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A B S T R A C T

Renewable energy sources are likely to become essential due to continuously increasing energy
demands together with the depletion of natural resources that are currently used for power
generation, such as coal and gas. They are also advantageous in terms of their reduced
environmental impact. Here, the generation of electrical power from Vortex-Induced Vibration
(VIV) of a cylinder is investigated numerically. The cylinder is free to oscillate in the direction
transverse to the incoming flow. The cylinder is attached to a magnet that can move along the
axis of a coil made from conducting wire. The magnet and the coil together constitute a basic
electrical generator. When the cylinder undergoes VIV, the motion of the magnet creates a
voltage across the coil, which is connected to a resistive load. By Lenz's law, induced current in
the coil applies a retarding force to the magnet. Effectively, the electrical generator applies a
damping force on the cylinder with a spatially varying damping coefficient. For the initial
investigation reported here, the Reynolds number is restricted to Re≤200, so that the flow is
laminar and two-dimensional (2D). The incompressible 2D Navier-Stokes equations are solved
using an extensively validated spectral-element based solver. The effects of the electromagnetic
(EM) damping constant ξm, coil dimensions (radius a, length L), and mass ratio on the electrical
power extracted are quantified. It is found that there is an optimal value of ξm (ξopt) at which
maximum electrical power is generated. As the radius or length of the coil is increased, the value
of ξopt is observed to increase. Although the maximum average power remains the same, a larger
coil radius or length results in a more robust system in the sense that a relatively large amount of
power can be extracted when ξm is far from ξopt, unlike the constant damping ratio case. The
average power output is also a function of Reynolds number, primarily through the increased
maximum oscillation amplitude that occurs with increased Reynolds number at least within the
laminar range, although the general qualitative findings seem likely to carry across to high
Reynolds number VIV.

1. Introduction

Renewable energy sources, such as wind, solar, geothermal and gravitational, are receiving increased attention due to the
continuing depletion of natural resources used for coal or gas-fired electrical power generation together with the associated
environmental emissions. An alternative approach to electrical power generation is to convert the available flow energy of a free-
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flowing fluid into electrical energy. Wind turbines provide one example (Carli et al., 2010; Vermeer and et al., 2003), although the
effect of their low-frequency noise on health is debated (Knopper et al., 2011). Another example is the use of flexible piezoelectric
structures. Michelin and Doaré(2013) studied the efficiency of the electrical power generation due to flutter of a flexible flag with
piezoelectric patches attached. They used a semi-analytical approach where the fluid forces were modelled assuming potential flow
and the Euler-Bernoulli model was used for the flag. A maximum 12 % efficiency was reported for the largest mass ratio and flow
velocity considered in their work. Akcabay and Young (2012) numerically studied the fully coupled fluid-solid interaction of a thin
beam in incompressible viscous flow. The effect of the ratio of solid to fluid inertia forces on the flutter was investigated and the
possibility of power extraction was demonstrated. Akaydin et al. (2010) performed experiments for energy extraction from a
piezoelectric beam located in the wake of a circular cylinder. The length of the beam was equal to the cylinder diameter (D). The
power output was examined as a function of transverse and downstream beam location. Maximum power was produced when the
beam was positioned on the centreline at D2 from the rear of the cylinder. Wang et al. (2012) exploited pressure fluctuations in the
wake of a trapezoidal bluff body to oscillate a flexible diaphragm connected to a permanent magnet. A theoretical model was
developed to study the effects of the system parameters on power generation. A prototype was constructed that produced several
micro-watts of electrical power.

Vortex-induced vibration (VIV) of a bluff body provides another method for extracting power from flow energy that has received
considerable attention; see the review by Xiao and Zhu (2014) on flapping-foil based energy harvesters. Mehmood et al. (2013)
numerically investigated energy harvesting from VIV of a circular cylinder using a piezoelectric transducer. It was found that there is
an optimal load resistance for harvesting maximum power but the optimal case does not coincide with the largest amplitude of
oscillations. In their experiments, Nishi et al. (2014) considered two identical cylinders separated by a fixed distance in the
streamwise direction. Two cases, for which one then the other cylinder was kept fixed, were compared with the isolated cylinder case.
An electromagnetic transducer was used to convert the cylinder motion into electrical energy. It was found that the case with the rear
cylinder fixed produced the largest vibration amplitude and the highest efficiency of 15 %. Dai et al. (2016) experimentally
investigated four different installations of a cylinder on a piezoelectric beam for harnessing energy. Out of the four, three
configurations had the cylinder axis aligned with the beam and for the fourth the cylinder had its axis perpendicular to the beam. The
fourth configuration was reported to produce the maximum power. Hobbs and Hu (2012) experimentally investigated energy
extraction from a linear array of four cylinders. Each cylinder was attached to a piezoelectric energy transducer. They studied the
effect of cylinder spacing and flow speed on extracted power. Downstream cylinders were found to produce a larger amount of power
than upstream cylinders. They also found that power increased only until the third cylinder for low wind speeds but continued to
increase for the fourth cylinder for higher wind speeds. This suggests that the optimal number of power harvesting devices depends
on the Reynolds number, at least for a certain range. Barrero-Gil et al. (2012) undertook a semi-analytical analysis of power
harvesting from transverse VIV of a circular cylinder. The energy extraction process was modelled as a linear damper. Data from
forced vibration experiments were used as input for the governing equations of motion of the cylinder. The effects of mass and
damping ratios were studied, and it was found that relatively high efficiency can be achieved over a large range of reduced velocity for
lower mass ratios.

From the above review, it is clear that there has been considerable valuable research undertaken on this important problem.
Given the complexity of the system and flow physics involved, it is understandable that simplifications have been made in the
modelling undertaken. To-date there has been no attempt to match the form of the extracted power output to more realistic damping
models. To do so is important for two reasons — it could affect the power output if the form of its extraction is not constant versus
variable damping, and indeed the variable damping could also affect the flow physics of this vortex-induced vibration system and

Nomenclature

ÿ Transverse acceleration of the cylinder
ẏ Transverse velocity of the cylinder
u Fluid velocity vector
μm Magnetic moment of the magnet
ν Kinematic viscosity of the fluid
P Average power
Pmax Maximum average power
ρ Fluid density
ξ Damping ratio
ξm0 Electromagnetic damping constant
ξm Electromagnetic damping ratio
a Radius of the conducting coil
c Damping coefficient for the linear damping
cm Damping coefficient for the electromagnetic

damping (=c gm0
2)

CL Lift coefficient
cm0 Electromagnetic constant (=μ RD/( )m

2 4 )
D Cylinder diameter

Fm Electromagnetic force
fN Natural frequency of the system in fluid
fn Natural frequency of the system in vacuum
g A non-linear function of a, L, ycm and N
k Stiffness of the spring
L Length of the conducting coil
Lc Cylinder length
m Mass ratio
mcm Total mass of the cylinder-magnet assembly
mf Mass of the displaced fluid
N Number of turns in the conducting coil
P Instantaneous power
p Fluid kinematic pressure
R Net electrical load resistance
Re Reynolds number
U Free stream velocity
Ur Reduced velocity
y Transverse displacement of the cylinder
ycm Distance between the magnet and coil
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consequently the incoming power input available for extraction. Hence, the validity of the assumption that power output predictions
based on constant damping ratio provides a good predictor for the variable damped case has not been investigated in the literature.
In addition, a detailed analysis of a magnet-coil type energy harvester based on the principle of electromagnetic induction appears
yet to have been reported. The aim of the present work is to address these open questions.

The layout of this paper is as follows. In Section 2, the governing theory for the fluid-structure interaction problem is presented,
followed by the specifics of the electromagnetic energy-extraction system. The numerical approach to solve this coupled system is
then presented. Key results are given in Section 3. In Section 3.1 the extracted power is quantified and compared for systems having
constant and electromagnetically based variable damping coefficients. Following this, the details of the EM damping system are
discussed. Next the influences of tuneable parameters on system behaviour are quantified, these include: the length and radius of the
coil, mass ratio, and Reynolds number. Finally the influence of using dual generators is determined in Section 3.6, before providing
conclusions.

2. Problem definition and methodology

2.1. Governing equations

A vertical elastically mounted circular cylinder of diameter D (=1) and length Lc is placed in a free-stream flow. The cylinder is
free to oscillate in the transverse (y) direction, with the cylinder displacement denoted by y. The Reynolds number is chosen so that
the flow is two-dimensional (2D), and the fluid is incompressible. The computational problem is set in the reference frame of the
cylinder. The governing equations are the non-dimensional Navier-Stokes equations in an accelerated frame of reference

t
p

Re
u u u u a∂

∂
+ ( ·∇) = ∇ + 1 (∇ ) + ,F

2
(1)

where u and p are the fluid velocity and kinematic pressure, respectively, and aF is the acceleration of the reference frame. The
freestream velocity U and the cylinder diameter D are used as the reference scales, respectively, and to define the Reynolds number,

UD νRe= / , where ν is the kinematic viscosity of the fluid. The cylinder is attached to a magnet (magnetic moment μm) that can move
along the axis of an electrically conducting coil of non-dimensional radius a, length L, and composed of N turns (see Fig. 1).
According to Faraday's law of electromagnetic induction, the motion of the magnet produces an emf (ϵ) across the coil. If the coil is
connected to a resistive load R then the induced current in the coil is i R= ϵ/ . The induced current opposes the motion of the magnet

Fig. 1. The cylinder-magnet assembly moving along the axis of the conducting coil.
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by applying an electromagnetic force (Fm), given by the following expression

F c g y* = ˙*,m m0
2 (2)

where * is used to represent dimensional variables. Also, c μ RD= /( )m m0
2 4 is a constant and g g y t= ( ( )) is a function of dimensions of

the coil and its distance from the magnet. It is given by the following equation based on the single magnetic dipole approximation
(Donoso et al., 2010)

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥g πNa

L a y L a y L
= 2 1

( + ( − /2) )
− 1

( + ( + /2) )
,

cm cm

2

2 2 3/2 2 2 3/2
(3)

with ycm the non-dimensional distance between the magnet and coil. The electromagnetic force can be considered as a damping
force with a non-constant damping coefficient c c g=m m0

2. The motion of the cylinder-magnet assembly is governed by the following
equation

m y cy ky F F¨* + ˙* + * = * + *,cm l m (4)

where mcm is the mass of the cylinder-magnet assembly and F*l is the lift force on the cylinder. The second term on the left-hand
side of Eq. (4) represents a power transducer based on a constant damping (CD) assumption, i.e., c = constant (Barrero-Gil et al.,
2012). Notice that when the constant damping (CD) transducer is used then the electromagnetic damping (EMD) transducer is
turned off and vice-versa. The natural frequency of the above system in a vacuum is given by f k m= /n π cm

1
2 . Following the standard

procedure of nondimensionalization of Eq. (4), the damping and mass ratios are defined as ξ c c= / c and m m m= /cm f , respectively,
where m ρ D L=f

π
c4

2 is the mass of the displaced fluid and c πm f= 4c cm n is the critical damping, below which the system response has a
decaying sinusoidal variation. Similarly, the electromagnetic damping constant is defined as ξ c c= /m m c0 0 , so that the non-
dimensional expression for the electromagnetic force is given by

F π mξ f y= 2 ˙,m m n
2 (5)

with ξ ξ g=m m0
2 the EM damping ratio. Using above definitions, the following non-dimensional form of Eq. (4) is obtained as

y π ξ ξ f y π f y
π

C
m

¨ + 4 ( + ) ˙ + 4 = 2 .m n n
L2 2

(6)

Here, C F ρU DL= */( )L l c
1
2

2 is the lift coefficient for the cylinder. In addition, the natural frequency of the cylinder-magnet assembly in

the fluid is given by f k m= /N π eff
1

2 . The effective mass of the system in the fluid (meff ) is given by the sum m m m= +eff cm a, wherema

is the added mass of the fluid which the cylinder accelerates. The added mass can be expressed as m c m=a a f with ca=1 from
potential flow theory. The non-dimensional reduced velocity is defined as U U f D= /( )r N . The dimensionless power is defined as the

ratio of the power dissipated by the damper to the power available over the fluid region occupied by the cylinder ( ρU DLc
1
2

3 ). It can
also be considered as the efficiency of the system. The electrical power can be calculated by multiplying the electromagnetic force
with the velocity of the magnet P t F y( ) = ˙m . The average power over a period of oscillation (T) of the cylinder is calculated as

∫P
T

P t dt= 1 ( ) .
T (7)

2.2. Numerical formulation

The fluid equations and cylinder equations of motion are solved in a coupled manner using a previously validated spectral-
element code (e.g., see (Leontini et al., 2006b, 2006a; Thompson et al., 2006), and references therein). More details on the method
can be found in those papers, so only a brief description will be given here. The spatial discretisation uses the nodal spectral-element
approach (Karniadakis and Sherwin, 1999), which is essentially a high-order Galerkin finite-element method. The shape and
weighting functions are tensor product Lagrangian interpolating polynomials based on node points distributed according to the
Gauss-Legendre-Lobatto quadrature integration points, which in turn is used to approximate the integrals from application of the
weighted residual method. Importantly, the method achieves spectral (or exponential) convergence as the order of the interpolating
polynomials is increased (Karniadakis and Sherwin, 1999). The time-integration of the spatially discretised equations is achieved by
a fractional step or time-splitting method e.g., Chorin (1968); Karniadakis and Sherwin (1999); Thompson et al. (2006), in which the
convective, pressure and diffusion terms of the Navier-Stokes equations are integrated sequentially, using an explicit Adam-
Bashforth method for the convective substep and the θ-corrected implicit Crank-Nicholson method for the diffusive substep (Canuto
et al., 2006). The pressure substep is used to satisfy continuity and is also treated implicitly. The higher-order pressure boundary
condition applied at the cylinder surface is derived from the Navier-Stokes equations to provide the pressure-normal derivative (see
Karniadakis et al., 1991). A fuller description can be found in Thompson et al. (2006). For the coupled problem, the acceleration of
the frame is added to the convective substep, and iteration proceeds during each full timestep until the fluid velocity field, cylinder
velocity and the cylinder applied force converge. Testing was performed to ensure that each of these three convergence criteria are
small enough to achieve 1% accuracy or better in predicting the oscillation amplitude evolution. It has been previously been used to
model vortex-induced vibrations of inline (Leontini et al., 2013, 2011), transverse (Leontini et al., 2006a, 2006b), and rotationally
(Lo Jacono et al., 2010) oscillating cylinders, and even tethered spheres (Lee et al., 2013).
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2.3. Computational domain and boundary conditions

The computational domain, shown in Fig. 2, extends L D= 25h and L D= 40v in the downstream and transverse directions,
respectively. Thus the cross-stream blockage is 2.5%. The inlet is semicircular with diameter Lv. The fluid velocity is prescribed as
u U v y= , = − ˙ at the inlet, top and bottom boundaries, where ẏ is the velocity of the cylinder. No-slip conditions are applied at the
cylinder boundary. Neumann conditions is applied at the outlet for the fluid velocity and the pressure is taken as constant.

2.4. Resolution studies and validation

The base computational mesh is the same as that used by Leontini et al. (2006b) for their studies of transverse oscillations of a
circular cylinder at Re=200, except that the blockage has been reduced by adding an extra layer of cells to extend the transverse
dimension from 30 to D40 . It was verified that the same amplitude/reduced-velocity response curve was reproduced from that study
for the constant damping case. For the current paper, the majority of simulations were undertaken at Re=150, ensuring that the flow
remained two-dimensional. Leontini et al. (2007) showed through stability analysis that the wake does not undergo transition to
three-dimensionality prior to Re=250, at least in the high-amplitude lock-in region. For the bulk of the simulations reported in this
paper, 5×5 noded elements were used for the macro-elements of the mesh. This is sufficient to guarantee the prediction of the peak
oscillation amplitude of vibrations to better than 1% for the Reynolds numbers considered.

To provide more confidence in the predictions, validation and resolution tests are presented in Fig. 3a and b, respectively. In
Fig. 3a, the cylinder displacement amplitude (Ay) obtained by the present solver is compared with that of the Leontini et al. (2006b)
for a range of reduced velocities (Ur) at Re=200, m=10 and ξ = 0.01. Individual values of Ay differ by less than 1% from the
published data. For the resolution study Ur=4.7 was chosen, which was the reduced velocity leading to maximum cylinder
displacement. To perform the resolution study, the number of elements in the computational mesh was fixed while varying the
number of nodes per element. In Fig. 3b, the temporal variation of the cylinder displacement is shown for different numbers of nodes
per element. This indicates the 5×5 element-based mesh predicts the maximum displacement to within better than 1% of the most
resolved mesh tested. Hence, this mesh was used for subsequent simulations.

3. Results

3.1. Constant versus EM damping ratio

In this section, the behaviour of using the electromagnetic damping (EMD) is compared with the constant damping (CD) in terms
of energy extraction. The average power (P ) is a function of damping ratio, reduced velocity and mass ratio. Initially, the mass ratio
is fixed at m=2, and the reduced velocity is taken as Ur=5.2 which corresponds to the lock-in condition at Re= 150 (Leontini et al.,
2006b). For the EMD case, the length and radius of the coil are both taken as D0.6 . Time variations of power, transverse
displacement (y) and transverse velocity (v) of the cylinder over an oscillation cycle are shown in Fig. 4 for the CD and EMD cases.
The plots correspond to a value of the damping ratio that produces the maximum average power (Pmax). Let fp and fc be the
fundamental frequencies of power and cylinder transverse displacement, respectively. As seen in Fig. 4, fp is 2 and 4 times fc for the
CD and EMD cases, respectively. In the CD case, peak electrical power is generated when the cylinder passes through its mean
position (y=0), where it has the maximum speed. The same is not true for the EMD case, where peak power is generated when the
cylinder displacement is y = ± 0.23. There are two distinct local maxima for power, as seen in Fig. 4b. Also notice that the velocity
profile of the cylinder is not sinusoidal in the EMD case. The instant of maximum velocity does not coincide with that of the mean
position. Therefore the two peaks of power have different magnitude even though they occur when the cylinder is at the same

Fig. 2. Computational domain for VIV of a circular cylinder.
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distance from its mean position. The lower and higher peaks occur when the cylinder is moving towards and away from its mean
position, respectively. The peak power in the EMD case (0.30) is higher than that of the CD case (0.26).

The vorticity patterns for both the cases are also compared in Fig. 4. In both cases the S2 vortex shedding mode is observed (e.g.,
Williamson and Govardhan, 2004), and indeed there is little difference between the shedding patterns.

Ur

A y
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Fig. 3. a) Comparison of the cylinder response with the published data and b) effect of spectral element resolution on the cylinder displacement.
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Fig. 4. Top: Temporal variation of power, position and velocity of the cylinder for (a) CD (ξ=0.14) and (b) EMD (ξ = 2.4 × 10m0 −5, a=0.6, L=0.6) cases, at Ur=5.2 and

m=2. Vorticity contours (scale −2 to 2) corresponding to these cases are shown below each plot.
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Fig. 5a shows the variation of the average power with damping ratio (ξ) for the CD case. Also plotted are the displacement and
velocity amplitudes of the cylinder, which are seen to monotonically decrease with increasing ξ. This behaviour is expected since the
role of damping is to apply a retarding force on the cylinder, hence, a larger damping value results in a larger retarding force and
thereby a smaller oscillation amplitude. Since the oscillation amplitude of the cylinder decreases with ξ, and the power is
proportional to the product of ξ and the square of the velocity amplitude, it is expected that there is an optimal value of ξ (ξopt) at
which maximum power is harnessed. This is seen in Fig. 5a, where ξ = 0.14opt and the maximum average power (Pmax) is 0.13. A
similar plot is shown in Fig. 5b for the EMD case. The maximum average power in this case is also close to 0.13, but note that more
power is obtained compared to the CD case when the damping ratio is greater than its optimal value. To quantify this effect, the
quality of the system is defined as

Q ξ
ξ

= Δ .
opt (8)

Here ξΔ is the half-width at half-maximum (HWHM), i.e., ξ ξ ξΔ = − opt1/2 , where ξ1/2 represents the value of damping at which the
power is half of its maximum value. In effect, Q signifies how far, relative to the optimal condition, the system can operate and still
produce more than half of the maximum average power. The values of Q at Ur=5.2 for CD and EMD cases are 2.1 and 12.8,
respectively. The value of maximum average power at Ur=6.7 is close to half of Pmax at Ur=5.2. The values of Q at Ur=6.7 for the CD
and EMD cases are 4.1 and 31.0, respectively. Thus, the EMD system is considerably less sensitive to tuning.

In Fig. 6, the data of Fig. 5 is replotted with different axes. This reveals the relationship of power and velocity amplitude with the
displacement amplitude of the cylinder for both the cases. While Fig. 6a shows the similarity between the two cases, Fig. 6b points
out the differences. Although the temporal variation of power is different for each case, surprisingly, the average power is seen to
depend only on the displacement amplitude of the cylinder in Fig. 6a. There is an optimal amplitude for the maximum average
power. On the other hand, the velocity amplitude of the cylinder is larger for the EMD case at smaller displacement amplitude. This
happens because the EMD case has smaller damping at the mean position (y=0), which allows a larger acceleration of the cylinder.

Fig. 7 shows the variation of maximum average power (Pmax) with reduced velocity for both CD and EMD cases. Two EMD cases
with different coil lengths are considered. All the curves in Fig. 7 are effectively indistinguishable implying that the variation of
maximum average power with reduced velocity is independent of the nature of damping used. Therefore, a constant damping ratio
can be used to calculate the average power that can be extracted from the system under non-constant electromagnetic damping;
whilst noting that the temporal variation for the two cases is quite different.

3.2. Effect of coil length

Now details of the EMD setup are examined while retaining the same mass ratio (m=2) and choosing the lock-in condition
(Ur=5.2) at Re=150. In this section, the effect of the length of the coil on the power output is considered. In addition to the value of
0.6 already considered, L is varied in the range [0.1, 1.0]. The radius of the coil is kept at a=0.6. The variations of average power and
displacement amplitude of the cylinder with ξm0 are shown in Fig. 8 for the different lengths of the coil (L). There is no significant
effect of the coil length on the maximum average power, but the value of optimal ξm0 increases with L. It is worth mentioning that
the relationships of power and the velocity amplitude with the displacement amplitude of the cylinder (not shown here) are
unaffected by the L. The displacement amplitudes of the cylinder at optimal ξm0 for L=0.1, 0.6 and 1.0 are 0.39, 0.37 and 0.38,
respectively. The corresponding velocity amplitudes of the cylinder are 0.49, 0.46 and 0.48, respectively. It is seen that at a particular
value of ξm0, greater than the optimal value, larger values of power and velocity amplitude of the cylinder are produced for a larger

Fig. 5. Variation of the average power (a) with ξ for CD and (b) with ξm0 for EMD (a L= 0.6, = 0.6) cases, for Ur=5.2 and m=2.
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L. This behaviour can be explained by the relationship of ξm with L, which is plotted in Fig. 9. In Fig. 9a and b, the variation of ξm
with y is plotted, at three values of ξm0, for L=0.1 and 1.0, respectively. As seen in Fig. 9, a small value of L results in a large value of
ξm at the same ξm0. Since increased damping ratio is expected to reduce the vibration amplitude, a small L produces a smaller
displacement amplitude and power at a particular value of ξm0. The values of Q for L=0.1, 0.6 and 1.0 are 11, 12.8 and 19.6,
respectively.

3.3. Effect of coil radius

This section studies the effect of the coil radius on the power output. Coil radius values of a=0.4, 0.8 and 1.0 are used, in addition
to the already considered value of 0.6, while the length of the coil is kept at L=0.6. The other parameters are kept unchanged, i.e.
m=2, Ur=5.2 and Re=150. The effect of coil radius on power can be seen in Fig. 10, where the variations of average power and
displacement amplitude of the cylinder with ξm0 are plotted for the four aforementioned values of a. Similar to what was seen in
Section 3.2, the value of maximum average power is unaffected by the coil radius, but the value of optimal ξm0 increases with an
increase in a. The displacement amplitudes of the cylinder at optimal ξm0 for a=0.4, 0.6, 0.8 and 1.0 are 0.37, 0.39, 0.36 and 0.36,
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Fig. 6. (a) Average power and (b) velocity amplitude versus displacement amplitude of the cylinder for CD and EMD cases at Ur=5.2, m=2 and Re= 150.
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respectively. The effect of coil radius on damping ξm is shown in Fig. 11 where the variation of ξm with y is plotted, at three values of
ξm0, for a=0.6 and 1.0, respectively. The damping ξm is higher for smaller a and therefore more power is produced for larger a at
same ξm0 (Fig. 10a). The values of Q for a=0.4, 0.6, 0.8 and 1.0 are 13.2, 12.8, 13.4 and 13.8, respectively. Again, the relationships
of power and the velocity amplitude with the displacement amplitude of the cylinder (not shown here) are unaffected by the coil
radius.

3.4. Effect of mass ratio

Next the effect of mass ratio of the cylinder-magnet assembly on the power output is discussed. In this case the coil radius (a) and
length (L) are set to 0.6 and 1.0, respectively. As discussed in Section 3.1, the values of a and L do not affect the maximum average
power Pmax. Fig. 12 shows the variation of Pmax with Ur for different mass ratios m. It is seen that the Pmax versus Ur curve becomes
flatter as the mass ratio is decreased, implying that the synchronization region for the VIV of the cylinder becomes larger for smaller
m. This phenomenon has been reported previously in the literature (Govardhan and Williamson, 2000). The results show only a very
small effect of m on the peak value of Pmax.
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Fig. 8. Effect of coil length on (a) average power and (b) displacement amplitude at Ur=5.2, m=2 and a=0.6.

y

ξ m

-1 -0.5 0 0.5 10

2

4

6

8

10

12

14
a

y

ξ m

-1 -0.5 0 0.5 10

2

4

6

8

10

12

14

ξm0 = 2×10-4

ξm0 = 4×10-4

ξm0 = 6×10-4

b

Fig. 9. Effect of coil length on EM damping ratio (a) a L= 0.6, = 0.1 and (b) a L= 0.6, = 1.0.
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3.5. Effect of the Reynolds number

Lastly, the effect of the Reynolds number on the power output of the system is briefly considered. For this the value of Re is varied
to take values 100 and 200, in addition to the value of 150 already considered. Similarly to before, the mass ratio is kept asm=2, and
a coil of length L=1.0 and radius a=0.6 is kept at y=0. The variations of average power with ξm0 for three Reynolds numbers are
shown in Fig. 13a. The maximum average power is obtained at Ur=5.3 and 5.2 for Re=100 and 200, respectively. The average power
is seen to increase with Re. Two reasons could account for this increase in P with Re: increase in Strouhal number and increase in
the vibration amplitude (see Fig. 13b) with Re. The values of Pmax for Re=100, 150 and 200 are 0.10, 0.13 and 0.145, respectively.

3.6. Using two coils

In the previous sections the electrical generator consisted of only one coil, which was located at the magnet centre y=0. Another
possibility is to use two identical coils that are kept at equal distances, y± c, along the transverse direction. In this case the net EM
damping force is the sum of the damping forces due to each coil. Therefore, the effective EM damping ratio for the two coils case can
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Fig. 10. Effect of coil radius on (a) average power and (b) displacement amplitude at Ur=5.2, m=2 and L=0.6.
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be written as

ξ ξ g g= ( + ).m m0 1
2

2
2

(9)

Two values of yc, 0.10 and 0.39, are considered. The variations of ξm with y for these two values of yc are shown in Fig. 14. The
plot of ξm for yc=0.10 is similar to that for one coil case, except that it has a non-zero value at the centre y=0. On the other hand, the
yc=0.39 case shows an entirely different behaviour where the maximum damping occurs at the centre.

The effect of the two yc values on power for mass ratio m = 2 at lock-in (Ur=5.2) is investigated. The Reynolds number is kept at
150, and the length and radius of the coils are taken as 0.6 and 0.6. The variations of power with time for the two cases are plotted in
Fig. 15. The plots corresponds to the their optimal damping situations. The instantaneous power for the yc=0.39 case is shown in
Fig. 15a. The peak value of power (Pp) is 0.39, and is generated when the cylinder is located near the centre. Although the frequency
of power is the same as that of the CD case presented in Section 3.1, i.e., fp=2fc, the temporal variation shows some dissimilarity.
The power does not vary in a sinusoidal fashion in this case. In a cycle, the duration for which power is more than P /2p is smaller than
the duration for which the power is less than P /2p . The instantaneous power for the yc=0.10 case is shown Fig. 15b. The peak power
for this case is Pp=0.24, which is smaller than that for the single coil EMD case presented in Section 3.1. The peak power is
generated when the cylinder displacement is y = ± 0.22. Similar to the single coil case, there are two unequal peaks for the power,
and the lower and higher peaks occurs when the cylinder is moving towards and away from its mean position, respectively. However
unlike the single coil case, the power is not zero at the centre because ξ ≠ 0m there, and therefore fp=2fc for this case.

In Section 3.1, it was shown that the CD case had a lower Q value compared to the single coil EMD case. Fig. 16a shows the
variation of average power with ξm0 for yc=0.39. The value of Q for this case is 1.4, which is smaller than that for the CD case. The
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Fig. 12. Maximum average power versus Ur for different mass ratios at Re = 150.
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reason for this small value of Q is the rapid decrease in the displacement and velocity amplitudes with ξm0, as seen in Fig. 16a. This
occurs due to a higher value of ξm at the centre, resulting in a strong damping force. The variation of average power for yc=0.10 with
ξm0 is shown in Fig. 16b. The value of Q in this case is 5.8, which is smaller than the one coil EMD case, and this can be attributed to
the fact that ξm is non-zero at the centre. Again, the maximum average power for both yc values is 0.13. The displacement
amplitudes of the cylinder at optimal ξm0 for yc=0.10 and 0.39 are 0.38 and 0.37, respectively, with corresponding cylinder velocity
amplitudes of 0.47 and 0.46.

4. Conclusions

The problem of harvesting power from VIV of a circular cylinder was investigated numerically using a spectral-element based FSI
solver. Specifically, the average power production was compared for constant damping (CD) ratio and a realistic electromagnetic
induction-based magnet-coil energy transducer. The magnet-coil system was modelled as a damper having spatially varying
electromagnetic damping (EMD) ratio. There was an optimal damping ratio, for both the systems, at which maximum power was
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Fig. 14. Variation of ξm with y for the two coil case. They are plotted for optimal cases (ξ = 1 × 10m0 −5 and 6.8 × 10−6 for yc=0.10 and 0.39, respectively).
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harnessed. The results show that the temporal variation of instantaneous power is quite different for the two cases but, perhaps
surprisingly, both systems produce the same maximum average power (non-dimensional value of 0.13 at Re=150). The EMD case
produced a larger value of peak power as compared to the CD case. The frequency of the power signal for the EMD case was twice of
that of CD case. In terms of the range of damping values for which a significant amount of power is extracted from the flow, the EMD
setup is superior compared with the constant damping case.

The effects of coil length, radius and mass ratio were also explored and quantified. It was found that both length and radius of the
coil do not affect the maximum average power although the average power versus damping ratio relation does change. The value of
optimal damping ratio increases with increases in both length and radius of the coil. The increase in mass ratio increases the
maximum average power by a small amount. The more significant effect of mass ratio is on the range of reduced velocity for
synchronization of the cylinder. A smaller mass ratio cylinder is seen to have a larger synchronised region, and thereby can produce a
significant amount of power over a large range of reduced velocities.

The effect of Reynolds number on power output was also studied over the range leading to two-dimensional periodic flow. The
average power increases with an increase in Re. There was a 30% and 45 % increase in maximum average power when Re was
increased from 100 to 150, and to 200, respectively. The increase in average power can be attributed to the combined increases in
vibration amplitude and frequency of the cylinder with Re.

The possibility of using two coils positioned symmetrically about the centre of the transverse direction was also examined. Two
values of the distance between the coils were studied. These distances were chosen such that the resultant damping ratios had
different variations with spatial coordinate. Both the cases give different temporal variation of power due to the difference in the
nature of damping. The case where damping was highest at the centre, produced the largest peak power. The average power
decreased faster with the damping ratio for this case compared with the case where damping is not highest at the centre. The
maximum average power was the same (non-dimensional value of 0.13 at Re=150) for both the cases. The systems with zero
damping at the centre were found to be less sensitive (have higher Q values) to variation in damping from it optimal value.

To summarise, the constant and electromagnetic damping cases produce entirely different temporal variations of instantaneous
power output. In addition, the fundamental frequency of power is different between the two cases. On the other hand, the average
power does have a strong dependence on the vibration amplitude of the cylinder, which depends on Reynolds number, despite
showing little dependence on the nature of damping. Of potential importance is that the system quality, which measures the
insensitivity of power output to choosing the optimal system damping, is considerably better with the spatial-varying damping
associated with the electromagnetic damping system.
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