = 1, 2 indicates quantities defined in the lower and upper fluids,
respectively.

The advantage of this scheme is that the computational mesh is allowed to move, with
velocity v, so that grid points track the interface as it moves. This requires that on the free
surface, the surface-normal velocity of the mesh matches the fluid velocity:

v · ŝ = u1 · ŝ = u2 · ŝ. (2.13)

To ensure that the internal mesh remains smooth, the velocity of internal grid points is
obtained from the velocity on the boundary using a mesh-motion solver (Jasak & Tukovic
2006). Since the numerical mesh moves with the interface, the boundary conditions
(2.6)–(2.10) can be applied directly to the interface or free surface. Details on how
these boundary conditions are implemented in the interTrackFoam solver can be found
in Tuković & Jasak (2012).

In the interTrackFoam solver, (2.11) and (2.12) are discretised using the finite-volume
method. Spatial derivatives are converted to boundary fluxes on control-volume faces
using Gauss’ theorem, and linear interpolation was used to construct the fluxes on cell
faces. Time is divided into discrete time steps, and the temporal derivative is discretised
using a second-order backwards time scheme,

∂

∂t
(φ(n)) = 1

�t

(
3
2

φ(n) − 2φ(n−1) + 1
2

φ(n−2)

)
, (2.14)

where n is the current time step. Finally, the discretised equations are solved using an
iterative method, based on the PISO algorithm (Issa 1986). For further details on how this
method is implemented, refer to Tuković & Jasak (2012).
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2.4. Volume-of-fluid method
To validate the results of the interTrackFoam solver, additional simulations are
performed using the volume-of-fluid (VOF) method (Hirt & Nichols 1981). Two different
implementations of the VOF method were used: the interFoam solver from foam-extend
4.1, and the VOF method implemented in the commercial software package ANSYS
FLUENT.

Instead of tracking the interface directly, the VOF method introduces a volume fraction
F that indicates the fraction of each fluid contained in a given control volume. For two-fluid
flows, F = 1 for cells that contain only the lower fluid (fluid 1), while F = 0 for cells
containing only the upper fluid (fluid 2). For cells that contain the interface between
two fluids, the volume fraction lies in the interval 0 < F < 1. The interface is therefore
captured indirectly, via the evolution of the volume fraction field.

For incompressible flows, with no mass transfer between phases, the volume fraction
satisfies the conservation law (Hirt & Nichols 1981)

∂F
∂t

+ ∇ · (uF) = 0. (2.15)

However, care must be taken to ensure that the interface remains sharp when solving
this equation (Hirt & Nichols 1981). In the interFoam solver, this is achieved by
modifying the advective fluxes near the interface (Deshpande, Anumolu & Trujillo 2012),
by incorporating an interface compression term. In ANSYS FLUENT, the geometric
reconstruction scheme was used (ANSYS 2019) to maintain a sharp interface.

In the VOF method, a single set of momentum equations is solved for both fluids, across
the entire computational domain (Deshpande et al. 2012):

∂

∂t
ρu + ∇ · (ρuu) = −∇p + [∇ · (μ ∇u) + ∇u · ∇μ] + ρg. (2.16)

In this equation, fluid properties, such as density and viscosity, are taken to be average
values based on the volume fraction:

ρ = Fρ1 + (1 − F)ρ2, (2.17a)

μ = Fμ1 + (1 − F)μ2. (2.17b)

Equations (2.15) and (2.16) are discretised using the finite-volume approach. For details
of the numerical implementation, refer to Deshpande et al. (2012) for the implementation
in interFoam, and to ANSYS (2019) for the implementation in ANSYS FLUENT.

We remark that typically, vorticity and vorticity gradients exhibit a discontinuity across
the interface (Terrington et al. 2022). However, under the VOF method, this discontinuity
is spread over a region near the interface where 0 < F < 1, which leads to difficulty in
determining the boundary vorticity flux at the interface. Therefore, the interface tracking
interTrackFoam solver is preferred for this study, and the VOF method is used mainly to
validate the results of the interTrackFoam solver.

2.5. Mesh generation
The computational domain considered in this study is illustrated in figure 1. The
computational domain is a rectangular box with side lengths Lx and Ly in the streamwise
(x) and spanwise (y) directions, respectively. The interface is initially situated at
elevation z = 0, and the computational domain extends to depth Lz,1 below the interface.
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z = 0

z = –3.5

x = –Lx/2 x = Lx/2x = –2 x = 2 y = –Ly/2 y = Ly/2

Interface

�y�x

�z(0)

�z(3.5)

y = –3 y = 3
z = Lz,2

z = –Lz,1

(a) (b)

Figure 2. An example of the meshing scheme used in this study, viewed from (a) the x–z plane, and (b) the
y–z plane. Dark lines divide regions with different mesh grading. The locations of the representative cell sizes
in table 1 are also shown. For clarity, the grid shown here is much coarser than those used for numerical
simulations. For single-fluid simulations, the mesh in the upper fluid is removed, and the free surface (z = 0)
is the upper boundary of the computational domain.

For free-surface simulations, the upper boundary of the computational domain is located
on the free surface, while for two-fluid simulations, the computational domain extends to
elevation Lz,2 above the interface. Unless otherwise stated, the computational domain used
in this study has side lengths Lx/R0 = 20, Ly/R0 = 20, Lz,1/R0 = 10 and Lz,2/R0 = 5.

When using the interTrackFoam solver, the interface (or free surface) forms part of the
computational domain boundary, and the numerical mesh will deform with the surface.
For two-fluid simulations, separate meshes are used for the upper and lower fluids, with
the interface forming the boundary between these meshes. For free-surface flows, only a
single mesh is used, with a boundary on the free surface. When the VOF method is used, a
single stationary grid is used for the entire computational domain, and the interface is not
part of the computational domain boundary.

The computational domain was meshed using a block-structured approach, as illustrated
in figure 2. A fine grid was used in the region near the vortex ring, bounded by −2 � x �
2, −3 � y � 3 and −3.5 � z � 0, with a lower grid resolution used outside this region.
Additionally, the cell size in the vertical (z) direction was reduced near the interface, to
capture accurately vorticity gradients near the surface. For simulations run in foam-extend
4.1, meshes were generated using the blockMesh application, while for simulations run in
ANSYS FLUENT, the mesh was generated using ICEM CFD.

Simulations were performed in a Galilean reference frame, translating with a velocity
approximately equal to the vortex ring velocity, to ensure that the vortex ring remained
within the fine-mesh region. This was achieved by applying a constant velocity inlet to the
upstream boundary (at x = +Lx), with inlet velocity U∞/(Γ0/R0) = (−0.1, 0, 0). Outlet
boundary conditions were applied to the downstream boundary (at x = −Lx), while the
remaining boundaries, aside from the interface, were set to free-slip walls.

2.6. Validation study
A grid resolution study was performed using the meshes outlined in table 1, where
mesh 1 has the coarsest resolution, and mesh 3 has the finest resolution. Simulations
were run using interTrackFoam, for a single-fluid free-surface flow. Physical parameters
were chosen to match Case 2 from Zhang et al. (1999): Re = 1570, Fr = 0.47, α = 80◦,
H/R0 = 1.57 and a/R0 = 0.35.
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Mesh 1 Mesh 2 Mesh 3

N 4.2 × 106 10.2 × 106 24.8 × 106

�x 0.040 0.030 0.020
�y 0.080 0.054 0.040
�z(3.5) 0.074 0.053 0.045
�z(0) 0.0074 0.0053 0.0029

Table 1. Numerical grids used in the convergence study, where N is the total number of cells, while �x, �y
and �z indicate the cell spacing in the fine-mesh region (figure 2). Spacing in the z direction is provided at
both z = −3.5 (�z(3.5)), and at the interface (�z(0)).

0

0.5

1.0

1.5

2.0

2.5

3.0

Symmetry

plane

Free surface

Mesh 1

Mesh 2

Mesh 3

5 10 15 20

t/(R2
0/Γ0)

|ω
|/

ω
0

25 30

Figure 3. Grid resolution study, showing the maximum magnitude of spanwise vorticity (ωy) in the symmetry
plane (solid lines), as well as the maximum vertical vorticity (ωz) in the free surface (dashed lines), for the
meshes defined in table 1. The physical parameters match Case 2 from Zhang et al. (1999): Re = 1570, Fr =
0.47, α = 80◦, H/R0 = 1.57 and a/R0 = 0.35.

In figure 3, we plot the maximum spanwise vorticity (ωy) in the symmetry plane (y = 0),
normalised by the initial peak vorticity (ω0), for each mesh resolution. The maximum
vorticity in the symmetry plane is nearly identical between meshes 2 and 3, demonstrating
that adequate resolution has been obtained in this region. The maximum vertical vorticity
(ωz) in the free surface is also provided in figure 3. Noting convergence of the predictions
between resolutions and that the differences in the maximum vorticity between meshes
2 and 3 are relatively small, the grid resolution is assumed satisfactory. The finest mesh
(mesh 3) is used for all subsequent simulations in this study.

The grid resolution study was performed using identical physical parameters to Case 2
from Zhang et al. (1999), in order to validate our results against their simulations. However,
as shown in figure 4, the profiles of maximum vorticity magnitude, in both the symmetry
plane and the free surface, are vastly different. In our simulations, the maximum vorticity
in the symmetry plane increases to over 2.8 times the initial peak vorticity, as the vortex
ring interacts with the free surface, while Zhang et al. (1999) report a monotonic decrease
in the vorticity magnitude. In both cases, the maximum value of vertical vorticity in the
free surface is of a magnitude similar to the maximum vorticity in the symmetry plane,
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0
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2.0
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3.0
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1.0

1.2
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t/(R2
0/Γ0)

|ω
|/

ω
0

T
1086420

(b)(a)

Figure 4. Comparison between (a) our simulation, and (b) that of Zhang et al. (1999), showing the maximum
spanwise vorticity in the symmetry plane (solid lines), and the maximum vertical vorticity (ωz) in the free
surface (dashed lines). The physical parameters are Re = 1570, Fr = 0.47, α = 80◦, H/R0 = 1.57 and a/R0 =
0.35.

0 5

0.5

1.0

1.5

10 15 20 25

t/(R2
0/Γ0)

30 35 40 45 50

|ω
|/

ω
0

Symmetry plane

Free surface

interTrackFoam

interTrackFoam

(smoothed)

Zhang et al. (1999)
Gharib et al. (1994)

Figure 5. Comparison between the current numerical results (interTrackFoam), the numerical simulations
of Zhang et al. (1999), and the experimental measurements of Gharib et al. (1994), showing the maximum
spanwise vorticity in the symmetry plane (solid lines), and vertical vorticity in the free surface (dashed lines).
The physical parameters are Re = 1150, Fr = 0.19, α = 83◦, H/R0 = 2 and a/R0 = 0.3. Results from the
interTrackFoam solver when averaged over the interrogation window from the experimental particle image
velocimetry (PIV) measurements are also presented.

and is therefore much higher in our simulations (≈ 2.5ω0), compared to Zhang et al.
(≈ 0.9ω0). The time scales over which reconnection occurs also appear to be different
between our results; however, it is unclear if Zhang et al. use a physical or dimensionless
flow time. In figure 5, we assume that Zhang et al. use a physical flow time, corresponding
to the experimental parameters used by Gharib et al. (1994), and the time scale for vortex
connection matches our solution.
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Figure 6. Comparison between the different numerical methods used in this study, showing maximum
magnitude of spanwise vorticity in the symmetry plane, for physical parameters Re = 1570, Fr = 0.47,
α = 80◦, H/R0 = 1.57 and a/R0 = 0.35.

Zhang et al. (1999) validate their numerical method against the experimental
measurements of Gharib et al. (1994). We performed an additional validation simulation
using physical parameters matching the experimental conditions: Re = 1150, Fr = 0.19,
α = 83◦, H/R0 = 2, and a/R0 = 0.3, and the results are presented in figure 5. The Zhang
et al. simulations are in reasonable agreement with the experimental measurements of
Gharib et al., whereas our simulations are remarkably different. Once again, we find a
sharp increase in the maximum spanwise vorticity during the vortex reconnection process,
while Zhang et al. (1999) and Gharib et al. (1994) report no increase in the maximum
spanwise vorticity.

Since numerical simulations performed using the interTrackFoam solver disagree with
existing numerical and experimental results, we performed simulations using the VOF
method, for the same physical parameters. The VOF method requires two fluids, and the
density and viscosity ratios were set to ρ1/ρ2 = 1000 and μ1/μ2 = 100, so the influence
of the upper fluid is small. A comparison between the different numerical methods used
(interTrackFoam, for both free-surface and two-fluid flows, and the VOF method, using
both interFoam, and ANSYS FLUENT) is shown in figure 6, for physical parameters
matching Case 2 from Zhang et al. (1999). The maximum vorticities in the symmetry plane
are nearly identical for each method, providing support for the interTrackFoam solver.

Moreover, the sharp rise in spanwise vorticity seen in our simulations is also observed
in symmetrical vortex ring connections (Kida, Takaoka & Hussain 1991), which are
equivalent to a perfectly flat (zero Froude number) free surface. To simulate a flat free
surface, simulations were performed using the pimpleFoam solver in foam-extend 4.1,
with the free surface replaced by a free-slip wall. In figure 7(a), we compare our results
to the numerical simulations of Kida et al. (1991) and Balakrishnan (2013), at Re = 1153,
α = 90◦, a/R0 = 0.4 and H/R0 = 1.858, in a periodic (in the x and y directions) box with
side lengths Lx/R0 = 6.4, Ly/R0 = 6.4 and Lz/R0 = 4.5. Results are in good agreement,
and the slight disagreement can be attributed to the orientation of our periodic box (which
differs from theirs by 45◦). Importantly, we observe a sharp rise in the maximum spanwise
vorticity in the initial stages of the connection process.
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Figure 7. (a) Comparison between a flat shear-free surface (pimpleFoam) and the collision between two
vortex rings (Kida et al. 1991; Balakrishnan 2013), for physical parameters Re = 1153, α = 90◦, a/R0 = 0.4
and H/R0 = 1.858. (b) Comparison between a flat shear-free surface (pimpleFoam) and a free surface
(interTrackFoam), for Re = 1570, α = 80◦, H/R0 = 1.57 and a/R0 = 0.35. Solid lines indicate the maximum
spanwise vorticity (ωy) in the symmetry plane, while dashed lines indicate the maximum vertical vorticity (ωz)
in the free surface.

Having validated our flat-surface method against existing results, in figure 7(b)
we compare a flat-surface simulation obtained using pimpleFoam to the free-surface
simulation obtained using interTrackFoam, for Fr = 0.47, Re = 1570, α = 80◦, H/R0 =
1.57 and a/R0 = 0.35. The maximum vorticities in the symmetry plane and the free
surface are nearly identical for both cases. This is reasonable, given that surface
deformations are small at Fr = 0.47. In § 6.2, we perform simulations at Fr = 1, where the
surface deformation is not negligible. We find good agreement between the moving-mesh
solver (interTrackFoam) and the VOF method (interFoam), which demonstrates that both
methods are capable of capturing accurately the free-surface deformation. Therefore,
we can assume that these methods are also reliable at Fr = 0.47 (figure 6), where the
evolution of the maximum spanwise vorticity is not significantly different from that at a
flat shear-free surface. Importantly, the sharp rise in spanwise vorticity magnitude seen in
our free-surface simulations is also observed for flat shear-free surfaces, and is therefore a
physically reasonable result at low Froude numbers.

To explain the discrepancy between our results and previous experimental and numerical
measurements, we remark that neither the experimental measurements of Gharib et al.
(1994) nor the numerical simulations of Zhang et al. (1999) possess sufficient resolution
to capture the peak vorticity magnitude observed in our simulations. Figure 8 displays
contours of spanwise vorticity in the symmetry plane, which shows that the region
responsible for large vorticity magnitudes is a thin layer near the free surface. Overlaid
on this figure is a square outline showing the approximate size of the 32 × 32 pixel
interrogation window used to compute each velocity vector in Gharib & Weigand (1996),
which we assume is similar to the interrogation window used in Gharib et al. (1994).
It is clear that the PIV measurements are not able to resolve the thin layer of elevated
vorticity seen in our simulations, and the corresponding PIV vorticity field would be
quite smeared. In figure 5, we present the maximum spanwise vorticity when averaged
over the PIV interrogation window, which compares quite favourably with the existing
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Figure 8. Contours of spanwise vorticity (ωy) in the symmetry plane at t/(R2
0/Γ0) = 23, obtained using the

interTrackFoam solver with physical parameters Re = 1190, Fr = 0.19, α = 83◦, a/R0 = 0.3 and H/R0 = 2.
Overlaid is a square outline showing the approximate size of the 32 × 32 pixel windows used to obtain each
velocity vector for PIV by Gharib & Weigand (1996). The horizontal lines show the vertical grid spacing used
by Zhang et al. (1999) at their highest resolution. The location of maximum vorticity magnitude is indicated
by an asterisk.

experimental and numerical results. Therefore, our simulation results are consistent with
the experimental measurements, once the vorticity is downsampled to match the resolution
of the PIV measurements.

Zhang et al. (1999) use central finite differencing in the vertical direction, with their
finest grid size (128 points distributed uniformly in the vertical direction) shown by
horizontal lines in figure 8. For this grid spacing, the location of maximum spanwise
vorticity predicted by our simulations is less than two cell heights from the free surface.
This is consistent with figures 11 and 13 of Zhang et al. (1999), where the maximum
spanwise vorticity occurs only two cell heights below the free surface. Moreover, this
corresponds to a single cell height on their 64 × 64 × 64 grid, and it is quite surprising that
Zhang et al. (1999) find such good agreement between the maximum vorticity magnitude
on each grid. Given that the maximum value of vorticity magnitude occurs only two cell
heights beneath the free surface on their finest grid, it is unlikely that Zhang et al. (1999)
can resolve accurately the vorticity magnitude near the free surface using central finite
differencing. Our finest mesh, on the other hand, has an order of magnitude lower cell
height near the free surface, and is therefore sufficient to resolve accurately the maximum
vorticity near the free surface.

2.7. Effect of initial vortex ring depth
The numerical study of Zhang et al. (1999) used initial vortex ring depth H/R0 = 1.57,
which means that the upper core of the vortex ring is located initially at depth ≈ 0.5R0,
which is similar to the core radius, a/R0 = 0.35. This means the upper part of the vortex
ring is located initially very close to the free surface, and may not be representative of a
vortex ring that has approached the free surface from a distance.

To investigate the effect of the initial vortex ring depth, a set of numerical simulations
with different initial depth ratios was performed. All other physical parameters were
identical to Case 2 from Zhang et al. (1999). The time history of the magnitude of
spanwise vorticity in the symmetry plane is plotted in figure 9(a), for each depth ratio.
At the beginning of the simulation, the vorticity distribution in the vortex ring core
adjusts from the initial Gaussian profile to a more stable distribution (Zhang et al. 1999).
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Figure 9. (a) Time history of the maximum magnitude of spanwise vorticity (ωy) in the symmetry plane.
(b) Vertical position of the maximum vorticity in the upper vortex ring core, for a range of initial depth ratios
(H/R0). Solid lines indicate the maximum vorticity in the upper core, while dashed lines indicate vorticity in
the lower core. The flow times have been shifted so that the peak vorticity in each case occurs at t = 0. The
physical parameters are Re = 1570, Fr = 0.47, α = 80◦ and a/R0 = 0.35.

This is accompanied by a small increase in the maximum vorticity magnitude over duration
approximately �t/(R2

0/Γ0) = 2.
Following the initial adjustment of the vortex core, the maximum vorticity in the vortex

ring decreases gradually, due to viscous diffusion. For depth ratios greater than H/R0 = 2,
the maximum vorticities in the upper and lower portions of the vortex ring decrease at the
same rate, which implies that the vortex ring does not experience significant influence from
the free surface. However, at approximately t/(R2

0/Γ0) = −20, the vorticity in the upper
vortex core begins to increase, while the vorticity in the lower core continues to decrease.
This indicates that the upper part of the vortex ring has begun to experience significant
influence from the free surface.

In figure 9(b), we plot the vertical position of the maximum vorticity magnitude in the
symmetry plane, for each depth ratio. At the time when the upper core begins to experience
significant influence from the free surface (t/(R2

0Γ0) ≈ −20), the upper vortex core is
situated at depth approximately one ring radius beneath the free surface (zc/R0 = −1).
This suggests that the blockage layer thickness – where the vortex ring experiences
significant influence from the free surface – is approximately equal to the ring radius.
For vortex ring depths less than or equal to H/R0 = 2, the upper part of the vortex ring
is located initially inside the blockage layer. To ensure that the vortex ring begins outside
the blockage layer – and therefore our simulations capture the dynamics of the vortex ring
as it passes through the entire blockage layer – depth ratio H/R0 = 2.5 is used for the
remaining simulations in this study.

3. Overview of vortex connection

In this section, we provide an overview of the interaction between a vortex ring and a
free surface, showing the main features of the reconnection process. We focus on a single

944 A56-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

52
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.529


S.J. Terrington, K. Hourigan and M.C. Thompson

0

–1

–2

–3
–2

0

–0.010 –0.008 –0.006 –0.004 0.004 0.006 0.008 0.010–0.002 0 0.002

z/
R 0

x/R
0

t/(R
0

2/Γ
0
) = 24 t/(R

0

2/Γ
0
) = 32

y/R
0

2 –2
0

2

0

–1

–2

–3
–2

0
x/R

0

y/R
0

2 –2
0

2

0

–1

–2

–3
–2

0

z/
R 0

x/R
0

η/R
0

t/(R
0

2/Γ
0
) = 38 t/(R

0

2/Γ
0
) = 46

y/R
0

2 –2
0

2

0

–1

–2

–3
–2

0
x/R

0
y/R

0
2 –2

0
2

(a) (b)

(c) (d )

Figure 10. Isosurfaces of constant vorticity magnitude |ω|/(Γ0/R2
0) = 0.5 at a range of dimensionless flow

times, for the vortex ring/free surface interaction at Re = 1570, Fr = 0.47, α = 80◦, a/R = 0.35 and H/R =
2.5. Contours of free-surface elevation, η (displaced vertically for clarity) are also plotted.

simulation, with parameters Re = 1570, Fr = 0.47, α = 80◦, H/R0 = 2.5, a/R0 = 0.35
and We = 0. The effect of changes to these parameters is considered later, in § 6.

3.1. Free-surface interaction
Figure 10 presents isosurfaces of vorticity magnitude at several time instances, revealing
the evolution of the vortex ring as it interacts with the free surface. (A transient animation
of this figure is provided as movie 1 in the supplementary material available at https://
doi.org/10.1017/jfm.2022.529.) Initially, the vortex ring approaches the free surface under
its own self-induced velocity (figure 10a). Then the upper portion of the vortex ring is
flattened and stretched as it impinges upon the surface (figure 10b). This leads to large
vorticity gradients at the free surface, so that vorticity from the upper portion of the vortex
ring is diffused out of the fluid by viscous forces. As a result, the vortex ring becomes
broken open near the free surface, leaving the open ends of the vortex ring attached to the
free surface (figures 10c,d).

While the isosurfaces of vorticity magnitude (figure 10) suggest that vortex connection
has occurred, a change in topology of vorticity isosurfaces does not necessarily imply a
change in the topology of vortex lines (Kida & Takaoka 1994). In figure 11, vortex lines are
plotted at two different times, before and after connection to the free surface has occurred.
(An animation of this figure is provided in supplementary movie 2.) Initially, all vortex
lines are closed loops (figure 11a,b); however, during the interaction, vortex lines are
broken open near the free surface and become attached to the free surface (figure 11c,d).
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Figure 11. Vortex lines, as well as isosurfaces of vorticity magnitude, (a,b) before and (c,d) after the
free-surface connection. Vortex lines are colour coded, with red indicating closed loops, and blue indicating
vortex lines that begin and terminate on the free surface. Both front (a,c) and side (b,d) views are provided.
The dashed line in (a,c) indicates the symmetry plane (y = 0).

Isosurfaces of vorticity magnitude are also plotted in figure 11, demonstrating that, for the
present flow, the geometries of vortex lines and vorticity isosurfaces are closely related.

A colour plot of the free-surface displacement, η, is also provided in figure 10. As
the vortex ring approaches the free surface, the surface is elevated ahead of the vortex
ring, with a depression formed behind the vortex ring (figures 10a,b). As the vortex ring
connects to the free surface, the free-surface depression splits into two surface dimples,
which are located where the vortex ring is attached to the surface (figures 10c,d).

The qualitative aspects of vortex reconnection observed here compare fairly well to
Zhang et al. (1999); however, there are some key differences. First, in our results, the upper
vortex core is flattened and stretched far more than in the Zhang et al. results. Second, in
our simulations, some vorticity remains unattached to the free surface, which was not
observed by Zhang et al. (1999).

3.2. Two-fluid flow
The free-surface boundary conditions (2.9) and (2.10) are often used as an approximation
for the air–water interface, where, due to the low density and viscosity of air, motion
in the upper fluid (air) has little influence on the dynamics of the lower fluid (water).
In this subsection, we consider the interaction between a vortex ring and a fluid–fluid
interface, with density ratio ρ1/ρ2 = 1000 and viscosity ratio μ1/μ2 = 100, which are
comparable to a water–air interface. Motion in the lower fluid is nearly identical to the
free-surface case; the main difference between the free surface and the fluid–fluid interface
is the appearance of vorticity in the upper fluid.
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Figure 12. Isosurfaces of constant vorticity magnitude |ω|/(Γ0/R2
0) = 0.5, at two dimensionless flow times,

for the interaction between a vortex ring and a fluid–fluid interface, at Re = 1570, Fr = 0.01, α = 80, a/R0 =
0.35, H/R0 = 2.5, ρ1/ρ2 = 1000 and μ1/μ2 = 100.

In figure 12, isosurfaces of vorticity magnitude are presented for the interaction between
a vortex ring and a fluid–fluid interface, which can be compared to the free-surface flow
plotted in figure 10. (A transient animation of this figure is provided in supplementary
movie 3.) The behaviour of vorticity in the lower fluid is nearly identical to the free-surface
flow, with the upper part of the vortex ring diffusing out of the lower fluid, and the open
ends of the vortex ring attaching to the interface. This was confirmed in figure 6, which
shows that the maximum vorticity in the lower fluid is not affected by the presence or
absence of the upper fluid.

The most obvious difference between two-fluid and free-surface flows is the presence of
vorticity in the upper fluid. This can be attributed to two factors: the creation of vorticity
on the interface by tangential pressure gradients, and the transfer of vorticity between the
upper and lower fluids. Vorticity appears first in the upper fluid before the reconnection
has occurred (figure 12a), due to the creation of vorticity on the interface. During the
reconnection process, vorticity from the upper part of the vortex ring is transferred from
the lower fluid into the upper fluid (§ 4.4), so that after the reconnection, effectively the
vortex ring passes through both fluids.

This is seen more clearly in figure 13, which plots vortex lines in both fluids, both before
and after connection to the interface has occurred. (A transient animation of this figure is
provided in supplementary movie 4.) Before the interaction, vortex lines in both fluids are
closed loops, which lie entirely within a single fluid. After the interaction, vortex lines that
attach to the interface are closed loops, passing through both fluids. Effectively, the upper
part of the vortex ring has diffused into the upper fluid, and the vortex ring is contained in
both fluids.

3.3. Interface vortex sheet
In several formulations of vorticity dynamics (Lundgren & Koumoutsakos 1999; Brøns
et al. 2014; Terrington et al. 2020, 2022), a vortex sheet is included at the free surface, so
that the total circulation is conserved. In three dimensions, Terrington et al. (2022) define
the local density of vector circulation in the interface vortex sheet above a free surface as

γ = −ŝ × u. (3.1)

By including the interface circulation in this manner, the total circulation is conserved
(Terrington et al. 2022). During the connection to the free surface, vorticity lost from the
lower fluid is transferred into the interface vortex sheet (§ 4.2).
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Figure 13. Vortex lines and isosurfaces of vorticity magnitude, (a) before and (b) after vortex connection to
a fluid–fluid interface, at ρ1/ρ2 = 1000 and μ1/μ2 = 100. Vortex lines are colour coded, with red indicating
closed loops that lie entirely within fluid 1, green indicating closed loops that lie entirely in fluid 2, and blue
indicating vortex lines that pass through both fluids.
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Figure 14. Vortex lines in the interface vortex sheet (i.e. curves tangent to the interface circulation density,
γ ), as well as colour contours of the surface-normal vorticity, at two different flow times.

The interface vortex sheet also satisfies a generalised solenoidal property (Terrington
et al. 2022)

∇‖ · γ + ω · ŝ = 0, (3.2)

where ∇‖ is the surface gradient operator (Wu 1995). Equation (3.2) shows that vortex
lines do not simply end on the free surface, but instead continue as circulation in the
interface vortex sheet. This relationship is illustrated in figure 14, which plots vortex lines
in the interface vortex sheet, as well as colour contours of surface-normal vorticity on
the free surface. Before the connection has occurred, the surface-normal vorticity is zero,
and the interface vortex sheet is divergence-free (∇‖ · γ = 0), so that vortex lines in the
interface vortex sheet are all closed loops (figure 14a). However, after connection to the
free surface has occurred, vortex lines in the interface vortex sheet are generated from
regions of positive surface-normal vorticity, and end in regions of negative surface-normal
vorticity (figure 14b).

Regions of high surface-normal vorticity, which act as sources and sinks for the interface
vortex sheet, indicate regions where the vortex ring is attached to the free surface. This is
shown in figure 15, which plots vortex lines in the fluid interior as well as in the interface
vortex sheet. (A transient animation of this figure is provided in supplementary movie 5.)
As vortex lines in the fluid interior connect to the free surface, they act as sources or sinks
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Figure 15. Vortex lines in the fluid as well as in the interface vortex sheet, both (a) before and (b) after vortex
reconnection has occurred. Vortex lines are colour coded, with red indicating closed loops, while blue indicates
vortex lines that begin and terminate on the free surface.

of circulation in the free-surface vortex sheet. In this sense, vortex lines do not end on the
free surface, but continue as vortex lines in the interface vortex sheet. After the connection
to the free surface, the vortex ring remains a closed loop, but with part of the vortex ring
attached to the free surface. Essentially, the upper part of the vortex ring has diffused out
of the fluid, and is now contained in the interface vortex sheet.

Comparing figures 15 and 13 reveals several similarities between the interface vortex
sheet above a free surface, and the vorticity field above a fluid–fluid interface. Before the
interaction, vortex lines in the upper fluid are closed loops, as are the vortex lines in the
interface vortex sheet. After the interaction, vortex lines in the interface vortex sheet begin
and end at points where the vortex ring attaches to the free surface, as do vortex lines in
the upper fluid for the two-fluid case. In this sense, the free-surface vortex sheet can be
interpreted as an approximation for the vorticity that would be found above an air–water
interface.

4. The mechanism of vortex connection to a free surface

In this section, we consider the dynamical mechanisms that drive the vortex ring
connection to a free surface. First, in § 4.1, we provide a summary of the necessary vorticity
dynamics. In § 4.2, a control-volume analysis is used to investigate the transfer of vorticity
between the fluid and the interface vortex sheet. In § 4.3, we use a control-surface analysis
to describe the appearance of surface-normal vorticity in the free surface. Then, in § 4.4,
we consider the dynamics of a vortex ring connection to a fluid–fluid interface. Finally, in
§ 4.5, we show that the analysis considered in this section leads to a novel interpretation of
the vortex connection process, and compare to existing interpretations.

4.1. Vorticity dynamics
Taking the curl of the momentum equation yields a transport equation for vorticity (the
Helmholtz equation). For an incompressible Newtonian fluid, this equation is expressed as

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν ∇2ω. (4.1)

Equation (4.1) reveals three relevant dynamical processes for the evolution of the vorticity
field: advection (u · ∇ω), vortex stretching/tilting (ω · ∇u) and viscous diffusion (ν ∇2ω).
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Vortex ring connection to a free surface

If this expression is integrated across a control volume (V), then these dynamical processes
can be interpreted as boundary fluxes (Terrington et al. 2022):

d
dt

∫
V

ω dV =
∮

∂V
ω(vb − u) · n̂ dS +

∮
∂V

(ω · n̂)u dS −
∮

∂V
νn̂ × (∇ × ω) dS, (4.2)

where ∂V is the boundary surface of V , n̂ is the outward-oriented unit normal to ∂V ,
and vb is the velocity of the control-volume boundary. From left to right, terms on the
right-hand side of (4.2) represent the effects of advection, vortex stretching/tilting and
viscous diffusion as boundary fluxes.

Now, the form of the viscous boundary flux in (4.2) is not unique. Here, we have
used the Lyman (1990) definition, σ = νn̂ × (∇ × ω), rather than the original definition
proposed by Lighthill (1963), σ ′ = −νn̂ · ∇ω. When integrated across a control volume,
both definitions yield the same rate of change of vorticity, so either definition may
be used in (4.2). Terrington, Hourigan & Thompson (2021) have demonstrated several
advantages to using Lyman’s definition. Of particular relevance to the present work,
Lyman’s definition was found to provide a more elegant interpretation of the connection
between antiparallel vortex filaments in the fluid interior. In the present article, we also
show that Lyman’s definition also provides a more elegant interpretation of the mechanism
behind the attachment of vortex filaments to the free surface during the connection process.

The shear-free boundary condition (2.9) can be written as a boundary condition for the
surface-tangential vorticity on the free surface (Longuet-Higgins 1998; Peck & Sigurdson
1998; Terrington et al. 2022):

ω‖,1 = −2ŝ × (∇‖(u1 · ŝ) + u1 · K), (4.3)

where ω‖ = ω − (ŝ · ω)ŝ is the surface-parallel vorticity on the free surface, ŝ is the unit
normal to the interface, directed out of fluid 1, ∇‖ is the surface gradient operator (Wu
1995), and K = ∇‖ŝ is the surface curvature tensor. The viscous flux of vorticity at the
free surface results in the diffusion of vorticity either into or out of the fluid, in order
to satisfy this boundary condition (Terrington et al. 2022). At low Froude numbers, the
right-hand side of (4.3) is small, and the vorticity on the free surface is close to zero.
However, at higher Froude numbers, distortion of the free surface leads to the appearance
of secondary vorticity on the free surface (Gharib & Weigand 1996; Zhang et al. 1999).

4.2. Control-volume analysis
To examine the mechanisms leading to the loss of vorticity from the fluid, we consider
the control volume depicted in figure 16. The outer boundary of V1 is divided into two
portions: I is the part that lies on the free surface, while ∂V1 is the part in the fluid interior.
The vector n̂ is the unit normal to ∂V1, while ŝ is the unit normal to the free surface.

In this subsection, we consider the volume integral of vorticity

Γ 1 =
∫

V1

ω1 dV, (4.4)

which we have termed the ‘vector circulation’ (Terrington et al. 2021, 2022). We also
consider the total vector circulation contained in the interface vortex sheet,

Γ γ =
∫

I1

γ dS. (4.5)

While both Γ 1 and Γ γ are vector-valued quantities, due to flow symmetry only the
spanwise components (Γ1,y and Γγ,y) are non-zero. The time histories of both these
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Figure 16. Control volume V1 used in this analysis. The boundary of V1 includes a portion on the free surface
(I) and a portion in the fluid interior (∂V1). The surface I is bounded by the closed curve ∂I. The unit normal
to I is ŝ, while n̂ is the unit normal to ∂V .
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Figure 17. (a) Time history of the spanwise component of vector circulation in the fluid (Γ1,y) and in the
interface vortex sheet (Γγ,y). (b) Comparison between the rate of change of spanwise vorticity, and the viscous
and vortex stretching terms from (4.6).

quantities are plotted in figure 17(a). The net spanwise vorticity in the fluid is zero initially,
due to the symmetry of the vortex ring. However, Γ1,y increases throughout the interaction,
as negative vorticity from the upper part of the vortex ring diffuses out of the fluid. The
loss of negative spanwise vorticity from the fluid is balanced by an approximately equal
increase in negative circulation found in the vortex sheet, so that the total circulation
(Γ1,y + Γγ,y) remains approximately constant.

Using (4.2), we construct the following expression for the rate of change of vorticity in
V1:

dΓ 1

dt
= −

∫
I
ν ŝ × (∇ × ω) dS +

∫
I
(ω · ŝ)u dS, (4.6)

where we have assumed that vorticity fluxes across ∂V1 are negligible. This equation
indicates the two mechanisms that contribute to the rate of change of vorticity in the fluid:
the viscous boundary flux Fν = ∫

I ν ŝ × (∇ × ω) dS, and the vortex stretching/tilting flux
Fst = ∫

I(ω · ŝ)u dS.
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Vortex ring connection to a free surface

The rate of change of circulation above the free surface is given by the expression
(Terrington et al. 2022)

dΓ γ

dt
=

∫
I
ν ŝ × (∇ × ω) dS −

∫
I
(ω · ŝ)u dS +

∮
∂I

[
p1

ρ1
+ φg + 1

2
u1 · u1

]
ds. (4.7)

The first two terms are equal and opposite to the free-surface flux terms in (4.6), so that the
effects of viscous diffusion and vortex stretching/tilting act to transfer circulation between
the fluid interior and the interface vortex sheet. Any loss of negative circulation is balanced
by an equal gain of negative circulation in the interface vortex sheet.

Combining (4.7) and (4.6), we have

d
dt

(Γ 1 + Γ γ ) =
∮

∂I

[
p1

ρ1
+ φg + 1

2
u1 · u1

]
ds, (4.8)

which includes several boundary source terms that represent the generation of interface
circulation by tangential pressure gradients (p1/ρ1) or gravitational forces (φg), as well as
the advection of circulation along the interface (u1 · u1). For the control volume used in
this analysis, these boundary terms are small but non-zero, leading to small oscillations
in the total circulation. However, these terms will approach zero if ∂I is positioned
sufficiently far from the vortex ring, and the total circulation will be conserved.

The time histories of the viscous and vortex stretching/tilting fluxes, as well as the rate
of change of spanwise vorticity, are plotted in figure 17(b). Initially, the increase in Γ1,y
(and decrease in Γγ,y) is due to the viscous flux of vorticity out of the fluid. During the
initial stage of the connection process, negative spanwise vorticity from the upper part of
the vortex ring is brought near the free surface. At low Froude numbers, (4.3) requires the
tangential vorticity at the free surface to be small, leading to a large gradient of spanwise
vorticity (∂ωy/∂z) on the free surface. This vorticity gradient drives the viscous flux of
vorticity out of the fluid and into the free-surface vortex sheet.

While the viscous flux dominates the initial loss of negative circulation from the fluid,
the vortex stretching term (Fst) becomes the dominant mechanism in the later portion
of this interaction. An interpretation of the vortex stretching/tilting flux was presented in
(Terrington et al. 2022). Eyink (2008) gives a simple proof for the expression

Γ 1 =
∫

V1

ω dV =
∮

∂V1

x(ω · n̂) dS +
∮

I
x(ω · ŝ) dS, (4.9)

where x is the position vector, which (assuming that ω · n̂ = 0 on ∂V1) shows that the
total vorticity in V1 is determined completely by the locations where vortex filaments are
attached to the free surface. The vortex stretching flux (u(ω · ŝ)) can be interpreted as
representing the advection of surface-normal vorticity in the free surface. This changes
the locations where vortex filaments attach to the surface, therefore requiring a change to
the total vorticity in the fluid.

This is illustrated in figure 18, where a positive Fst requires surface-attached vorticity to
be carried away from the symmetry plane by advection. As a result, new spanwise vorticity
must be generated by vortex stretching in the fluid interior, since vortex lines cannot end
inside the fluid. Moreover, an equal quantity of opposite-signed circulation must be created
in the interface vortex sheet, in order to satisfy the generalised solenoidal condition (3.2).

4.3. Control-surface analysis
The dynamical mechanisms leading to the connection of vorticity to the free surface can
be understood by considering the behaviour of circulation in both the symmetry plane
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Advection of negative ωz to the left Advection of positive ωz to the right

Interface vortex sheet (γ)

Vortex filament

z

y

New spanwise vorticity

New interface

circulation

Positive ωzNegative uy Positive uy
Free surface

Negative ωz

Figure 18. Illustration of the vortex stretching/tilting flux u(ω · ŝ) from (4.6). This term can be interpreted as
representing the advection of vortex filaments in the free surface, which must correspond to the creation of
spanwise vorticity by vortex stretching in the fluid interior. An equal and opposite quantity of circulation is also
created in the interface vortex sheet, so that the total spanwise circulation is conserved.
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Figure 19. Contours of spanwise vorticity (ωy) in the symmetry plane (y = 0), and of surface-normal vorticity
(ω · ŝ) in the free surface, both (a) before and (b) after the free surface connection has occurred. Contours of
dimensionless vorticity are plotted for ω/(Γ0/R2

0) = . . . ,−1.25, −0.75, −0.25, 0.25, 0.75, 1.25, . . ..

(y = 0) and the free surface. Contours of the spanwise vorticity (ωy) in the symmetry
plane, and of surface-normal vorticity (ω · ŝ) in the free surface, are presented in figure 19,
both before and after reconnection has occurred. (A transient animation of this figure is
provided in supplementary movie 6.) This figure demonstrates one of the main features
of vortex connection to the free surface: the loss of negative spanwise vorticity from
the symmetry plane (which signifies the breaking open of vortex filaments near the free
surface), and the appearance of new vorticity in the free surface (indicating the attachment
of vortex lines to the free surface).

To quantify the reconnection process, we consider the circulation contained in the
system of control surfaces illustrated in figure 20: S1 is the symmetry plane; I1 is the
portion of the free surface where y < 0; and I2 is the portion of the free surface where
y > 0. The time history of circulation in each reference surface is plotted in figure 21(a),
where ΓI1, ΓI2 and ΓS1 are the circulations contained in surfaces I1, I2 and S1, respectively.
As the upper part of the vortex ring diffuses out of the free surface, the circulation in
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Figure 20. Illustration of the control surfaces S1, I1 and I2 used in this investigation. These surfaces share a
common boundary – the connection line, C – and the remaining portions of the boundaries are denoted ∂S1,
∂I1 and ∂I2, respectively.
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Figure 21. (a) Time history of the circulation in the surfaces I1, I2 and S1, as well as of the interface circulation
Γγ . (b) A comparison between the rate of change of circulations and the viscous boundary flux Fν , defined in
(4.11).

S1 increases (becomes more positive), and this is balanced by an equal gain of negative
circulation in I1, and of positive circulation in I2.

The transfer of circulation between the symmetry plane and the free surface is related
closely to the top topological changes to vortex lines observed in figure 11. Two kinds of
vortex line topology are present in this flow: closed loops and open filaments. Loop-type
vortex filaments pass through the symmetry plane twice, so the net spanwise circulation
in the symmetry plane due to a closed vortex filament is zero. As the initial vortex ring
contains only closed filaments, the initial circulations in S1, I1 and I2 are all zero. Open
filaments, however, begin on I2, pass through S1 once, and end on I1, providing an equal
magnitude of positive circulation in I2, and negative circulation in S1 and I1. The changes
in circulation shown in figure 21 therefore describe the opening of vortex loops, and the
attachment of open vortex lines to the free surface.

In figure 21 we also plot the interface circulation contained in the connection line (C):

Γγ =
∫

C
γ · b̂ ds =

∫
C

−u1 · ds. (4.10)
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The loss of negative circulation from S1 is also balanced by an equal gain of negative
circulation in C, so that the total circulation ΓS1 + Γγ is constant. Effectively, the upper
part of the vortex ring has been transferred into the interface vortex sheet, and vortex lines
intersect the symmetry plane twice: once as vorticity in the fluid interior, and once as
circulation in the interface vortex sheet.

The rate of change of circulation in each surface is given by the fluxes of vorticity across
the boundary of each surface. Assuming that the outer boundary curves (∂S1, ∂I1 and ∂I2)
are sufficiently far from the vortex ring, fluxes across these surfaces are negligible, and the
circulation in each surface can change only due to vorticity fluxes along the connection
line C. Then the rate of change of circulation in each surface is given by (Terrington et al.
2022)

dΓS1

dt
= d

dt

∫
S1

ω · n̂ dS = Fν, (4.11a)

dΓI1

dt
= d

dt

∫
I1

ω · ŝ dS = −Fν, (4.11b)

dΓI2

dt
= d

dt

∫
I2

ω · ŝ dS = Fν, (4.11c)

dΓγ

dt
= −Fν +

[
p1

ρ1

]
(b−a)

+ [
φg

]
(b−a)

+ 1
2

[u1 · u1](b−a) , (4.11d)

Fν = −
∫

C
[ŝ × (∇ × ω)] · b̂ ds, (4.11e)

where Fν is the viscous flux of vorticity across the connection line (C), and subscript
(b − a) indicates the difference in some quantity between the endpoints of C (θ(b−a) =
θb − θa).

Equations (4.11) attribute the loss of circulation from the symmetry plane, and the
gain of circulation in I1 and I2, to the viscous flux of vorticity across the connection
line. Importantly, the loss of circulation from the symmetry plane represents the breaking
open of vortex filaments, while the appearance of vorticity in the free surface indicates
the attachment of these vortex lines to the free surface. Equations (4.11) show that these
processes always occur simultaneously – which must be the case, since vortex filaments
cannot end in the fluid interior – and are driven by the same physical process: the viscous
boundary flux.

First, consider the loss of spanwise vorticity from the symmetry plane, which is
illustrated by the contour plots of spanwise vorticity presented in figure 22. Initially, the
vortex ring approaches the free surface under its own self-induced velocity. As the upper
vortex core interacts with the free surface, it is flattened and stretched (figures 22b,c),
resulting in a strong gradient of spanwise vorticity at the free surface (∂ωy/∂z). According
to (4.11), this results in a viscous flux of spanwise vorticity out of the symmetry plane,
so that most of the negative vorticity in the upper vortex core is diffused out of the fluid
(figure 22d).

According to (4.11d), Fν also contributes to the rate of change of interface circulation,
so the circulation lost from S1 is transferred into the interface vortex sheet. Additional
boundary terms also appear in this equation, representing the generation of interface
circulation by tangential pressure gradients and body forces, as well as the advection of
interface circulation along the surface. If the boundary points, a and b, are sufficiently far
from the vortex ring, these terms approach zero, and the total circulation in the symmetry
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Figure 22. Contours of spanwise vorticity (ωy) in the symmetry plane (y = 0) at several times throughout the
interaction. The colourmap and contour levels are the same as in figure 19.

plane – including vorticity in the fluid, and circulation in the interface vortex sheet – is
constant.

Now we consider the appearance of vorticity in the free surface, which is illustrated by
the contours of surface-normal vorticity presented in figure 23. Initially, there is almost
no vorticity in the free surface (figure 23a). However, during the interaction, positive
vorticity appears in I2, while negative vorticity appears in I1. Equations (4.11) attribute
this to the viscous vorticity flux at the connection line (y = 0), which is due to the
same vorticity gradients that lead to the loss of circulation from the symmetry plane
(primarily the gradient of spanwise vorticity, ∂ωy/∂z). In other words, the flux of negative
spanwise vorticity out of the symmetry plane is associated with an equal flux of negative
surface-normal vorticity into I1, and positive surface-normal vorticity into I2. This is
necessary to ensure that the kinematic condition that vortex lines do not end in the fluid
interior is satisfied.

4.4. Two-fluid flows
For two-fluid flows, the vorticity balance is similar to the free-surface case considered
in §§ 4.2 and 4.3, although vorticity is transferred into the upper fluid, rather than into
the interface vortex sheet. For the control-volume analysis, we use the system of control
volumes shown in figure 24(a), where V1 and V2 are control volumes in fluids 1 and 2,
respectively. The two volumes share a common boundary, I, on the interface, while ∂V1
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Figure 23. Contours of surface-normal vorticity (ω · ŝ) in the free surface at several times throughout the
interaction. The colourmap and contour levels are the same as in figure 19. The dashed line indicates the
connection line (y = 0), which is the shared boundary of the surfaces I1, I2 and S1.
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Figure 24. System of (a) control volumes, and (b) control surfaces used to analyse the vortex ring connection
to a fluid–fluid interface. The volumes V1 and V2 are control volumes in the lower and upper fluids, respectively.
Also, S1 and S2 are the portions of the symmetry plane in the upper and lower fluids, respectively, while I1 and
I2 are surfaces that lie in the interface.

and ∂V2 are the boundary surfaces in the fluid interior. Finally, ∂I is the outer boundary
curve of I.

For the system of control volumes shown in figure 24(a), the rate of change of vorticity
is given by (Terrington et al. 2022)

d
dt

(Γ 1 + Γ 2) = −
∫

I

[[
ν ŝ × (∇ × ω)

]]
dS =

∮
∂I

[[
p
ρ

]]
ds, (4.12)

where we have assumed that the fluxes of vorticity across the outer boundary (∂V)
are negligible. Equation (4.12) indicates that the total vorticity within the system can
change only by the generation of vorticity by tangential pressure gradients on the interface
([[p/ρ]]). Vorticity generated on the interface is diffused immediately into the fluid by
viscous forces, and the net viscous flux of vorticity out of the interface

(
[[ν ŝ × (∇ × ω)]]

)
is equal to the vorticity creation rate. Importantly, if the outer boundary curve ∂I is
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Vortex ring connection to a free surface
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Figure 25. Time histories of (a) the circulation in both the symmetry plane (S1 and S2) and the interface (I1
and I2). (b) The spanwise component of vector circulation in each fluid (Γ1,y and Γ2,y), for the interaction
between a vortex ring and a fluid-fluid interface.

sufficiently far from the vortex ring, then the net vorticity creation will be zero. Generation
of vorticity by local pressure gradients on some section of the interface may still occur,
but this will be balanced by the creation of opposite-signed vorticity elsewhere.

The time history of total spanwise vorticity in each fluid is plotted in figure 25(b), which
can be compared to the free-surface case in figure 17(a). As the upper portion of the vortex
ring diffuses out of the fluid, there is a loss of negative spanwise vorticity from the lower
fluid. This is balanced approximately by an equal gain of negative vorticity in the upper
fluid, so that the total vorticity in both fluids remains approximately constant. Effectively,
negative vorticity lost from the lower fluid is transferred into the upper fluid. This is similar
to the free-surface case, where vorticity lost from the lower fluid is transferred into the
interface vortex sheet.

Note, however, that significant oscillations in the total vorticity are present in
figure 25(b), which are due to the pressure generation term. This is confirmed in
figure 26(b), which plots the various terms in (4.12) and demonstrates clearly that the
oscillations in total circulation are due to pressure gradients on the interface. The pressure
term will decrease to zero as the size of the control volume is increased, and the total
circulation will be constant.

For the control-surface analysis, we use the system of control surfaces in figure 24(b),
which includes the parts of the symmetry plane in fluid 1 (S1) and fluid 2 (S2), as well as
the surfaces I1 and I2 on the interface. The rate of change of circulation in each surface is
given by the viscous flux of vorticity along the connection line:

dΓS1

dt
= d

dt

∫
S1

ω · n̂ dS = Fν,1, (4.13a)

dΓS2

dt
= d

dt

∫
S1

ω · n̂ dS = Fν,2, (4.13b)

dΓI1

dt
= d

dt

∫
S1

ω · ŝ dS = −Fν,1, (4.13c)
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Figure 26. The net rate of change of (a) total circulation in the symmetry plane (ΓS1 + ΓS2 ), and (b) spanwise
component of vector circulation in both fluids (Γ1,y + Γ2,y), as well as the net vorticity generation by pressure
gradients (Sp and Sp,y) and the net viscous flux of vorticity out of the interface (Fν,1 + Fν,2).

dΓI2

dt
= d

dt

∫
S1

ω · ŝ dS = Fν,1, (4.13d)

Fν,1 =
∫

C
−[ŝ × (∇ × ω1)] · b̂ ds, (4.13e)

Fν,2 =
∫

C
[ŝ × (∇ × ω2)] · b̂ ds, (4.13f )

where Fν,1 is the flux of vorticity into fluid 1, and Fν,2 is the flux of vorticity into fluid 2.
Moreover, the net rate of change of circulation in the symmetry plane is given by

d
dt

(ΓS1 + ΓS2) =
[[

p
ρ

]]
(b−a)

= Fν,1 + Fν,2, (4.14)

which changes only due to the net generation of vorticity by pressure gradients on the
interface. If the boundary points a and b are positioned sufficiently far from the vortex
ring, then the pressure term will be zero, and the total circulation will be conserved.

The time history of circulation in each reference surface is plotted in figure 25(a). As
in the free-surface case (figure 21a), the viscous flux (Fν,1) is responsible for the loss
of circulation from the lower fluid (S1), as well as the attachment of surface-normal
vorticity to the free surface. Moreover, the loss of circulation from S1 is balanced by an
equivalent flux of circulation into S2 (Fν,2), so the total circulation in the symmetry plane
(ΓS1 + ΓS2) is approximately constant. This resembles the free-surface case, where the
loss of circulation from the fluid is balanced by the increase in circulation contained in the
interface vortex sheet.

As with the control-volume analysis, significant oscillations are observed in the total
circulation in the symmetry plane (ΓS1 + ΓS2), due to the creation of vorticity by pressure
gradients. The various terms from (4.14) are plotted in figure 26(a), which confirms that
the oscillations in total circulation are due to the pressure generation term. Once again, as
the control-surface boundary is moved further from the vortex ring, these oscillations will
decrease, and the total circulation will be constant.
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Vortex ring connection to a free surface

(a) (b)

Diffusion of surface-

 normal vorticity away

from the connection 

line

Diffusion of surface-

 normal vorticity

towards the free surface
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and tilting
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Diffusion of surface-

tangential vorticity

out of the fluid

Diffusion of surface-
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Figure 27. A comparison between (a) our interpretation of the vortex attachment process, and (b) the
mechanism proposed by Zhang et al. (1999). In our description, the attachment of vorticity to the free surface
is attributed to the diffusion of surface-normal vorticity along the free surface, and away from the connection
line, while in the Zhang et al. (1999) interpretation, this is attributed to the diffusion of surface-normal vorticity
from the fluid interior.

The similarities between the circulation balances for free-surface and two-fluid flows
suggests that the interface vortex sheet above a free surface plays a similar role to the
vorticity that would be found above an air–water interface. For the two-fluid case, the loss
of vorticity from the lower fluid is balanced by an equal increase in the vorticity contained
in the upper fluid. For the free-surface case, the loss of vorticity from the lower fluid is
instead balanced by an increase in the circulation contained in the interface vortex sheet.

4.5. Mechanism of vortex connection
The analysis considered in this section suggests a novel interpretation of the vortex
connection to a free surface. In this subsection, we compare this interpretation to the
previous mechanism proposed by Gharib & Weigand (1996) and Zhang et al. (1999).

A sketch of the vortex connection mechanism is presented in figure 27(a). As the upper
portion of the vortex ring interacts with the free surface, the gradient of spanwise vorticity
at the free surface (∂ωy/∂z) results in a viscous flux of surface-tangential vorticity out of
the fluid. The upper part of the vortex ring diffuses out of the fluid, and into the interface
vortex sheet. The flux of spanwise vorticity out of the fluid is accompanied by the diffusion
of opposite-signed surface-normal vorticity away from the connection line, along the free
surface, which results in the attachment of vortex lines to the free surface.

Under this interpretation, the attachment of vortex filaments to the free surface is
attributed directly to the viscous flux of spanwise vorticity out of the fluid. Therefore,
the mechanism that drives the loss of spanwise vorticity from the fluid is also responsible
for the attachment of vortex filaments to the free surface. This is beneficial, since the
divergence-free property of the vorticity field – where vortex lines cannot end in the fluid
interior – requires that the circulation lost from the symmetry plane must be gained in the
free surface. Our interpretation illustrates clearly how this condition is enforced.

This interpretation of the vortex attachment mechanism differs substantially from
previous interpretations (Rood 1994a,b; Gharib & Weigand 1996; Zhang et al. 1999).
While Rood (1994a) describes in great detail the mechanisms by which surface-tangential
vorticity diffuses out of the fluid, he does not ascribe the attachment of vorticity to the
surface to any particular physical process. Instead, he states that ‘a portion of the closed
vortex loop fluxes out of the fluid, leaving the remainder of the loop with ends terminating
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Free surface
Diffusion of ωz along

the free surface

Diffusion of ωy out

of the fluid
z = 0

z = –δν

z = –δb

Viscous layer

Viscous diffusion Viscous diffusion

Blockage layer

Vortex stretching

Vortex tilting

Vortex stretching

ωz

ωz ωy

Figure 28. A schematic illustration of the mechanism by which a vortex ring connects to a free surface,
inspired by figure 24 of Zhang et al. (1999). Differences between the mechanism proposed by Zhang et al.
(1999) and our proposed interpretation are denoted by a dotted red line (Zhang et al.) and a solid blue line
(current interpretation). δν and δb denote the thicknesses of the viscous and blockage layers, respectively (see
§ 5).

at the free surface’ (Rood 1994a) – thereby treating the free-surface attachment as a
kinematic consequence of the loss of tangential vorticity from the fluid.

While both Gharib & Weigand (1996) and Zhang et al. (1999) also attribute the
breaking open of vortex filaments to the diffusion of surface-tangential vorticity out of
the fluid, they attribute the attachment of vortex filaments to the surface to the diffusion
of surface-normal vorticity towards the free surface from the fluid interior, as illustrated
in figure 27(b). The side regions of the vortex ring contain surface-normal vorticity,
which is enhanced by vortex stretching and tilting. This surface-normal vorticity is then
transported to the free surface by viscous diffusion. Unlike the surface-parallel vorticity,
which diffuses out of the fluid to satisfy the shear-free condition, the flux of surface-normal
vorticity out of the fluid is small, and the surface-normal vorticity instead remains attached
to the surface. Importantly, this interpretation treats the loss of spanwise vorticity from the
fluid and the attachment of vortex lines to the free surface as different dynamical processes,
and it is unclear why the exact quantity of circulation lost from the symmetry is gained in
the free surface.

The difference between the interpretation provided by Zhang et al. (1999) and our
proposed interpretation is also demonstrated in figure 28, which is inspired by figure 24
of Zhang et al. (1999). Zhang et al. attribute the appearance of surface-normal vorticity
(ωz) in the free surface to viscous diffusion of surface-normal vorticity from the fluid
interior (red dotted line in figure 28). Under the proposed interpretation, this is instead
attributed to the diffusion of surface-normal vorticity along the free surface (solid blue line
in figure 28), which occurs as a direct consequence of the diffusion of surface-tangential
vorticity (ωy) out of the fluid. All other aspects of the interpretation are unchanged, as
indicated by solid black lines in figure 28.

The different interpretations of the vortex attachment process can be attributed to the
particular definition of boundary vorticity flux used. When Lighthill’s (1963) definition is
used, the appearance of surface-normal vorticity in the free surface should be attributed
to the diffusion of vorticity towards the free surface, from the fluid interior. However,
when Lyman’s (1990) definition is used, the appearance of surface-normal vorticity in the
free surface is instead attributed to the diffusion of surface-normal vorticity along the free
surface, as a direct consequence of the diffusion of surface-tangential vorticity out of the
fluid. The advantage of this approach is that effectively, it treats the loss of circulation
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Vortex ring connection to a free surface

Free surface

Sb

ẑ
ŷ
x̂

Cz(z)Sz(z)

Sa

Figure 29. System of control surfaces used to investigate the dynamics of vorticity in the fluid interior. The
line segment Cz(z) divides the symmetry plane into portions below (Sa) and above (Sb) the curve Cz. The
horizontal surface Sz(z) is situated at the same depth as Cz(z).

from the fluid and the gain of circulation in the free surface as a single process, which
more clearly explains how the kinematic condition that vortex lines do not end in the fluid
is enforced.

5. Vorticity dynamics in the fluid interior

In this section, we consider the dynamics of vorticity in the fluid interior, beneath the
free surface. To understand the dynamics of the vortex ring connection, Zhang et al.
(1999) introduce two dynamical regions: the blockage layer, and the viscous sublayer. The
blockage layer is due to the constraint on surface-normal velocity at the free surface, and
leads to elevated vortex stretching and tilting. The viscous layer is due to the shear-free
boundary condition (4.3), which results in a region of elevated viscous diffusion near the
free surface. In addition to vortex connection to a free surface, the viscous and blockage
layers also play an important role in the dynamics of free-surface turbulence (Shen et al.
1999; Bodart, Cazalbou & Joly 2010).

To examine the viscous and blockage layers, a control-surface analysis is used. We
consider the system of control surfaces shown in figure 29: we introduce a line segment
Cz(z), at depth z beneath the surface. This line segment divides the symmetry plane into
portions below (Sa) and above (Sb) the curve Cz. We also consider the horizontal surface
Sz(z), which is at the same depth as z.

Using (2.2) from Terrington et al. (2021), the vorticity flux across the line Cz(z) gives
the rate of transfer of vorticity between Sa and Sb as

− d
dt

∫
Sa

ωy dS = d
dt

∫
Sb

ωy dS = Fu(z) + Fν(z), (5.1)

Fu(z) =
∫

Cz(z)
uzωy dx, (5.2)

Fν(z) =
∫

Cz(z)
ν

(
∂ωz/∂y − ∂ωy/∂z

)
dx. (5.3)

The term Fu describes the vertical transport of spanwise vorticity (ωy) by advection, while
Fν gives the viscous flux of vorticity. Due to the solenoidal condition, the transfer of
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Figure 30. Profiles of the integrals of spanwise (Iωy ) and vertical vorticity (Iωz ), with depth beneath the free
surface, both (a) before and (b) after the connection to the free surface. The physical parameters are Re = 1570,
Fr = 0.47, α = 80◦, H/R0 = 3.00 and a/R0 = 0.35.

vorticity across Cz must also correspond with the appearance of new circulation in Sz:

d
dt

∫
Sz(z)

ωz dS = Fu(z) + Fν(z). (5.4)

Therefore, the vorticity fluxes in the symmetry plane can indicate the behaviour of both
surface-tangential and surface-normal vorticity in the viscous and blockage layers.

To examine changes in the vorticity field, we use the integral of spanwise vorticity in
Cz,

Iωy(z) =
∫

Cz(z)
ωy dx, (5.5)

as well as the integral of vertical vorticity in Sz,

Iωz(z) =
∫

Sz(z)
ωz dz. (5.6)

Due to the divergence-free property (∇ · ω = 0), we have the following relationship
between Iωy and Iωz :

dIωz

dz
= −Iωy(z). (5.7)

In figure 30, profiles of both Iωy and Iωz are plotted at two different flow times. There
is a peak in negative spanwise vorticity (Iωy), corresponding to the upper part of the
vortex ring. Due to (5.7), the peak of Iωy corresponds to a rapid decrease in Iωz , from
approximately −1 below the peak, to 0 above this peak. This relationship illustrates clearly
why the transfer of spanwise vorticity in the vertical direction also produces a change in
Iωz .
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Figure 31. Profiles of the vertical flux of spanwise vorticity (F(z)) with depth beneath the free surface, at flow
times (a) before and (b) during the connection to the free surface.

5.1. Viscous layer
The viscous layer is a thin region near the free surface where viscous diffusion is dominant,
due to large vorticity gradients arising from the shear-free boundary condition (4.3). The
viscous layer can be identified by considering the instantaneous profiles of the advective
(Fu) and viscous (Fν) fluxes, which are plotted in figure 31 for two different flow times.
When the vortex ring is far from the free surface (figure 31a), the viscous flux is small, and
vorticity transport is driven predominantly by advection. During the vortex reconnection
process, when the vortex ring is close to the free surface (figure 31b), the advection term
is dominant for depths greater than approximately z/R0 = 0.1. However, the advection
term approaches zero near the free surface, and the viscous term dominates the vorticity
transport in a thin layer (the viscous sublayer), with thickness of order δν ≈ 0.1R0. This
is in agreement with Zhang et al. (1999), who also find the viscous layer thickness to be
approximately δν ≈ 0.1R0.

Instead of using the instantaneous flux profiles, we can instead consider the time
averaged fluxes

F̄(z) = 1
t1 − t0

∫ t1

t0
F(z) H(−Iωy(z)) dt. (5.8)

In this expression, H is the Heaviside step function, which is used so that only fluxes
corresponding to the upper vortex ring core are considered (i.e. contributions from regions
containing positive spanwise vorticity are ignored).

Profiles of the time-averaged viscous and advective fluxes are provided in figure 32(a).
Outside the viscous sublayer (z < −0.1R0), the advection term is dominant, and remains
close to unity, while the time-averaged viscous flux is negligible. Inside the viscous layer,
however, the advective flux decreases rapidly to zero, and the time-averaged viscous flux
is dominant.
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Figure 32. (a) Profiles of the time-averaged vertical vorticity flux (F̄(z)), with distance below the free surface.
(b) Gradients of the time-averaged vorticity flux, and the contributions from advection (dF̄av) and vortex
stretching (dF̄st).

5.2. Blockage layer
The blockage layer is due to the blockage effect of the free surface, where, at low Froude
numbers, the surface-normal velocity approaches zero at the free surface. This leads to a
region near the free surface with elevated gradients of surface-normal velocity (∂uz/∂z),
resulting in an increase in vortex stretching and tilting within the blockage layer. Since
the blockage layer is due to a constrained surface-normal velocity at the free surface, the
blockage effect is reduced, or even entirely absent, at high Froude numbers (Brocchini &
Peregrine 2001).

The advective flux Fu(z) includes the effects of both advection and vortex
stretching/tilting, so the blockage layer cannot be identified using the time-averaged fluxes
in figure 32(a). To identify the effects of vortex stretching and tilting, we first recognise
the following relationship between Iωy and Fu:

∂

∂t
Iωz(z) = − ∂

∂z
Fu(z), (5.9)

which is a pseudo-one-dimensional transport equation for the spanwise vorticity in the
symmetry plane. The gradient in vertical flux can then be related to the conventional
advection and vortex stretching terms:

− ∂

∂z
Fu(z) =

∫
Cz(z)

− ∂

∂z
(uzωy) dx =

∫
Cz(z)

[
ωy

∂uy

∂y
− uz

∂ωy

∂z
− ux

∂ωy

∂x

]
dx. (5.10)

The right-hand side of (5.10) includes a term related to vortex stretching,

dFst =
∫

Cz(z)
ωy

∂uy

∂y
dx, (5.11)

as well as advection terms,

dFav =
∫

Cz(z)
−

[
uz

∂ωy

∂z
+ ux

∂ωy

∂x

]
dx. (5.12)
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Vortex ring connection to a free surface

The profiles of time-averaged advection (dF̄av) and vortex stretching (dF̄st) are plotted
in figure 32(b), along with the gradients of the total vorticity fluxes. Outside the blockage
layer (which is of order R0), the time-average effect of both advection and vortex stretching
is zero. However, for depths shallower than z ≈ R0, the time-averaged vortex stretching
term becomes significant. The sign of dF̄st is negative, indicating a net increase in negative
spanwise vorticity due to vortex stretching within the blockage layer. Outside the viscous
layer, the increase in vorticity due to vortex stretching is balanced by a decrease in
vorticity magnitude due to the advection terms. Within the viscous layer, the strength
of the advection term decreases, and the effects of vortex stretching are balanced by the
viscous term.

From figure 32(b), the blockage effect is negligible for depths greater than the ring
radius, suggesting a blockage layer thickness of approximately δb ≈ R0. This is consistent
with figure 9, where the influence of the free surface on the evolution of the maximum
vorticity first becomes noticeable when the upper vortex core is at depth z = −R0.
However, the effect of the blockage layer remains small until a depth of approximately
0.4R0, which is close to the blockage layer depth suggested by Zhang et al. (1999).

Using (5.4), the vertical vorticity fluxes also give the rate of change of vertical vorticity
in Sz. This can be related to the advection and tilting of ωz as

Fu(z) =
∫

Cz(z)
uzωy dx =

∫
Sz(z)

[
ωy

∂uz

∂y
+ ωx

∂uz

∂x
− uz

∂ωz

∂z

]
dS, (5.13)

where we have assumed that ω is zero on all boundaries of Sz(z), aside from Cz(z). The
right-hand size of (5.13) includes terms related to both vortex tilting,

Ftl,z =
∫

Sz(z)

[
ωy

∂uz

∂y
+ ωx

∂uz

∂x

]
dS, (5.14)

and advection,

Fav,z =
∫

Sz(z)
−uz

∂ωz

∂z
dS. (5.15)

The time-averaged contributions of vortex tilting (F̄tl,z) and advection (F̄av,z) to the rate
of change of vertical vorticity are plotted in figure 33. Outside the blockage layer, the
time-averaged advection term is close to zero, and vortex tilting drives the rate of change
of vertical vorticity. Within the blockage layer, however, the advection term and the vortex
tilting term provide approximately equal contributions. This disagrees with (Zhang et al.
1999), who suggest that vortex tilting increases inside the blockage layer. Note that Zhang
et al. consider instantaneous profiles of the vortex stretching and tilting terms – rather than
time-averaged – which does not necessarily capture the change in dynamics as the vortex
ring traverses the blockage layer.

6. Effect of parameters

In this section, we consider the effects of Reynolds and Froude numbers on the evolution
of the vortex ring. As the Reynolds number is increased, the thickness of the viscous
layer is reduced, leading to a larger peak in maximum vorticity. As the Froude number
is increased, distortion of the free surface becomes more significant, leading to the
creation of secondary vorticity, which interacts with the primary vortex ring and delays
the connection to the free surface.
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Figure 33. Profiles of the time-averaged vertical vorticity flux, and the integrated rate of change of vertical
vorticity due to advection (F̄av,z) and vortex tilting (F̄tl,z)
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Figure 34. Time history of the maximum magnitude of spanwise vorticity (ωy) in the symmetry plane (solid
lines), and maximum vertical vorticity (ωz) in the free surface (dashed lines), for a range of Reynolds numbers.
The physical parameters are Fr = 0.47, α = 80◦, a/R0 = 0.35 and H/R0 = 2.5.

6.1. Reynolds number
To investigate the effect of Reynolds number, a series of simulations was performed with
Reynolds numbers ranging from Re = 100 to Re = 2000. All other physical parameters
are constant: Fr = 0.47, α = 80◦, a/R0 = 0.35 and H/R0 = 2.5.

The time history of maximum magnitude of spanwise vorticity (ωy) in the symmetry
plane, as well as maximum magnitude of vertical vorticity (ωz) in the free surface, is
shown in figure 34. This figure reveals several aspects of the vortex ring evolution that are
affected by the Reynolds number. First, as the Reynolds number is reduced, the maximum
vorticity in the vortex ring decays more rapidly during the initial approach to the free
surface. Due to elevated levels of viscous diffusion, the vortex ring core is spread out
more rapidly, leading to a lower peak vorticity and a larger core radius.
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Figure 35. Contours of spanwise vorticity (ωy) in the symmetry plane, at flow time t/(R2
0/Γ0) = 35, for

(a) Re = 1000, and (b) Re = 2000. The contour levels and colourmap are the same as in figure 19. The physical
parameters are Fr = 0.47, α = 80◦, a/R0 = 0.35 and H/R0 = 2.5.

z/R0

0

–0.2

–0.4

–0.6

–0.8

–1.0

–1.2

0(a) (b)

–0.1

–0.2

–0.3

Re = 500

Re = 1000
Re = 2000

–0.4

–0.5

–0.6
0–0.5–1.0

F(z)/(Γ0
2/R0

2)

0 10–10–20

(dF/dz)(Γ0
2/R0

3)

dF̄st dF̄av

F̄u F̄ν

Figure 36. (a) Profiles of the time-averaged advective (F̄u) and viscous (F̄ν ) vorticity fluxes in the symmetry
plane, and (b) profiles of the vortex stretching (dF̄st) and advection (dF̄av) terms, for a selection of Reynolds
numbers.

Figure 34 also shows that the increase in maximum vorticity during the reconnection
process is stronger at high Reynolds numbers, and is almost entirely absent at low Reynolds
numbers. This can be understood by considering the thickness of the viscous layer (§ 5.1).
As the Reynolds number is increased, the thickness of the viscous layer decreases (Zhang
et al. 1999), leading to enhanced vortex stretching in the blockage layer.

This can be seen in figure 35, which shows contours of spanwise vorticity at
t/(R2

0/Γ0) = 35, for Re = 1000 and 2000. (A transient animation of this figure is provided
in supplementary movie 7.) In both cases, the upper vortex core is contained within a thin
layer near the surface. However, this layer is much thinner for Re = 2000 compared to
Re = 1000, indicating a thinner viscous layer. We also consider the time-averaged viscous
and advective fluxes, which are plotted in figure 36(a) for Re = 500, 1000 and 2000, which
clearly illustrate that as the Reynolds number is increased, the thickness of the viscous
layer decreases.
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Figure 37. Time histories of the maximum magnitude of spanwise vorticity in the symmetry plane associated
with the primary vortex ring core for a range of Froude numbers, for a vortex ring with physical parameters
Re = 1570, α = 80◦, a/R0 = 0.35 and H/R0 = 2.5. Results obtained on both the moving-mesh solver
(interTrackFoam) and the VOF solver (interFoam) are presented.

As the viscous layer becomes thinner at higher Reynolds numbers, increased vortex
stretching occurs in the blockage layer, leading to a higher maximum vorticity in the upper
vortex core. In figure 36(b), we consider the time-averaged vortex stretching (dF̄st) and
advection (dF̄av) terms, for Re = 500, 1000 and 2000. Outside of the viscous layer, the
vortex stretching and advection terms are nearly independent of Reynolds number, since
the blockage effect of the free surface does not depend on viscosity. The strength of the
blockage effect increases as the free surface is approached, until it is impeded by viscous
diffusion within the viscous layer. As the thickness of the viscous layer is reduced, the
blockage effect is allowed to occur closer to the free surface, leading to a much greater
maximum magnitude of vortex stretching.

The increase in vortex stretching that occurs at higher Reynolds numbers leads to larger
vorticity gradients at the free surface. Therefore, although the viscosity is reduced, the
boundary vorticity flux (ν ŝ × (∇ × ω)) remains significant. This explains why the time
scale for vortex connection in figure 34 is relatively insensitive to Reynolds number,
despite vortex connection being a purely viscous process.

6.2. Froude number
To investigate the effects of Froude number, a series of simulations was performed with
the moving-mesh solver (interTrackFoam), using Froude numbers from Fr = 0.01 to 1.
The moving-mesh solver is not capable of handling breaking of the free surface and air
entrainment, so could not be used above Fr = 1. To investigate higher Froude numbers, a
series of simulations were run using the VOF solver (interFoam), using Froude numbers
from Fr = 1 to 2. All other physical parameters were held constant: Re = 1570, α = 80◦,
a/R0 = 0.35 and H/R0 = 2.5. In figure 37, and comparing figures 38(a,b) to 39(a,b), we
find good agreement between the moving-mesh and VOF methods at Fr = 1.
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Figure 38. Contours of spanwise vorticity (ωy) in the symmetry plane, at flow times (a,c) t/(R2
0/Γ0) = 28

and (b,d) t/(R2
0/Γ0) = 35, and at Froude numbers (a,b) Fr = 1 and (c,d) Fr = 0.75, obtained using the

moving-mesh solver (interTrackFoam). The contour levels and colourmap are the same as in figure 19. The
physical parameters are Re = 1570, α = 80◦, a/R0 = 0.35 and H/R0 = 2.5
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Figure 39. Contours of spanwise vorticity (ωy) in the symmetry plane, at flow times (a,c,e) t/(R2
0/Γ0) = 28

and (b,d, f ) t/(R2
0/Γ0) = 35, and at Froude numbers (a,b) Fr = 1, (c,d) Fr = 1.5 and (e,g) Fr = 2, obtained

using the VOF solver (interFoam). The contour levels and colourmap are the same as in figure 19. The physical
parameters are Re = 1570, α = 80◦, a/R0 = 0.35 and H/R0 = 2.5. Only vorticity corresponding to the lower
fluid is shown.
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Time histories of the maximum magnitude of spanwise vorticity in the symmetry plane
for each Froude number are plotted in figure 37. At high Froude numbers, the magnitude
of secondary vorticity surpasses that of the primary vortex. The profiles in figure 37 for
Fr � 1 correspond to the primary vortex core, not the secondary vorticity. There is little
change in the profiles between Fr = 0.01 and Fr = 0.75, indicating that at these Froude
numbers, deformation of the free surface has little impact on the evolution of the vortex
ring. The influence of free-surface deformations becomes significant at Fr = 1. As the
Froude number is increased beyond this, the maximum value of spanwise vorticity in the
vortex ring is reduced; however, this peak value of spanwise vorticity in the primary vortex
core persists for a longer duration.

In figure 38, we show contours of spanwise vorticity in the symmetry plane at Fr = 0.75
and 1, obtained using the moving-mesh solver (interTrackFoam). (A transient animation
of this figure is provided in supplementary movie 8.) At Fr = 0.75, slight deformations
in the free surface are observed, and a small amount of secondary vorticity is present on
the free surface. However, the free-surface deformations and secondary vorticity are not
strong enough to alter significantly the vortex ring evolution. At Fr = 1, however, larger
deformations in the free surface are observed, leading to increased generation of secondary
vorticity. Comparing figures 39(b) and 39(d), we see that the secondary vorticity for
Fr = 1 has deflected the head of the primary vortex away from the free surface. As a result,
the primary vortex core does not diffuse into the free surface as rapidly, and persists in the
fluid for a longer duration.

To understand the appearance of secondary vorticity, consider the free-surface boundary
condition (4.3). The first term, −ŝ × ∇‖(u1 · ŝ), is due to the normal velocity of the
free surface, and represents the rotation of the free surface, while the second term,
−ŝ × (u1 · K), is due to the curvature of the free surface, and represents the rotation of
fluid elements as they follow the curvature of the free surface (Terrington et al. 2020,
2022). Both of these effects are larger as the Froude number is increased, resulting in a
greater quantity of secondary vorticity appearing at the free surface.

In figure 39, we plot contours of spanwise vorticity for Fr = 1, 1.5 and 2, obtained using
the VOF solver (interFoam). (A transient animation is provided in supplementary movie 9.)
As the Froude number is increased, larger surface deformations are observed, leading to
increased generation of secondary vorticity. The secondary vorticity detaches from the free
surface and forms a counter-rotating vortex pair, which pulls the primary vortex core away
from the free surface. This interaction prevents the primary vortex ring from diffusing out
of the free surface, so the upper vortex core persists for a longer duration.

For Fr = 1.5 and 2, we also see evidence of air entrainment in figures 39(c) and 39(e).
The air entrainment process appears to be similar to that observed in André & Bardet
(2017), where the primary vortex creates a thin air ligament near the free surface, which
pinches off and becomes an air bubble. Large surface curvature is observed at the tip
of the air ligament, which is where the secondary vortex is generated. The air entrainment
process for a vortex ring interacting with a free surface has been discussed in greater detail
by Yu et al. (2018).

7. Conclusions

We have provided a new interpretation of the mechanism by which a vortex ring attaches
to a free surface. As the vortex ring approaches the free surface, vortex stretching in the
blockage layer leads to large vorticity gradients at the free surface. This produces a viscous
flux of surface-tangential vorticity out of the fluid, so the upper portion of the vortex
loop disappears from the fluid. The flux of surface-tangential vorticity out of the fluid is
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accompanied by the viscous flux of surface-normal vorticity along the free surface and
away from the connection line, which results in the attachment of the ends of the vortex
ring to the free surface. This description explains clearly how the loss of circulation from
the symmetry plane is balanced by an equal increase in circulation in the free surface,
which is a consequence of the kinematic condition that vortex lines do not end inside the
fluid.

By including an interface vortex sheet at the free surface, the total circulation in this
flow is conserved. The loss of vorticity from the fluid is balanced by an increase in the
circulation found in the interface vortex sheet. Moreover, the interface vortex sheet satisfies
a generalised solenoidal condition, so that after the connection, the vortex ring remains a
closed loop, with the upper portion of the vortex ring passing through the interface vortex
sheet. During the reconnection process, the upper part of the vortex ring simply diffuses
out of the fluid and into the interface vortex sheet. This is similar to the interaction between
a vortex ring and an air–water interface, where the upper part of the vortex ring diffuses
out of the lower fluid and into the upper fluid.

Finally, we have considered the effects of Reynolds and Froude numbers on the vortex
connection process. As the Reynolds number is increased, the thickness of the viscous
layer decreases, leading to increased vortex stretching within the blockage layer. This leads
to larger vorticity gradients at the free surface, which produce the boundary vorticity flux.
As the Froude number is increased, larger deformation of the free surface is observed,
leading to the creation of secondary vorticity at the free surface. The secondary vorticity
pulls the primary vortex ring away from the free surface, prolonging the vortex connection
process.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.529.
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