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ABSTRACT

Numerical predictions of the standard deviation of
lift and mean drag force are presented for rectangu-
lar cross-sectioned plates with aspect ratios (c/t) =
6 — 16. The simulations are at Re = 400 and the
plates are subjected to a sinusoidal oscillation with an
amplitude of 2.5% of free-stream velocity in the fre-
quency range of 0.1 < St < 0.2. The peaks in drag
force with varying ¢/t display a stepwise increase in
St. suggesting that the response is dominated by an
Impinging Leading-Edge Vortex (ILEV) instability.
Overall the fluctuating component of lift shows an
increase with frequency but decreases close to these
frequencies at which the drag is a maximum.

NOMENCLATURE
c plate chord
Cp time average drag coefficient
Cr  lift coefficient
¢/t Chord to thickness ratio
Re  Reynolds number
St Strouhal number based on thickness
St. Strouhal number based on chord
t plate thickness
v magnitude of cross-flow perturbation
o) Phase angle of sinusoidal forcing
oc, standard deviation of lift coefficient
INTRODUCTION

In many industrial applications, it is important to
quantify the loading on bluff bodies in fluid-structure
interactions. For flow past long rectangular plates,
there is a complex interaction between leading and
trailing edge vortex shedding. The receptivity of the
instability can be measured by introducing a small os-
cillatory perturbation to the system. A long rectan-
gular plate sheds vortices from both the leading edge
and trailing edge and is susceptible to a feedback type
of instability. High aspect ratio bodies experience in-
creased fluctuating lift which can result in structural
instability.

The flow under investigation is shown in Figure 1.
The two-dimensional long rectangular plate is placed
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Figure 1: Physical layout of the simulation.

in a uniform flow with a sinusoidal cross-flow pertur-
bation of 2.5% of the free stream velocity.

In the unforced case, this impinging shear layer in-
stability or ILEV instability (Naudascher and Rock-
well, 1994) locks the flow to distinct periodic shedding
modes. Experiments by Nakamura et al. (1991) at
Re = 1,000 for ¢/t = 3 — 15 showed that the lead-
ing edge shedding locks on so that there is an integer
mode of shedding corresponding to a discrete number
of vortices on the plate. This resulted in a step wise
increase in St with plate length. Ozono et al. (1992)
and Ohya et al. (1992) demonstrated the same step-
ping with numerical simulations at Re = 1,000 for
c/t=3-9.

At higher Reynolds number this feedback mecha-
nism is weak and the flow will not lock into distinct
shedding modes without some external excitation.
Stokes and Welsh (1986) (Re = 15,000 — 30,000)
enclosed the plate in a duct and found that when the
frequency of the acoustic field generated by the plate
in the duct is near the instability frequency, it locks
the shedding. Mills et al. (1995) (Re = 9,000) ap-
plied acoustic forcing to the plate and found that the
base pressure peaks also display a stepwise increase
with ¢/t.

A comparison of the time-averaged base pressure
measurements of Mills et al. (1995) and the pre-
dicted pressures from the method used in this paper is
presented in Tan et al. (1998). The instability mani-
fested itself in both cases with peaks in base pressure
corresponding to the different shedding modes. The
applied frequency at which the base suction is a max-




imum depends on the phase difference between the
leading edge vortices passing the trailing edge and
the forcing. Besides the gradual increase in base suc-
tion as the forcing frequency approaches the critical
frequency, the applied perturbation also leads to a
shorter re-attachment length at the leading edge and
an increased spanwise correlation, base suction and
circulation of vortices in the wake.(Stokes and Welsh,
1986, Hourigan et al., 1993, Mills et al., 1995).

Blackburn and Henderson (1996) and Blackburn
and Karniadakis (1993) showed that for both free and
forced oscillating cylinders, the drag force increased,
and the fluctuating lift force decreased, near the criti-
cal frequency. Deniz and Staubli (1997) experimented
with an oscillating plate with ¢/t = 2 and also found
the fluctuating lift force increases gradually with fre-
quency but reduces when forcing close to the ILEV
instability frequency. This was shown to be a result
of the change in shedding phase at the trailing edge.
It also resulted in a phase jump between the lift force
and the oscillation.

The next section describes the numerical method
used in these simulations. The results will focus on
mean drag and fluctuating lift coefficients for rectan-
gular plates with 6 < ¢/t < 16 showing the effects of
the (impinging leading edge vortex) instability. All
simulations presented are performed at Re = 400.
Results for a preliminary three-dimensional simula-
tion for the natural shedding case will also be pre-
sented.

NUMERICAL METHOD
The governing equations are the incompressible
Navier-Stokes equations in primitive variables.

Spatial Scheme

The spectral-element method has been used for the
computations. This method can be characterised
as a high-order Galerkin finite-element method with
tensor-product Lagrange polynomials used to interpo-
late the fields in each element. For smooth problems,
this method allows high-order spatial accuracy to be
achieved. For this geometry (a rectangular plate) the
right angle corners of the plate restrict the spatial
convergence rate of the method, however, the effect
is local and does not degrade the accuracy of the flow-
field away from these points.

The boundary conditions applied to the computa-
tional domain are, (i) no slip on the plate, (ii) zero
normal velocity derivative at the outflow boundary
and, (iii) on the side and inflow boundary, the veloc-
ity was taken as uniform in the horizontal direction
plus a perturbing sinusoidally varying vertical com-
ponent.

Figure 2 shows a typical mesh system used for the
simulations. This mesh is for a plate with chord to
thickness ratio of 10. It employs 7 X 7 nodes per
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Figure 2: Computational grid showing only
macro-elements for ¢/t = 10. Each macro-
element contains 49 nodes.

element, i.e., 6th order Lagrangian polynomials in
each direction. The outflow boundary is placed 28%
downstream from the trailing edge of the plate and
the side boundaries 20 plate thicknesses away from
the plate. Tests with larger domains indicate that
these dimensions are adequate to predict pressures
on the plate to within approximately 3%. Drag and
lift coefficients are normalised with respect to ¢ and
¢ respectively.

Temporal Scheme

The implementation employs the classical three-step
splitting scheme for the time stepping as described in
Karniadakis et al. (1991). Each time-step is split into
three sub-steps to treat the advection, mass conserva-
tion/pressure and diffusion terms of the Navier-Stokes
equations. The Navier-Stokes equations are discre-
tised in conservative form which leads to discrete en-
ergy conservation. The pressure and implicit viscous
sub-steps result in linear matrix problems. The ma-
trices are not a function of time and so only need to
be inverted once at the beginning of the calculations.
Subsequently these steps only involve a (sparse) ma-
trix multiplication. The non-linear term has to be
treated explicitly. Typically this is done using the
third-order Adam-Bashforth scheme. The temporal
derivatives from the viscous sub-step are treated us-
ing the Crank-Nicolson method. Higher-order bound-
ary conditions are applied to the pressure sub-step
to ensure at least second-order overall time accuracy
for the velocity field. The time step is restricted by
the Courant condition, and set at 0.007 dimension-
less time units which is less than 1/700th of a period.
The computational results were analysed only after
the flow had reached an asymptotic state as deter-
mined by monitoring the base pressure variation with
time. Typically this requires 20 to 30 shedding cycles.

Accuracy

A limited number of simulations were performed at a
higher resolution. For the ¢/t = 10 several simula-
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Figure 3: Comparison mean drag and standard
deviation of lift coefficient as a function of forcing

frequency for ¢/t = 10 at different resolutions.

tions were performed using the same grid with 9 x 9
noded elements. Increasing the order of the element
also increases the total number of nodes and results
in a more severe Courant restriction. The time step
used was 0.004 dimensionless time units. Results pre-
sented in Figure 3 show that increasing the spatial
resolution and reducing the time step does not signif-
icantly alter the prediction. This suggests that the
simulations are well resolved.

RESULTS

For the aspect ratios used in these simulations, the
shedding locked to the forcing over a wide range of
frequency, typically between 0.10 < St < 0.22. Cal-
culated values of time average drag and standard de-
viation of lift will be presented for ¢/t = 6 — 16 and
for 0.10 < St < 0.20.

Drag Force

The mean drag force coefficients are presented in
Figure 4. The St at which the mean drag force
peaks decreases with increasing ¢/t. The flow will
then lock into a higher mode of shedding and the
pattern repeats. This pattern is highlighted by the
long dashed lines in Figure 4 and is characteristic
of the Impinging Leading-Edge Vortex Instabil-
ity(ILEV). Also the drag is larger for plates that peak
around St = 0.15 and decreases for peaks further
away. This behaviour is consistent with base pres-
sure measurements presented by Mills et al. (1995)
and predicted by Tan et al. (1998).
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Lift Force

The standard deviation of lift coefficient is presented
in Figure 5. The general trend is that the fluctuating
component of lift increases with frequency and aspect
ratio. The instability that causes peaks in base pres-
sure result in a decrease in fluctuating lift. The long
dashed lines in Figure 5 connecting the local minima
in fluctuating lift also display a similar trend to mean
drag force suggesting the influence of the same insta-
bility.

Comparison with Three Dimensional Simulation
Some preliminary results have been obtained for three
dimensional simulations for this geometry without the
perturbations. These simulations were carried out us-
ing the same parameters but with a span of 27t and a
Fourier expansion in the spanwise direction resulting
in a periodic boundary condition. The results for the
two aspect ratios investigated so far are tabulated in
Table 1.

c/t ocy Cp

2D 3D 2D 3D
10 0.0716 | 0.0377 || 0.820 | 0.705
13 0.0388 | 0.0185 || 0.711 | 0.658

Table 1: Comparison of lift and drag forces for two
and three dimensional simulations.

Flow Visualisation

Vorticity plots for the aspect ratio c/t 14 are
shown in Figure 6. The forcing frequency is chosen
to correspond to the frequency that results in maxi-
mum mean drag and a reduced fluctuating lift force
(St = 0.155). Two other frequencies just below and
above this are included for comparison (St = 0.14
and St = 0.17). The plots are taken at two instances
in the forcing cycle (0 deg and 90 deg).

At the same phase in the forcing, the shedding from
the leading edge is in phase with the forcing frequency
independent of frequency. These vortices travel down-
stream and lock the phase of the trailing-edge shed-
ding resulting in a varying phase of shedding from
the trailing-edge with forcing frequency. Closer to the
ILEV instability frequency, the increase in drag can
be attributed to stronger shedding from the trailing-
edge and a reduction in the formation length. At
higher frequencies, the trailing edge shedding is sup-
pressed and undergoes a phase shift of approximately
180°.

Also included in Figure 6 is a plot of pressure along
the top and bottom surfaces of the plate. The pres-
sure plots for the three frequencies are not signifi-
cantly different. Below the vortices there is an in-
crease in suction on the plate and the effects decays
as the vortices convect downstream.




DISCUSSION

The impinging shear layer instability influences both
lift and drag forces. The magnitude of the peaks in
mean drag force vary with ¢/t but give larger values
closer to St = 0.15. The fluctuations in lift force do
not mirror this feature. The St at which the instabil-
ity is strongest only occur at the same phase condition
for the different aspect ratios (Mills et al., 1995, Tan
et al., 1998). As alarge contribution to the drag force
is from the trailing-edge (since the drag force from
the leading edge is approximately constant), it is hy-
pothesised that the receptivity of the trailing edge is
stronger closer to that frequency.

The forcing locks the leading-edge shedding. At
higher frequencies, there are more discrete vortices
along the plate resulting in a gradual increase in
lift with forcing frequency. Superimposed on this
is a gradual rise in fluctuating lift forces at frequen-
cies just below and above the frequency at which it
reaches a local minimum. This is consistent with the
cylinder and the short plate(Blackburn and Karni-
adakis, 1993, Deniz and Staubli, 1997).

A comparison of the two and three dimensional
force calculation show that the fluctuating lift com-
ponent is much higher in the two-dimensional case.
This is due to the three-dimensionality of the flow
on the plate, namely Pattern B (Kiya and Sasaki
1991), reducing the span-wise correlation. The mean
drag is similar in both simulations. The flow around
the front face of the plate is two dimensional. Al-
though the three-dimensional structures on the sur-
face of the plate convect downstream, the trailing
edge shedding is still predominantly two dimensional
at this Reynolds number leading to a similar drag
force for both cases. However, this may not be the
case at higher Re, when the three-dimensionality is
much stronger.

CONCLUSION

The mean drag and fluctuating lift for long rectan-
gular plates is governed by the Impinging Leading-
Edge Vortez (ILEV) instability. At the ILEV in-
stability frequency, the mean drag increases and the
fluctuating lift decreases. The increase in drag is due
to stronger vortices forming at the trailing edge and
and a reduction in formation length. The fluctuating
lift force increases with frequency because of an in-
creasing number of vortices along the plate. At the
ILEV instability frequency, there is a reduction in
fluctuating lift.
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