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The modification of a cylinder wake by streamwise oscillation of the cylinder at the

vortex shedding frequency of the unperturbed cylinder is reported. Recent numerical

simulations [J. S. Leontini, D. Lo Jacono, and M. C. Thompson, “A numerical study

of an inline oscillating cylinder in a free stream,” J. Fluid Mech. 688, 551–568 (2011)]

showed that this forcing results in the primary frequency decreasing proportionally

to the square of the forcing amplitude, before locking to a subharmonic at higher

amplitudes. The experimental results presented here show that this behavior continues

at higher Reynolds numbers, although the flow is three-dimensional. In addition, it

is shown that this behavior persists when the body is a square cross section, and

when the frequency of forcing is detuned from the unperturbed cylinder shedding

frequency. The similarity of the results across Reynolds number, geometry, and

frequency suggests that the physical mechanism is applicable to periodic forcing of the

classic von Kármán vortex street, regardless of the details of the body which forms the

street.

This study reports on an experimental study of cylinders undergoing forced streamwise oscilla-

tions. Streamwise forcing is just one method of active open-loop flow control that can be employed on

the cylinder wake. Others include, but are not limited to, transverse (cross-stream) oscillation,1–4 ro-

tational oscillation of the cylinder,5–8 constant rotation of the cylinder,9, 10 and actuation by synthetic

jets from the surface of the cylinder and base bleed.11–13

Previous studies of streamwise forced oscillation14–17 have investigated the synchronization

between the forcing and the vortex shedding. These studies report that the vortex shedding locks to

a subharmonic of the forcing (vortex shedding at half the frequency of the forcing), particularly for

forcing frequencies around twice fso, the shedding frequency from the unperturbed cylinder. Barbi

et al.15 and Ongoren and Rockwell18 also report that a synchronized symmetric wake structure,

different from the classic von Kármán street, can be achieved depending on the amplitude and

frequency of forcing, typically being found for high values of the frequency. Yokoi and Kamemoto19

found a series of synchronized states, depending on forcing frequency, amplitude, and Reynolds

number. These states could be synchronized to either the forcing frequency or to its first subharmonic,

particularly when the forcing frequency was close to fso, a finding confirmed and extended by Cetiner

and Rockwell.20

Perdikaris, Kaitsis, and Triantafyllou21 numerically investigated a cylinder oscillating at the

unperturbed shedding frequency, fso, for a Reynolds number Re = 400. This study found that, for

low amplitudes, the flow remained in a state similar to that of an unperturbed cylinder. At high values

of amplitude, they found locking to the first subharmonic of the forcing. At moderate amplitudes, they
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FIG. 1. Power spectral density of the lift force on the circular cylinder at Re = 5000 as a function of A*. Line plots labeled

(a), (b), and (c) are taken at A* = 0.05, 0.12, and 0.19, respectively, and are indicated by the dashed lines on the power

spectral density isocontour. The square points represent the primary frequency, fs for each A*.

reported chaos, with disorganized vortex shedding. This chaos was attributed to mode competition

between the reflection-symmetric forcing, and the spatio-temporally symmetric Kármán street.

A recent numerical study22 at Re = 175 using fine increments of amplitude and forcing at fso

found that, for low to moderate amplitudes, the primary frequency of vortex shedding, fs , decreased

with increasing non-dimensional amplitude A* = A/D, where A is the amplitude of forcing and D

is the cylinder diameter, scaling as fs ∝ A*2 as suggested in Perdikaris, Kaitsis, and Triantafyllou.21

The dynamics were shown to be dictated by the interaction of this new primary frequency fs and the

forcing frequency, typically resulting in a quasi-periodic, amplitude and frequency modulated flow.

However, nonlinear synchronization was found when the primary frequency and driving frequency

made an integer ratio, and a series of subharmonic modes was discovered from the 1/8th mode at

low amplitudes all the way to the first 1/2 subharmonic.

The current study has two primary aims. The first is to investigate experimentally whether

the dynamics reported in the previous numerical studies21, 22 persist at higher Reynolds numbers.

The second is to investigate whether the dynamics are similar for differently shaped bodies. Also

presented are results from experiments where the forcing frequency is detuned from fso.

Experiments were conducted using the Fluids Laboratory for Aeronautical and Industrial Re-

search (FLAIR) water channel at Monash University. This facility is a free surface water channel

with 800 mm depth, 600 mm width, and 4000 mm length with a test section of 500 mm width and

650 mm depth. This facility has been previously used for similar bluff-body wake studies.23, 24

Square/circular cylinders of 25 mm width/diameter were oscillated using a high resolution

stepper motor connected to a traverse, which allowed for linear translational motion.25 Position was

confirmed using a hollow bore optical encoder attached to the shaft of the stepper. Lift and drag

forces on the cylinders were measured using strain gauges on a load cell positioned above the free

surface at a sampling frequency of 100 Hz. Both square and circular cylinders were attached to the

load cell such that they passed through the test section with the end of the cylinder finishing <10 mm

from the bottom of the channel. Reynolds number was defined using the freestream velocity and the

cross-stream width of the body. The range of Reynolds number examined was Re ∈ [1500–5500]

and [3750–6300] for the square and circular cylinders, respectively.

The shedding frequency fso was determined from a stationary body using frequency analysis

of the lift force.

The frequency content of the lift force was determined using a method based on a fast Fourier

transform (FFT). The total time signal was broken into a series of segments, which overlapped

by half of the length of the segment. An FFT was taken of each segment, and the results of all

segments were then averaged. This process essentially adds a type of high-pass filtering, removing

the influence of very low frequencies. Spectra produced using this method are shown on the left-hand

side of Figure 1.



fs

fd

A∗

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.05 0.10 0.15 0.20 0.25

A∗

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

(a) (b)

FIG. 2. Primary shedding frequency, fs, normalized by the driving frequency fd, as a function of A* for (a) the circular

cylinder and (b) the square cross section, at various Re. Points are measured frequency, lines are a power-law fit of the form

fs/fd = c − aA*b (see Table I and II for the coefficient values). For (a): Re = 3750 (•), Re = 5000 (N) Re = 6300 (¥).

For (b): Re = 1500 (N); Re = 2500 (△); Re = 3550 (l); Re = 4500 (©); Re = 5500 (¥). For all values of Re , fs initially

decreases with A*2 and synchronizes to a period doubled state at higher amplitudes. However, the transition between these two

states is more abrupt for the circular cylinder case. Note that the symbols for each Re in this figure overlap when fs/fd = 0.5.

Figure 1 shows the development of the frequency content for a circular cylinder, at Re = 5000,

with increasing amplitude of oscillation. The three example spectra on the left are for A* = 0.05, A*

= 0.12, and A* = 0.20, respectively. The frequencies have been normalized by the driving frequency

fd = fso. These images show that as the amplitude is increased, the primary frequency of response

fs (marked with the square point) is lowered away from fso, before reaching fd/2. The map on the

right-hand side of Figure 1 shows this trend very clearly. The contours on this image represent the

energy for a given frequency component as a function of A*. This figure was produced by essentially

“stacking” the spectra for each value of A* next to each other. These contours show that the frequency

content of the flow response is a smooth function of the amplitude, up to A* ≃ 0.12. For A* < 0.12,

fs (again highlighted with the square points) decreases apparently quadratically. The contours also

show that over this range of A*, two other frequencies contain small, but non-negligible energy; one

at fd − fs, and another at fd + fs. At A* ≃ 0.12, there is a sudden drop in the primary frequency

to fd/2, and the flow response remains locked to this subharmonic of the driving frequency with

further increases in amplitude. This behavior is in agreement with the numerical work of Leontini,

Lo Jacono, and Thompson22 despite an order of magnitude difference in Re . This observation is not

necessarily expected, given the high level of three-dimensionality in the experiments.

The aforementioned numerical work reported that the initial decrease in fs is of the form fs/fd
= 1 − aA*2. Figure 2(a) shows fs as a function of A* for three values of Re . The data for A* lower

than that at which the flow locks to the subharmonic of the driving frequency have been fitted with

a power-law curve of the form fs/fd = c − aA*b in a least-squares sense allowing all 3 constants (a,

b, and c) to vary.

Letting the constant c “float” accounted for any experimental error in determining fd
from the unperturbed cylinder experiments. In all cases, the value of c was seen to vary

slightly but remained close to unity. The curves corresponding to these fits are plotted in

Figure 2(a), and the coefficients are shown in Table I.

TABLE I. Values of the coefficients in the fit fs/fd = c − aA*b, for A* < 0.1 for the circular cylinder. For the range of Re

tested, the exponent b remains close to 2. Note that the constant parameter c is close to unity.

Re a b c

3750 19.52 1.99 0.98

5000 12.19 1.96 0.97

6300 13.13 1.94 0.98
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FIG. 3. Power spectral density of the lift force on the square cylinder at Re = 4500 as a function of A*. Line plots labeled

(a), (b), and (c) are taken at A*= 0.11, 0.20, and 0.30, respectively, and are indicated by the dashed lines on the power spectral

density isocontour. The dotted symbols represent the maximum frequency, fs for each A*.

Table I shows that for all the values of Re , the exponent b remains close to 2. The small variation

in b indicates that even at these higher values of Re , the primary frequency for the circular cylinder

decreases with A*2.

To further test the generality of the findings, a similar approach was followed using a square

cylinder. Figure 3 shows examples of spectra for the square cylinder atRe = 4500; similar to Figure 1,

three example spectra are shown on the left-hand side, while the image on the right shows contours

of energy as a function of frequency of response and amplitude, produced by stacking the spectra for

each A* next to each other. The square points on the figure mark the primary frequency of response

for each value of A*. Similar to the circular cylinder, this figure shows that for a square cylinder,

the strongest frequency decreases from f ≈ fso as the amplitude of oscillation is increased, before

locking to f = fso/2. Again, energy at the secondary frequencies of fd − fs and fd + fs is evident in

the contours.

Figure 2(b) presents the primary frequency of shedding fs as a function of A*, for a series of

values of Re . The square cylinder follows a similar trend to the circular cylinder. At low amplitudes

fs decreases from the driving frequency with increasing A*, and transitions to a period doubled

locked-in state at higher amplitudes. Though some differences are observed in the transition to this

locked subharmonic state, the results suggest that this behavior is generic for spatio-temporally

symmetric vortex street wakes, regardless of the details of the body, which formed them. However,

wakes which do not possess this symmetry (such as those generated from non-symmetric bodies), or

which have different vortex configurations (such as those that could be produced by more complex

forcing functions) could behave in a different manner.

The trend of fs decreasing with A*2, found for the circular cylinder, is recovered from the square

cylinder data, at least for A* < 0.15. As for the circular cylinder, making a power-law fit to fs as a

function of A* results in exponents close to 2. The exponents of these fits, for a range of values of

Re , are presented in Table II.

TABLE II. Values of the coefficients in the fit fs/fd = c − aA*b, for A* < 0.2 for the square cylinder. For the range of Re

tested, the exponent b remains close to 2. Note that the constant parameter c is close to unity.

Re a b c

1500 8.05 1.93 1.02

2500 11.4 2.26 1.01

3550 9.26 2.25 0.99

4500 3.78 1.88 0.99

5500 6.40 2.15 0.99



Close inspection of the data shows some impact of the body geometry. First, for the square

cylinder the locking to a period doubled state occurs at a higher non-dimensional amplitude

(A*) compared to the circular cylinder. Second, for the circular cylinder, the transition to this

period doubled region occurs abruptly. However, for the square cylinder, the frequency ini-

tially follows the trend of A*2 until around A* = 0.15, and then rapidly, but smoothly, de-

creases to fd/2 over the range 0.15 ≤ A* ≤ 0.2. This transitional region appears to have in-

creased disorder with a broader spectrum response than the other regions. The spectrum shown in

Figure 3(b), for A* = 0.20 when Re = 4500 shows this. Although it is still possible to find a peak

frequency in the signal, it is not as distinct or dominant. A broad spectrum response is observed

at amplitudes in the transition range, with no significantly dominant peak. It is possible that this

broadband response is due to a competition between modes, one with vortex shedding at a frequency

dictated by A*2, the other at the subharmonic frequency of the driving, fd/2. However, this mode

competition does not simply lead to periods of time oscillating in one mode, then periods in the

other mode. Rather, the flow oscillations are quite irregular, and so a definitive conclusion on the

cause of this chaos has not been found.

The circular cylinder data of Figure 1 and the square cylinder data of Figure 3 show that there

is some dependence on Re , in terms of the amplitude at which locking to the period doubled state

occurs, and the steepness of the initial variation of fs with A* (this is also reflected in the variation of

a in Table II). This variation appears to be rather complex, as the amplitude at the period doubled

locking varies non-monotonically. This perhaps is not surprising, considering that there are a number

of subtle changes in the wake and shear layer formation that occur in the range of Re tested, even for

a stationary cylinder.26, 27 This complicated dependence on Re highlights the underlying complexity

of even the canonical flow of the cylinder wake, and the difficulties faced when trying to devise

any control method, including periodic forcing. The studies of Parezanović and Cadot,28, 29 using a

passive control method of a small cylinder positioned close to the main cylinder, also highlighted

this complexity, showing that the global frequency of the flow could be modified independently of

the length scale of the flow.

Regardless, it is clear that the dominant features, namely a decrease in primary frequency,

followed by synchronization to a period doubled state, are the same for all values of Re tested.

The similarity of this behavior to that from low-Re two-dimensional simulations suggests that

the dynamics of the wake are still governed by structures that are essentially two-dimensional,

even at higher Re . A number of studies exist that indicate forcing can increase the correlation

in the spanwise direction. Poncet6 and Thiria, Goujon-Durand, and Wesfried7 both show that by

rotationally oscillating the cylinder near the Strouhal frequency (the vortex shedding frequency

from the unperturbed cylinder), spanwise correlation in the wake can be significantly increased.

Leontini, Thompson, and Hourigan30 also showed that transverse oscillations near the Strouhal

frequency could delay the onset of three-dimensional structures. A significant difference between

rotational or transverse oscillation, and the streamwise oscillation of this study, is the symmetry of

the forcing compared to that of the vortex street. The vortex street is spatio-temporally symmetric;

evolution forward by half a period plus a reflection about the wake centreline gives the same solution.

Rotational and transverse forcing share this symmetry. However, streamwise oscillation does not.

Despite this, it might be expected that the forcing leads to an increase in spanwise correlation, and

this might go some way to explain the similarity of the behavior at these higher Re to the behavior

in two-dimensional simulations.

The data presented for the circular and square cylinder thus far are for driven oscillations at

the natural shedding frequency, i.e., fd = fso. An outstanding question from these studies is that of

whether it is the driving frequency, or the unperturbed cylinder frequency, that controls the dynamics,

or if there is any interaction between them. To investigate this, a series of experiments have been

conducted at a frequency slightly detuned from the natural shedding frequency, for the circular

cylinder, at Re = 5000.

Forcing at a slightly detuned frequency across the tested range ( fd = fso ± 7.5%) exhibits

the same overall trend in reducing shedding frequency until locking to a period doubled state

at higher amplitude as shown in Figure 4. Figure 4(a) shows that subharmonic locking is to the

driving frequency fd, causing the variation in locking frequency value. If these curves are normalized
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FIG. 4. The behaviour of fs as a function of A*, when the driving frequency fd is detuned from the unperturbed shedding

frequency fso, for the circular cylinder at Re = 5000, for values of fd/ fso: 0.925 (▽), 0.950 (N), 0.975 (△), 1.000 (•), 1.025

(◦), 1.050 (¥), 1.075 (¤). (a) The primary shedding frequency, fs, normalized by fso. (b) The primary shedding frequency,

fs, normalized by fd. The plots clearly show that the shedding frequency varies smoothly with A*2 from the unperturbed

cylinder case as A* is increased from A* = 0, and that the flow finally synchronizes to a subharmonic of the driving frequency,

regardless of the driving frequency.

by forcing frequency instead of natural shedding frequency, as shown in Figure 4(b), the locking

frequency collapses on to fs/fd = 0.5. However, the forcing frequency has no effect at small amplitudes

on the shedding frequency as shown in Figure 4(a). The shedding frequency is equal or close to that

of the natural shedding.

For low amplitudes, the trend is still well approximated by a quadratic, regardless of the forcing

frequency over the range tested. The coefficients of the power-law fits for the detuned shedding

frequencies are presented in Table III. For all the values of the frequency tested, the exponent b

remains close to 2.

In conclusion, this study has investigated the modes of response and trends in shedding frequency

from a cylinder performing streamwise oscillations, where the frequency of this oscillation is equal,

or close, to the vortex shedding frequency from an unperturbed cylinder.

For a circular cylinder, it has been shown that the initial trend of the primary frequency of

shedding decreasing with A*2 holds at values of Re 6 6300. The critical amplitude at which this

trend ends with a sudden transition to a period doubled state has been shown to be a function of Re .

This initial trend of decreasing shedding frequency with A*2 also applies when the cylinder

cross section is changed from circular to square. However, the transition to the period doubled state

is not as abrupt with increasing A* for the square, as the primary frequency decreases smoothly to

the subharmonic of the driving frequency over a small range of A*. This may be due to competition

between two modes of shedding.

At moderate amplitudes, it is the driving frequency, and not the unperturbed shedding frequency,

that controls the dynamics. Experiments where the driving frequency for the circular cylinder is

TABLE III. Values of the coefficients of the power-law fit fs/fd = c − aA*b, for the circular cylinder at Re = 5000 as a

function of the driving frequency fd. The exponent b constantly remains close to 2.

fd/ fso a b c

0.925 10.9 2.03 0.991

0.950 14.4 2.11 0.992

0.975 11.8 2.02 0.993

1.000 16.2 2.10 0.993

1.025 14.8 2.03 0.993

1.050 28.2 2.25 0.990

1.075 12.8 1.91 0.995



detuned from the unperturbed shedding frequency show the same trends as the case where the

driving frequency is equal to the unperturbed shedding frequency, although the critical amplitude

for the transition to the period doubled state, and the slope of the primary frequency of shedding

prior to this transition, are functions of the driving frequency.
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