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ABSTRACT

In 1975 Howe published a theory of aerodynamic sound
which described the interaction between flow and sound
fields in terms of the vorticity and the acoustic
particle velocities associated with the excited sound
field. In this paper four published experimental
studies of flow induced sound are interpreted in the
light of this theory. The regions of flow where energy
is transferred to the sound field are identified; the
power is shown to depend on the phase of the sound
cycle at which sections of vortical flow pass through
these regions.

INTRODUCTION

Although flow excited sound has been studied for many
years (Strouhal, 1878), it is only since Howe (1975)
published his theory of aerodynamic sound that
research workers have studied flow induced sound in
terms of the fluid dynamics of the process; this
involves an interaction between the vorticity in the
flows and the acoustic particle velocities.

There are a number of examples showing this inter-
action process involves the shedding of discrete
vortices synchronized with the sound frequency.
Nelson, Halliwell and Doak (1981, 1983) studied the
excitation of a Helmholtz resonator and found that the
process was associated with the growth of a vortex
from the cavity edge where the shear layer separated.
The vortex then travelled across the opening and out
of the resonator near the far edge. Nomoto and Culick
(1982) made an analogous study of the excitation of
loud acoustic resonances in a combustion model, which
consisted of a flow duct containing two pairs of
baffles displaced along the duct in the flow direc-
tion. They found that the excitation process was
associated with shedding of vortices from the upstream
pair of baffles which then passed through the throat
between the downstream pair of baffles. The excita-
tion of acoustic resonances in a duct containing a
single plate shedding vortices from the trailing edge
was described by Welsh, Stokes and Parker (1984),
while the case of a single plate shedding vortices
from its leading edge was described by Stokes and
Welsh (1986). In both cases, the excitation process
was associated with the shedding of vortices which
passed through the sound fields surrounding the
plates. Keller and Escudier (1983) examined the
excitation of resonances in covered cavities and again
found that the process was associated with vortices
shedding from an edge. The synchronous shedding
observed in these examples originates from the
“feeding back" of sound onto the shear layers from
which the vortices formed.

The aim of this paper is to show that the theory of
aerodynamic sound due to Howe (1975) can be used to
explain the fluid mechanics of the excitation process
for all the flows in enclosed spaces referred to
above. It describes the mechanism by which energy is
transferred from the flow to sustain the resonance.

ACOUSTIC MODES IN DUCTS OR CAVITIES
For a duct containing a centrally located plate, the

simplest transverse acoustic mode is the Parker g-mode
(Parker 1966). This is a standing wave in which the

acoustic velocities are always in the directions
indicated in Figure 1, but with harmonically oscil-
lating magnitudes, so that the sense alters every
half-cycle. The nodal surface of zero acoustic
pressure variation is the horizontal mid-surface. For
the baffles in the flow duct described by Nomoto and
Culick (1982), the simplest resonant acoustic mode is
shown in Figure 2. In this case the acoustic pressure
node is the vertical plane midway between the baffles,
and the acoustic particle velocities are in a gener-
ally axial direction. The simplest acoustic mode
associated with the Helmholtz resonator is shown in
Figure 3. ' The acoustic particle velocities oscillate
back and forth through the neck of the resonator.

Fig 1: p-mode acoustic field for a plate in a duct;
acoustic isobars (- - -); acoustic velocity

direction, (
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Fig 2: Flow visualization of locked vortex shedding
during resonance in a duct containing two
pairs of baffles (the first pair appears
obliquely in the photograph, because of camera
perspective); acoustic isobars, (- - -);
direction of acoustic particle velocities,
), direction of acoustic particle
velocities;— acoustic particle velocities.
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Fig 3: Diagrams of vortex shedding in a Helmholtz
resonator, one vortex is shed each cycle and
reaches the other edge a cycle later.

THE EXCITATION OF SOUND BY VORTICITY; HOWE'S THEORY
OF AERODYNAMIC SOUND

For a single vortex passing through a sound field with
a velocity v , Howe (1975) showed that the rate P at
which the vortex does work on the sound field is given
by:-

P=kuw.(vxu) (1)

where w, v and u are the vorticity, vortex velocity
and the acoustic particle velocity vectors respect-
ively. k is proportional to the air density and the
length of the vortex tube; the density and the length
are constant in the flows described here, so k is also
a constant..

When the sound field is a standing wave, the acoustic
velocity 1is the product of a spatial field uo and a
sinusoidal oscillation sin (2xft + h), where h is a
phase constant. It is useful to factorise P:

P = kH(t) sin(2xft + h) (2)
where H(t) = |uo| |y| |o| sin a (3)

Here, ais the angle between uo and it is assumed both
are orthogonal to y for the two-dimensional flows con-
sidered here.

Figure 4 shows a trajectory of a vortex of small
strength approaching a plate. The Tlengths of the
lines shown on each side of the trajectory indicate
the instantaneous values of P. Those above the vortex
path signify power transferred to the sound field. In
the relatively undisturbed flow upstream and down-
stream of the plate u. are approximately constant;
H(t) is therefore constant and P oscillates with
constant amplitude. Near the plate this is no longer
true; H(t) first increases, then becomes quite small
as the vortex approaches the acoustic stagnation point
near the middle of the plate. Figure 5 shows, on a
logarithmic scale, H(t) and its three factors which
vary (equation (3)). On the logarithmic scale, the
effects of the factors are additive and of the three
factors, by far the most important near the plate is

Uo | «

The total energy contributed by the vortex during its
life is obtained by integrating P from time zero (when
the vorticity was generated) to infinity. This is a
Fourier integral of the amplitude function H(t). A
substantial value of P requires that H(t)-have varia-
tions with rate of change comparable to the sound
velocity sinusoid.

Fig 4: Instantaneous contributions of power transfer-
red from a vortex to a resonant sound field;
lines upward represent positive power; ( ),
vortex trajectory.
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Fig 5: H(t), |ue|, |v| and sin q shown for a vortex
. following the same trajectory as in Figure
4. The peaks in H(t) occur when the vortex

passes the ends of the plate.

Integrating P(t) numerically is difficult because of
the oscillations; in the simplified example of Figure
4 it is impossible, because the oscillations do not
diminish. In real cases the sound_ field eventually
decays. It is much better to integrate by parts,
because of the slow variation of H(t). The integrand
is then:

Q = H'(t) cos(2nxft + h)/24f (4)

where H'(t) is the time derivative of H(t). The total
energy contributed by the vortex during its life is
the integral over time of Q (which is the same as that
of P). Q is plotted in Figure 6. It still has an
oscillatory component, but is very small where the
flow i§s undisturbed, because H'(t) is small there.
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Fig 6: The modified integrand Q(t) shown for the same
vortex trajectory as in Figure 4.

So far we have considered one vortex only. When a
large number of vortices are shed consecutively from a
single shedding point, their contributions need to be
added. If the shedding is "locked", i.e. exactly
periodic with- the sound frequency, then all con-
tributions are identical for a sound field that is
stable over time. However if the shedding is not
locked, the phase h may differ for consecutive
vortices. Fortunately the factors making up H(t) have
little dependence on the phase of the sound field. It
is true that the vortex velocity. is somewhat influenc-
ed by the sound, but the component which is induced is
in the direction of the acoustic velocity, so does not
appear in the vector product.

Therefore, vortices shed from the same point will have
similar H(t) functions. However if the phase h varies
then so will the energy transfer because of the sinus-
oidal component in equation 2. If no particular phase
range is preferred then the transfer will be as often
negative as positive, producing zero net effect. It
is therefore a necessary condition for resonance that
the sound should at 1least influence the phase of
vortex shedding, favouring a phase range which makes a
positive contribution to the sound. “Locking" is an
extreme case of this.

EXAMPLES OF SOUND SOURCES

Four of the above examples will be discussed. In each
case the vortex shedding is locked to the sound fre-
quency. The common pattern is that vortices are shed
from a curved portion of a solid surface where both
the flow and acoustic particle velocities are high.
The acoustic mode is such that this shedding point is
near a pressure node; that is, a velocity maximum,
When the vortices are following the surface near the
shedding point these velocities are constrained to be
parallel, so the triple product of (1) is zero. As a
vortex moves further away from the shedding .point, the
angle o between the vortex velocity and the acoustic
particle velocity increases and the vortex grows; the
power H(t) potentially available increases at first
but then diminishes with the decay in amplitude of the
sound velocity. 5

Obstacles may be encountered later in the flow, and
there H(t) may change rapidly. Whether a net source
of sound results depends on the phase of the sound
cycle at which the obstacle is encountered.
Eventually, on further passage through and perhaps
beyond the resonant cavity, the interaction between
the vortex and sound field diminishes, either because
of diffusion and cancellation of vorticity, or because
the sound field diminishes in intensity. This diminu-
tion is too gradual to be a significant source of
sound.

In the Helmholtz resonator (Figure 3) studied by
Nelson, Halliwell and Doak (1981, 1983), the resonance
is excited when air 1is blown across the slot in the
resonator. Once in each cycle a vortex grows from the
upstream edge, starting at a time when the acoustic
velocities are directed into the resonator and the
vortex is absorbing acoustic energy. The vortex grows
as it moves across the throat of the resonator. By
the time it approaches the far edge, the acoustic
velocities have changed sign and the vortex is now
doing work on the sound field. Being larger, it will
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generate more acoustic power than it absorbed in the
previous half-cycle and there will be a net supply of
energy to excite the resonator.

Another case where sound energy is produced in the
vortex growth phase is that of a plate centrally
located in duct (Figure 1, Welsh et al. 1984), with
shedding from the trailing edge. Here the acoustic
mode is the g-mode, which has a frequency less than
the cut-on frequency, and so decays exponentially.
While the vortex is still growing, the angle between
its motion and the acoustic velocity is increasing to
become approximately orthogonal. During this vortex
growth phase, H(t) increases to a maximum and then
decreases, because of the exponential decay of the
sound field. If the maximum of H(t) occurs when the
sound velocity is in the right direction, then the
contribution to the sound energy during that half-
cycle will outweigh the opposing contributions due to
the neighboring half-cycles; a net source will result.

In the remaining two examples, the dominant sound
source is remote from the point of vortex formation;
it is in a region where the motion of the vortices is
perturbed. If the leading edge of the plate previous-
1y described is made square, then shedding occurs from
the leading edge (Stokes and Welsh 1986). There is
some contribution to the energy integral as the
growing vortices move out into the flow, but the sound
velocity soon diminishes as the vortex moves along the
plate surface. At the trailing edge, however, the
sound and flow velocities increase again, the angle
between them also increases, and more vorticity is
entrained. This can produce a powerful acoustic
source, provided the vortex passes at the appropriate
part of the sound cycle. The-shedding is locked, so
this phase relation 1is determined at the shedding
point; the phase at passage past the end therefore
depends on the plate Tlength and flow velocity.
Typically there are distinct ranges of these variables
during which resonance is possible, corresponding to
different numbers of sound cycles which elapse while
the vortex traverses the plate.

The last example is the combustion chamber model of
Nomoto and Culick (1982) (Figure 2). The mode here is
longitudinal rather than transverse. In locked shed-
ding, vortices of opposite sign are shed simultaneous-
ly from opposite leading baffles and are deflected as
they pass the trailing baffles. As in the previous
examples, a vortex undergoing deflection is a powerful
but phase dependent source of sound; the phase depends
on the flow velocity and distance from leading to
trailing baffles, and various ranges of these
quantities allow resonance. In fact, as the vortex
passes between the baffles, H(t) passes through zero
because the vortex moves in the direction of the
acoustic particle velocity. The phase which favours a
source is one that ensures that u reverses its
direction at the same time; the product then has the
same sign on either side of the throat.

CONCLUSION

The Howe energy integral, applied to the time course
of vortices released into a flow with acoustic
resonance, provides a useful way of locating sound
source regions, interpreting the conditions under
which resonance is observed, and perhaps making it
possible to influence these conditions by design.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the assistance of
Mr N B Hamilton, for the photographic content of this
paper.

REFERENCES

Howe, M S  (1975): Contributions to the theory of
aerodynamic sound, with application to excess jet
noise and the theory of the flute. J. Fluid Mech.,
vol. 71, 625-673.

e e e e e




=5l

STOKES, WELSH AND HOURIGAN

Keller, J J;, Escudier, M P (1983): Flow excited
resonances in covered cavities. J. Sound & Vib., vol.
86, 199-226.

Nelson, P A; Halliwell, N A; Doak, P E (1981): Fluid
dynamics of a flow excited resonance, Part I: The
experiment. J. Sound & Vib., vol. 78, 15-38.

Nelson, P A; Halliwell, N A; Doak, P E (1983): Fluid
dynamics of a flow excited resonance, Part II: Flow
acoustic interaction. J. Sound & Vib., vol. 91, 375-
402.

Nomoto, H; Culick, F E C (1982): An experimental
investigation of pure tone generation by vortex
shedding in a duct. J. Sound & Vib., vol. 84, 247-252.

Parker, R (1966): Resonance effects in wake shedding
from parallel plates: some experimental observations.
J.Sound & Vib., vol. 4, 62-72.

Stokes, A N; Welsh, M C (1986): Flow resonant sound
interaction in a duct containing a plate, Part II:
square leading edge. J. Sound & Vib., vol. 104, 55-73.

Strouhal, V (1878): Uber eine besondere Art der
Tonerregung. Annalen der Phys J. und Chemie, New
Series, 5, 216-238,

Welsh, M C; Stokes, A N; Parker, R (1984): Flow
resonant sound interaction in a duct containing a

plate, Part I: semicircular leading edge. J. Sound &

Vib., vol. 95, 305-323.




