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A computational investigation, supported by a theoretical analysis, is performed
to investigate a pressure-driven flow around a line of equispaced spheres moving
at a prescribed velocity along the axis of a circular tube. This fundamental study
underpins a range of applications including physiological circulation research. A
spectral-element formulation in cylindrical coordinates is employed to solve for the
incompressible fluid flow past the spheres, and the flows are computed in the reference
frame of the translating spheres.

Both the volume flow rate relative to the spheres and the forces acting on each
sphere are computed for specific sphere-to-tube diameter ratios and sphere spacing
ratios. Conditions at which zero axial force on the spheres are identified, and a region
of unsteady flow is detected at higher Reynolds numbers (based on tube diameter
and sphere velocity). A regular perturbation analysis and the reciprocal theorem are
employed to predict flow rate and drag coefficient trends at low Reynolds numbers.
Importantly, the zero drag condition is well-described by theory, and states that at
this condition, the sphere velocity is proportional to the applied pressure gradient.
This result was verified for a range of spacing and diameter ratios. Theoretical
approximations agree with computational results for Reynolds numbers up to O(100).

The geometry dependence of the zero axial force condition is examined, and for a
particular choice of the applied dimensionless pressure gradient, it is found that this
condition occurs at increasing Reynolds numbers with increasing diameter ratio, and
decreasing Reynolds number with increasing sphere spacing.

Three-dimensional simulations and predictions of a Floquet linear stability analysis
independently elucidate the bifurcation scenario with increasing Reynolds number
for a specific diameter ratio and sphere spacing. The steady axisymmetric flow first
experiences a small region of time-dependent non-axisymmetric instability, before
undergoing a regular bifurcation to a steady non-axisymmetric state with azimuthal
symmetry m =1. Landau modelling verifies that both the regular non-axisymmetric
mode and the axisymmetric Hopf transition occur through a supercritical (non-
hysteretic) bifurcation.

1. Introduction
There exist numerous examples in engineering and biomedical fields where bodies

suspended in a fluid are transported through a tube, including flushing solid matter
from a pipe or conduit, the complex flow through annular devices such as combustion
chambers and turbomachinery, and the motion of red blood cells in narrow vessels.
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An early theoretical model to describe the potential flow past a sphere fixed in
a tube was developed by Smythe (1961). That study proposed a relationship for an
effective increase in tube length as a function of the ratio of sphere to tube radii,
caused by the added resistance to the flow owing to the presence of the sphere. This
relationship (revised by a factor of 3 in Smythe 1964) exhibited a near-hyperbolic
increase from zero length change with zero radius ratio, to an asymptotic increase
as the ratio approached unity. The elegance of the analysis aside, that model did
not include assumptions of compressibility or distensibility necessary to relate the
problem to most biological and some engineering applications.

Lighthill (1968) derived and investigated a model for deformable axisymmetric
pellets driven by a pressure gradient through an elastic tube. The model incorporated
a viscous lubricating layer, and assumed small clearances with respect to the tube walls,
allowing the model to be based on the Reynolds lubrication equation. Of significant
interest was the conclusion that ‘necking’ of the tube behind the pellet could occur, es-
pecially for negative resting clearances. Despite the flow being driven by pressure, this
necking appeared similar to a peristaltic driving force, suggesting that experimental
observations of such a phenomenon in capillaries may have been misinterpreted.

By extending the model of Lighthill (1968), Fitz-Gerald (1969) considered the
deformation of the model red blood cells in narrow vessels. Fitz-Gerald observed that
viscous shear deformed the cells into a shape more amenable to fitting through the
vessels. This deformation is caused by an imbalance between the pressures developed
in the viscous lubricating layer, and the pressures acting on the body away from the
wall. Furthermore, for vessels with diameters in the range 5–7 µm, resistances of 4.5
to 7 times higher than Poiseuille’s law predictions based on whole-blood viscosity
were found. A full discussion of the viscosity of whole blood, and its variation
with haematocrit (volume ratio of red blood cells to whole blood) and shear rate is
beyond the scope of this paper (see Charm, McComis & Kurland 1964; Charm &
Kurland 1965, 1968; Rosenson, McCormick & Uretz 1996; Long et al. 2004). The
Fitz-Gerald (1969) study also demonstrated that deviation from axisymmetry of the
pellets tended to be balanced by pressures in the flow, suggesting that the results of
their axisymmetric study were valid even for non-axisymmetric pellet geometries.

The previous studies all considered the flow past a single body (sphere, spheroid,
or pellet) in a tube. Tözeren & Skalak (1978) modelled the motion of a series of
incompressible elastic neutrally buoyant spheres in a circular cylindrical tube, again
assuming the validity of lubrication theory in the gap between body and tube wall.
Tözeren & Skalak (1979), extended their model to include compressibility in the
treatment of the spheres, where the sphere volume (and hence radius) was permitted
to vary as a function of mean pressure acting on the sphere. They found that the
linear relationship between pressure and radial deflection employed by Lighthill and
Fitz-Gerald was inaccurate for elastic particles.

Deviating from the preceding assumption of axisymmetry in particle position and
motion, Tözeren (1983) sought to model eccentrically positioned spheres undergoing
either translational or rotational motions in tubes. The Stokes boundary-value model
employed in that study permitted estimates of moments and drag forces exerted on
the spheres. For small transverse displacements from the axis, drag was predicted
to decrease, and the predicted decrease was more pronounced at larger sphere-to-
tube diameter ratios. Unsurprisingly, given the existing solutions for the flow past an
eccentrically positioned cylinder in a tube applicable to the function of valves (e.g. see
Piercy, Hooper & Winney 1933), the pressure drop due to the presence of the sphere
was found to decrease when the sphere displacement from the tube axis increased.
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The eccentric sphere position in the tube invoked a rotation which was opposite to
the direction in which it would rotate if it was rolling along the nearest wall.

The work of Smythe (1961) was extended by Cai & Wallis (1992) to describe an
equispaced array of spheres in a tube. Again, only potential flows were considered, but
a comprehensive range of diameter and spacing ratios was studied. A key finding from
their analysis was the prediction that the effective resistance of the flow decreased with
an increase in axial sphere spacing. Presumably, as the sphere spacing approaches
infinity, their predicted resistances would asymptote towards the effective tube length
increase predicted by Smythe (1961), though this was not verified in that study.

Prediction of the drag acting on an object moving within a tube is important as
it allows the zero-drag condition to be found, which equates to the terminal-velocity
equilibrium condition for the body. Tözeren & Skalak (1979) describe how their model
improved the prediction of this zero-drag condition over the earlier Fitz-Gerald (1969)
model. A theoretical solution for bluff disks moving in a cylinder based on an Oseen
approximation (Pulley, Hussey & Davis 1996) presented data showing that in such a
flow the drag increased with both the diameter ratio and the Reynolds number for a
range of low non-zero Reynolds numbers. Other studies to compute the trajectory of
bodies in tube flow include the work by Wang & Parker (1998), who used a boundary
singularity method to model a sphere which was free to rotate as it passed down the
tube. Their computations agreed with Tözeren (1983), finding a rotation direction
opposite to the rolling direction of the nearest wall. Furthermore, they provided evid-
ence to show that the lubrication theory applied in aforementioned studies deviated
significantly from the computed results for sphere-to-tube diameter ratios of � 35 %.

The present study will focus only on rigid spherical particles in a tube, but it is worth
noting that a variety of motions and deformation shapes are known to occur for elastic
non-spherical bodies moving through tubes. For instance, Pozirikidis (2005) investig-
ated various elastic shapes and their deformation, and observed that spherical ‘cells’
deformed into bullet shapes, and tended to propagate towards the centreline of the
flow, whereas oblate and bi-concave shapes deformed to parachute and slipper shapes.

Despite the substantial number of studies in which the motion of spheres or similar
bodies in tubes has been considered, of which the previous review is by no means
all-encompassing, few direct numerical simulation (DNS) studies are reported in the
literature. DNS simulation of these flows are not confined in Reynolds number, such
as the low-Reynolds-number limitations of Stokes or Oseen theories, or the inviscid
assumption of potential flow theory, and they permit the simulation (as opposed
to modelling) of physical flow features such as viscous lubrication layers. However,
they are limited in their capacity to simulate complex fluid–structure physics resulting
from tube wall and body material properties, and chemical or molecular effects. These
aspects of the system are typically disregarded, or at best, modelled. For instance, in a
finite-element computational study, Ortega, Bristol & Savas (1998) used simulation of
the flow past spheres adhering to a cylindrical tube wall to describe the flow of blood
past adherent leukocytes in postcapillary blood vessels. Their simulations provided
useful data for the resistance to the flow as a function of the relative position of
multiple spheres, without resorting to simulation of the full distensibility, elasticity
and material compressibility of the ‘cells’ and the ‘vessel walls’.

In an attempt to describe accurately the deformation from the resting shape of red
blood cells moving in narrow vessels, Secomb, Hsu & Pries (1998, 2001) proposed a
detailed model which included the repulsive effect of the endothelial surface layer, a
region of near-wall blood plasma which excludes red blood cells owing to the presence
of macromolecules. The endothelial surface layer reduces the effective diameter of the
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vessels, while creating and maintaining a finite-thickness lubrication layer between
moving cells and the vessel walls. Their model provided good comparison between
the predicted deformed cell shapes and those observed in physiological experiments
(Skalak & Branemark 1969; Vink & Duling 1996).

The present study seeks to investigate the fluid dynamics of the fundamental
flow system underpinning the aforementioned studies: the motion of an array of
equi-spaced spheres in a circular cylindrical tube. The primary objective is to gain
an understanding of the flow dynamics and stability at the equilibrium condition
where the spheres experience no axial (drag) force. However, the study will also
comprehensively explore the parameter space introduced by independently varying
the imposed pressure gradient on the tube and the velocity of the spheres within
the tube to gain insight into the possible quasi-steady dynamics in transient sphere
motion. Despite the obvious extension of this investigation to applications such as red
blood cell motion in capillaries, a number of the features of these flows discussed in
this review are not incorporated into the present study. These include the distensibility
of the tube and sphere, and the presence of the endothelial surface-layer region.

The problem definition and introduction of geometric and dynamical parameters
is provided in § 2, as is a description of the numerical techniques for flow simulation
and boundary treatment. Validation of the numerical code and a grid-independence
study comprises § 3. In § 4, results from axisymmetric computations are reported, with
emphasis on flow rate relative to, and forces acting on, the spheres at a range of
Reynolds numbers and pressure gradients. In § 5, a Landau analysis is employed
to describe the nonlinear evolution of an axisymmetric Hopf instability in the flow.
Linear stability analysis and three-dimensional simulations reveal the existence of a
non-axisymmetric mode in § 6. Section 7 discusses how changes in the geometry affect
the flow, and conclusions are drawn in § 8.

2. Methodology
In this section, the problem under investigation and the relevant parameters are

defined, the computational method is described, and treatment of boundary conditions
is discussed.

2.1. Problem formulation

The model under investigation comprises a series of equi-spaced spheres located on
the axis of a circular tube of constant diameter. The spheres are moving at a constant
velocity along the tube axis. Both the spheres and the tube wall are considered
impermeable and rigid, and the fluid is driven by a pressure gradient.

Figure 1 illustrates the system under investigation, and identifies the repeating
geometric unit upon which the system is based. Notice that because of the azimuthal
symmetry of the system, the flow can be efficiently computed in cylindrical coordinates
(z, r), where z and r are the axial and radial dimensions, respectively.

Two geometric parameters are defined for this system. A spacing ratio

sr = S/d,

which can vary in the range sr = [0, ∞), describes the spacing between each sphere,
and a diameter ratio

dr= d/D, (2.1)

which can vary in the range dr= [0, 1], describes the diameter of the spheres relative
to the tube diameter. The majority of the computations reported in this study are
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Figure 1. Schematic diagram of the system under investigation. (a) A series of spheres in a
tube is shown, with sphere velocity (V ), flow rate (Q), and pressure gradient (dP/dz) labelled.
(b) The repeating axisymmetric unit is shown, with the computational domain shaded grey.
The tube diameter (D), sphere diameter (d), and sphere spacing (S) are labelled.

conducted with sr = 1.0 and dr= 0.6, taken to be approximately the middle of the
range of values of interest to the biological and engineering applications of the study.
The length of the repeating tube unit is L = d(sr + 1), or for these parameters, 1.2D.

An expression for the volume fraction of the tube can be established by finding the
volume ratios of the sphere to the tube section. The volume of the tube unit is

�tube = 1
4
πD2d(sr + 1) = 1

4
πD3(dr)(sr + 1).

The sphere volume is given by

�sphere = 4
3
π

(
1
2
D

)3
= 1

6
πd3 = 1

6
πD3(dr)3,

and the volume fraction is then given by

vf=
�sphere

�tube

=
1
6
πD3(dr)3

1
4
πD3(dr)(sr + 1)

=
2

3

dr
2

sr + 1
.

The maximum possible volume fraction occurs when dr =1 and sr = 0, giving
vf= 2/3. The volume fraction is equivalent to the haematocrit in blood flow – a
ratio of red blood cell volume to whole blood volume. The default parameters in this
study (sr = 1.0 and dr =0.6) provide a volume fraction vf= 18 %, lower than typical
haematocrit values in human whole blood (40 %–50 %), though capillary blood flow
can be substantially lower because of streaming (plasma-rich blood being syphoned
from low-haematocrit blood near the wall of larger vessels) and the presence of the
endothelial surface layer.

To complete the parameterization of the system, a Reynolds number is defined as

Re =
V D

ν
,

where V is the speed of the spheres relative to the tube and ν is the kinematic viscosity
of the fluid.

A restriction on the study of bodies free to move in a fluid-filled tube is that the
motion is directly coupled to the tube Reynolds number and pressure gradient. In
this study, the sphere velocity is held constant, allowing independent variation of
the Reynolds number and imposed pressure gradient dP/dz. P is a kinematic static
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pressure, defined P =p/(ρV 2), where p is static pressure, ρ is fluid density, and the
quantity is non-dimensionalized by V 2. It follows that the total volume flow rate Q

is a function of both Reynolds number and pressure gradient.

2.2. Computational treatment

The fluid flows in this study are computed using a spectral-element method (Karni-
adakis & Sherwin 2005), with the computational domain discretized into quadrilateral
elements. Following standard practice, elements are mapped onto a bi-unit square,
and flow variables are computed on Gauss–Legendre–Lobatto quadrature points.

The present code was first employed in Sheard et al. (2007). For computations
in cylindrical coordinates, the implementation follows the formulation clearly
described by Blackburn & Sherwin (2004) for the incompressible Navier–Stokes
equations. This investigation is interested in low-Reynolds-number flow behaviour
in an axisymmetric geometry, and based on evidence from studies through similar
geometries (e.g. Sherwin & Blackburn 2005), it is expected that the flows will
be predominantly axisymmetric. The axisymmetric assumption greatly simplifies
the numerical implementation, as only the fundamental azimuthal Fourier mode is
retained, and azimuthal gradients and velocities are zero. The swirl-free axisymmetric
Navier–Stokes equations in cylindrical coordinates are

∂uz

∂t
+

(
uz

∂uz

∂z
+ ur

∂uz

∂r

)
= −∂P

∂z
+

1
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[
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+

1

r

∂
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r
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+

∂ur

∂r
+

ur

r
= 0, (2.4)

where the advection term is shown here in convective form for simplicity (see
Zang 1991, for a comparison of the possible forms the advection term can take in
incompressible simulations). The axial and radial velocity components are given by uz

and ur , respectively. For convenience, velocities have been non-dimensionalized by V ,
and spatial coordinates by D. This study employs a third-order backwards-multistep
scheme for time integration based on a three-step operator splitting scheme (Karni-
adakis et al. 1991; Blackburn & Sherwin 2004). Following Karniadakis et al., a second-
order pressure boundary condition is applied on homogeneous pressure boundaries
to maintain third-order accuracy of the velocity field in time. Details can be found in
those papers, but briefly, the scheme is implemented through the following sub-steps:

1. First, the advection term is computed, with no boundary condition enforcement.
2. Secondly, the pressure term is computed by solution of a Poisson equation for

the pressure field which projects the velocity field onto a divergence-free space. In this
sub-step, high-order pressure boundary conditions (see Karniadakis, Israeli & Orszag
1991) are imposed on homogeneous boundaries, and Dirichlet pressure boundary
conditions are also imposed.

3. Finally, the diffusion term is satisfied by solving a linear set of Helmholtz
equations for each vector component of the velocity field. In this sub-step,
Dirichlet velocity boundary conditions are imposed. The cylindrical coordinate system
formulation requires that different Helmholtz equations are solved for the respective
z- and r-direction velocity components.

A pleasing feature of a third-order backwards-multistep scheme was reported in
Karniadakis & Sherwin (2005), where for advection–diffusion problems zero splitting
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errors arise in stationary solutions. This has a significant bearing on the present work,
where most of the reported solutions are time-independent.

2.3. Boundary treatment

While the problem involves spheres moving through a tube at velocity V , it is
numerically convenient to compute the problem in the reference frame of one of
the spheres. Therefore a zero velocity is imposed at the sphere surface, and an axial
velocity component −V is prescribed on the tube wall.

Along the axis, a zero radial velocity and normal gradient of pressure are both
enforced. See Wu & Wu (1996) for a discussion of appropriate boundary conditions
for stress-free and symmetry boundaries.

At the left and right domain boundaries, a periodic condition for velocity is imposed
to satisfy the objective of simulating the flow past an infinite array of spheres.
To impose the pressure gradient which drives the flow, the kinematic pressure is
decomposed as

P =
dP

dz
z + P̃ ,

where (dP/dz)z is a contribution from a mean pressure gradient, and P̃ is an axially
periodic pressure field. The dP/dz contribution is computed as a forcing term in (2.2)

during the advection step, leaving the periodic component P̃ to be computed in the
standard fashion.

2.4. Floquet stability analysis

A linear stability analysis is used to determine the stability of steady or periodic
axisymmetric flows to non-axisymmetric perturbations. Linear stability analysis
proceeds on the assumption that an evolving instability in a flow u can be represented
by the superposition of a base flow U and a small perturbation u′, giving u = U + u′.
Equations governing the base flow and the perturbation can be generated by
substituting this expression for the velocity into the Navier–Stokes equations, and
omitting terms involving products of perturbation quantities as for small perturbations
their contribution is negligible. This procedure produces equations which differ from
the Navier–Stokes equations only in the form of the advection operator. For the
base flow the standard nonlinear advection operator −U(∇ · U) is used, while for the
perturbation the linear operator −u′(∇ · U)−U(∇ · u′) is used instead. Notice therefore
that the base flow is not coupled to the perturbation field.

The evolution of the perturbation field is monitored from an initially random state
over a number of base flow periods to determine the stability to perturbations of a
particular azimuthal wavelength. To characterize the stability of a periodic flow the
Floquet multiplier µ ≡ exp (σT ) is defined, where σ is a complex growth rate, and
T is the period of the base flow. Floquet multipliers describe the linear change in a
perturbation over T , i.e. F (t + T ) = |µ|F (t), where F (t) is some quantity associated
with the perturbation. In this study, this quantity was defined as the integral of
azimuthal velocity magnitude throughout the computational domain,

F (t) =

∫
Ω

|u′
θ | dΩ.

Floquet multipliers |µ| > 1 describe growing (or unstable) modes. Steady flows can
be considered periodic with arbitrary period T , permitting the Floquet multiplier to
be used to characterize their stability. A number of methods are available to perform
this analysis (e.g. see Natarajan & Acrivos 1993; Noack & Eckelmann 1994; Barkley
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& Henderson 1996; Sherwin & Blackburn 2005), and in this study a one-dimensional
power-type method is employed to determine the growth rate of the fastest-growing
mode of a chosen azimuthal wavenumber. The power method monitors the change
in magnitude of a renormalized perturbation over time T , where the perturbation is
represented by a Fourier expansion of the velocity and pressure fields in the azimuth,
and it is integrated in time using the linearized Navier–Stokes equations. Over a
sufficient number of periods (here typically 10 to 50), all but the fastest-growing
mode decay to negligible levels, and thus the change in magnitude of the perturbation
relates to the magnitude of the Floquet multiplier of the instability.

This technique can distinguish real and complex-conjugate modes, and has
successfully been used to identify a number of instabilities in steady and periodic
axisymmetric flows (Sheard, Thompson & Hourigan 2003). Real modes are
characterized by a convergence of the predicted multiplier, whereas the imaginary
component of a complex-conjugate mode usually dictates that the predicted multiplier
will not converge: instead it typically lies within a band of values fluctuating about
some finite mean. In this study, the base flows are time-independent, allowing the
period for stability analysis to be chosen as the period of the quasi-periodic instability
mode. This approach achieves converged Floquet multipliers for complex modes, and
provides accurate resolution of the growth rates of the instabilities.

The perturbation field is computed with zero velocity enforced on Dirichlet
boundaries, and zero normal gradient of velocity enforced on homogeneous Neumann
boundaries. Along the axis, a zero perturbation pressure is enforced, along with
zero axial, radial and azimuthal perturbation velocity components. To allow for
the possibility of flow across the axis, the mode with azimuthal wave number m = 1
permits non-zero radial and azimuthal velocities on the axis (for details see Blackburn
& Sherwin 2004).

2.5. Three-dimensional simulations

The solver employed for the axisymmetric computations and stability analysis is
also capable of performing three-dimensional simulations. Based on a Cartesian
formulation of the Navier–Stokes equations, the solver performs spatial discretization
using nodal hexahedral (brick) elements (for details see Karniadakis & Sherwin 2005),
and a third-order backwards-multistep time-integration scheme similar to that used
in the axisymmetric solver. This three-dimensional code will be employed to verify
the predictions of the Floquet linear stability analysis.

3. Validation and mesh refinement
This section describes the tests used to validate the numerical algorithm, and to

select appropriate meshes and element order.

3.1. Poiseuille flow

Although the numerical software package employed for this investigation was
developed based on existing spectral-element algorithms and numerical integration
techniques, the code itself is new. It is therefore appropriate that the code be tested
against a known analytical solution to the Navier–Stokes equations appropriate to
this study. On a rectangular grid representing the meridional half-plane of a circular
tube, the code achieved the exact solution to the limit of numerical precision when
the order of the elements was N � 3. This was expected as the analytic solution is
represented by quadratic functions in the radial direction and constants in the axial
direction, which can be exactly captured by the elemental Gauss–Legendre–Lobatto
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(a)

(b)

Figure 2. Meshes with (a) low and (b) high h-resolution. Bold lines denote macro-elements,
and faint lines elucidate the spectral interpolation points within each element.

quadrature employed by the solver. This quadrature is exact for polynomials of degree
2N − 3.

3.2. Axisymmetric and non-axisymmetric sphere flow

A more rigorous test of the code is one in which all aspects of the solver are exercised.
Hence the flow past a sphere was computed to verify the capacity of the code to
accurately capture complex flow phenomena such as flow separation. At Reynolds
numbers Re ≈ 200, the drag forces were compared to existing measurements (e.g.
see benchmarking data in Sheard, Hourigan & Thompson 2005), and the length of
the wake recirculation bubble was compared to earlier computations (Natarajan &
Acrivos 1993). In each instance the code reproduced the expected results to within
the accuracy of the previous studies. Computations of the flow past a sphere also
provided a test case for the stability analysis code, with the estimations of the critical
Reynolds number for the onset of non-axisymmetric flow from Tomboulides, Orszag
& Karniadakis (1993); Johnson & Patel (1999); Ghidersa & Dušek (2000); Thompson,
Leweke & Provansal (2001) being reproduced to better than 0.5 %.

3.3. Mesh selection for present study

Two mesh designs were tested for this study, and examples of these are presented in
figure 2. Both the spectral elements and internal quadrature points are shown, elucidat-
ing the order of the elements. The pair of meshes were designed to test the influence of
h-refinement, or the inclusion of more elements in a mesh, on the resulting solutions.

A test case was developed to examine a number of performance characteristics of the
meshes and boundary treatments. This case had sr= 1.0 and dr = 0.6, mid-range val-
ues of diameter ratio and spacing to be considered in this study. Flow parameters being
monitored included the flow rate relative to the sphere (Qrel) and the axial drag force
acting on each sphere (FD). Qrel is non-dimensionalized by D2V , and forces by ρV 2D2.
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Figure 3. Convergence of flow rate (circles) and drag force (squares) with increasing element
order (p-resolution) for the low h-resolution mesh computed with Re = 1, and driven by a
pressure drop �P = 1. The increasing negative slope of the data with increasing p-resolution
demonstrates exponential convergence.

Figure 3 plots the results of a p-refinement (element polynomial order) study on the
low h-refinement mesh; exponential convergence was obtained. The mesh with higher
h-resolution was designed to resolve detailed features such as boundary layers near
the tube and sphere walls. Despite the low-Reynolds-number range of applications
motivating this study, a sizeable range of Reynolds numbers are to be investigated to
develop fully a description of any primary axisymmetric flow transitions. The graph
in figure 4 shows the p-convergence of solutions computed using the high h-resolution
mesh at Reynolds numbers Re =1 and 100. The plot shows that convergence rates
and error magnitudes are similar for Reynolds numbers Re = 1 and 100, and also
that superior accuracy is obtained when compared with simulations using the low
h-resolution mesh with a comparable element polynomial order. Overall, the high
h-resolution mesh proved more reliable, and was hereinafter used exclusively for
axisymmetric computations.

A three-dimensional mesh was constructed with a similar macro-element distri-
bution to the high-h axisymmetric mesh. A cutaway view of the mesh generated for
three-dimensional computations is shown in figure 5.

4. Flow dynamics and forces on each sphere
Following a detailed grid refinement study, computations proceeded employing the

high h-resolution mesh with elements of a polynomial degree sufficient to preserve a
spatial error of better than 0.1 % in flow rate and sphere drag measurements. The
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Figure 4. Convergence of flow rate and drag force with increasing element order (p-resolution)
for the high h-resolution mesh at Reynolds numbers Re = 1 (solid symbols) and Re = 100 (open
symbols). Symbols are as for figure 3.

Figure 5. A cutaway view showing the mesh constructed for three-dimensional simulation of
the flow past a sphere in a tube with a geometric configuration dr = 0.6 and sr = 1. For clarity,
only the lower half of the tube is shown, revealing the mesh on the surface of the sphere.

computations reported in this section were performed exclusively for the system with
a sr =1.0 and dr= 0.6 configuration with dP/dz = −0.8333̇.

The following subsections first present computed results establishing relative flow
rate and sphere drag coefficient trends for a wide range of Reynolds numbers, and
then proceed to present an analysis of the low-Reynolds-number flow dynamics. The
theoretical predictions are compared with the computed results.
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Figure 6. A plot of flow rate relative to spheres (Qrel ) against Re for a geometric configuration
with sr = 1.0, dr = 0.6 and dP/dz = − 0.8333̇. The shaded region denoted the unsteady flow
regime, and in this region lines through minimum and maximum values of Qrel are plotted. The
Reynolds number Re = 112.0, at which the flow relative to the sphere is zero, is highlighted.

4.1. Computed relative flow rates

The flow rate relative to the spheres is considered because it relates the pressure
gradient driving the flow around the spheres to the velocity of the spheres relative
to the tube, quantified by the Reynolds number. Consideration of tube flow rate
also permits Reynolds numbers based on mean tube flow and sphere velocity to be
related. Again for �P =1.0, the flow rates relative to the spheres are plotted over a
wide range of Reynolds numbers in figure 6. The non-dimensional relative volume
flow rate Qrel is obtained by integrating the dot product of the velocity field along a
boundary with the unit normal vector to that boundary. As Qrel is measured relative
to the translating spheres, a negative value indicates that the sphere velocity exceeds
the mean fluid velocity, and vice versa for a positive value. As the pressure gradient
acts in the direction of sphere motion, and only positive velocities were considered in
this study, the overall flow in the tube was always positive.

The plot reveals that for Reynolds numbers Re < 112.0, negative relative flow rates
are computed, reducing to a minimum at the limit Re → 0. Below Re ≈ 250, diffusion
dominates, and the trend is approximately linear. This regime is discussed further
in § 4.3. Beyond Re ≈ 250, the gradient reduces with further increases in Reynolds
number until the transition to unsteady flow.

Beyond the unsteady flow transition, the envelope of the flow rate is elucidated by
lines through the maximum and minimum relative flow rate values. Observe that with
the onset of unsteady flow, a decrease in mean flow occurs, reflecting the transfer of
energy from axial kinetic energy to radial kinetic energy in the flow. There is little
difference between the maximum and minimum flow rate in the transient regime.
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Figure 7. A plot of drag coefficients against Re for a geometric configuration with sr = 1.0,
dr =0.6 and dP/dz = − 0.8333̇. Pressure and viscous components are shown by dotted lines
and � and �, respectively, and the overall drag coefficient is shown by solid lines and �. As for
figure 6, the shading denotes the unsteady flow regime. The zero-drag condition at Re = 26.5
is highlighted.

Inspection of simulation results indicated that no vortex shedding was occurring in
this regime; rather, a sinuous pulsing in the velocity field was detected, which did not
significantly alter the general structure of the flow.

4.2. Computed sphere drag forces

The quantity of most interest in the study of spheres moving in a tube is the axial
force exerted due to the sum of the pressure and viscous shear forces acting on each
sphere.

It is standard practice to define a drag coefficient for a body as

CD =
FD

1
2
ρAU 2

,

where FD is the drag force, ρ is the fluid density, A is the projected frontal area of
the body, and U is a reference velocity. Here the spheres have

A=
1

4
π d2,

and an appropriate reference velocity is the sphere velocity V , giving

CD =
8FD

πρd2V 2
.

Plotted in figure 7 is the computed total and component drag coefficients as
a function of Reynolds number. The unsteady flow regime is shaded, and the
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zero-drag condition is labelled. While both the pressure and viscous drag components
decrease rapidly as Re → 0, interesting behaviour is observed as the Reynolds number
approaches the unsteady flow transition. The viscous drag component increases up to
Re ≈ 300, before decreasing as the effect of reducing viscosity overcomes the velocity
gradients at the surface of the spheres. Conversely, the pressure drag component
continues to increase with Reynolds number. Beyond the onset of unsteady flow, lines
through local minima and maxima of the pressure drag diverge with further increases
in Reynolds number. The variation of total drag force over each oscillation cycle is
almost solely due to the pressure contribution, as the viscous contribution exhibits
little oscillation, suggesting that the oscillation in the flow alters the pressure field
more substantially than the velocity field in the vicinity of the sphere surface.

In the steady-flow regime, a zero-drag condition is found at Re = 26.5. This point is
of substantial physical interest as it corresponds to the equilibrium position at which
a line of equispaced spheres, freely transported in a pressure-driven tube flow, would
reach a uniform velocity. For this geometric configuration, the zero-drag condition
occurs at a Reynolds number at which the sphere velocity exceeds the mean fluid
velocity, demonstrating the role of the pressure gradient in driving this flow.

4.3. Analysis of the flow at low Reynolds number

An analysis based on a regular perturbation of the Navier–Stokes equations in powers
of Reynolds number, and an application of the reciprocal theorem is now conducted
to further describe the flow behaviour at low Reynolds number. It will be shown
that a regular perturbation of the inertia-free creeping-flow equations truncated to
O(Re) provides an excellent description of the flow dynamics up to and beyond the
zero-drag condition.

The creeping-flow equations for an incompressible flow can be written

−∇p + µ∇2u = 0, (4.1)

∇ · u = 0, (4.2)

and a regular perturbation proceeds by taking a Taylor series expansion of the velocity
and pressure fields as

u = u0 + Reu1 + O(Re2),

p =
1

Re
p0 + p1 + O(Re),

substituting these into (4.1)–(4.2) and boundary condition definitions for this problem,
and expanding in powers of Re. Equating successive terms in the series yields a velocity
field comprising a Stokes flow component (u0) satisfying

∇2u0 = ∇P0, (4.3)

on which the Dirichlet boundary condition describing the sphere velocity is imposed,
and an O(Re) correction field (u1) satisfying

∇2u1 = ∇P1, (4.4)

for which the sphere is stationary, and the applied linear pressure gradient is imposed
through P1.

It is numerically straightforward to solve these equations subject to the divergence-
free constraint (4.2). If Qrel0 and Qrel1 are the relative flow rates computed from (4.3)
and (4.4), respectively, then an approximate expression for the relative flow rate takes
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Figure 8. (a) Qrel − Qrel0 plotted against Re�P . A dashed line shows the linear prediction
offered by equation (4.5). (b) CD +79.1/Re plotted against �P . A dashed line shows the linear
prediction derived from (4.6). A total of 69 data points were computed over 0.1 � Re � 200
and 0.1 � �P � 1500.

the form

Qrel = Qrel0 + ReQrel1.

Numerically, the coefficients were found to be Qrel0 = −0.370 and Qrel1 = 3.41 × 10−3,
when dr = 0.6 and sr= 1. The flow rates computed for the O(Re) solution scaled
linearly with �P , allowing the approximate expression to be written in terms of
Re�P as

Qrel = −0.370 + 3.41 × 10−3Re�P. (4.5)

Figure 8(a) plots data computed for a range of Re and �P values, and an excellent
agreement between the computed flow rates and the prediction offered by (4.5) is
found. The points lying below the linear trend were obtained for Reynolds numbers
Re � O(100), where inertial contributions become significant.

For the drag exerted on the spheres, the Navier–Stokes equations can be used
to demonstrate that the drag force will exhibit O(Re−1) variation as Re → 0: the
fluctuating part of the pressure increases with Re−1 to balance the viscous diffusion
terms, and viscous shear stresses also become proportional to Re−1. Therefore, at low
Reynolds numbers, a linear trend with ReCD is expected of the form

ReCD = α + �PReβ,

where α represents the contribution of the Stokes solution u0, and β is a correction
due to the O(Re) field u1. Again, numerical simulation was used to determine the
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coefficients, yielding the approximation

ReCD = −79.1 + 2.99�PRe. (4.6)

Figure 8(b) plots computed results as a rearrangement of equation (4.6) against �P ,
which is expected to yield a linear trend where the approximation is valid. The plot
demonstrates that this O(Re) approximation derived from the creeping-flow equations
is valid for a significant range of Re and �P .

A useful expression for the O(Re) correction coefficient in (4.6) can be determined
analytically by means of the reciprocal theorem, which relates hydrodynamic forces on
bodies to surface integrals over the body and the surrounding flow (see, for example,
Lovalenti & Brady 1993; Magnaudet 2003; Leshansky & Brady 2004). Following
Happell & Brenner (1965), the Cauchy stress tensor for an incompressible fluid may
be written

σ = −pI + µ(∇u + ∇uT),

where I is the identity matrix. The reciprocal theorem relates two solutions satisfying
different boundary conditions enclosed by the same surface S as∫

S

u0σ 1 dS =

∫
S

u1σ 0 dS, (4.7)

where dS is a unit outward vector normal to the surface, and inertial contributions
have been neglected. This analysis proceeds by defining the surface S as the perimeter
of the meridional half-plane occupying the computational domain shown in figures 1
and 2, substituting the O(1) and O(Re) solutions from the regular perturbation
expansion, and evaluating the contributions to the surface integrals from each
boundary.

Surface integrals along the axis are zero, as the area of that surface is zero. At the
sphere surface, u0 and u1 are both zero, rendering zero their contributions.

The periodic boundaries are imposed such that uleft = uright and σ 0left = σ 0right, so
the contribution to the right-hand integral in (4.7) is zero. However, for the O(Re)
correction field, σ 1left 	= σ 1right owing to the imposed pressure drop. Thus the periodic
boundaries contribute the following to the left-hand side of (4.7):∫

Sleft

u0σ 1 dS +

∫
Sright

u0σ 1 dS =

∫
Sleft

u0(p + �p)I dS +

∫
Sright

u0pI dS

=

∫
Sleft

u0�pI dS

= �p

∫
Sleft

u0 dS

= −�pQ′
rel0

in the axial direction, where Q′
rel0 is the dimensional volume flow rate at zero Reynolds

number.
Along the tube wall, the pressure makes a zero net contribution owing to the

axisymmetry of the geometry and the flow. The right-hand integral contribution is
zero as u1 = 0 along the tube wall, whereas the left-hand integral contribution is∫

Swall

u0σ 1 dS =

∫
Swall

〈 −V, 0 〉µ(∇u1 + ∇u1
T) dS.
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In the stress tensor ∇u1 + ∇u1
T, the axial velocity gradients are zero along the wall.

Continuity then requires that the radial derivative of the radial velocity is also zero,
leaving an axial component

−V

[
µ

∫
Swall

∂uz1

∂r
dS

]
︸ ︷︷ ︸

Fwall1

. (4.8)

The bracketed term in (4.8) corresponds to the shear force on the tube wall contributed
by the O(Re) correction to the low-Reynolds-number flow. The reciprocal theorem
therefore states that for this system,

−�pQ′
rel0 − V Fwall1 = 0. (4.9)

Fwall1 can be related to the body force acting on the sphere by conserving momentum
in the u1 field in a finite control volume enclosing the flow domain. Eliminating inertial
terms, this integral expression to be evaluated is

−
∫

S

p dS +

∫
S

µ(∇u1 + ∇u1
T) dS = 0.

Again, there is no contribution along the axis. At the periodic boundaries, only the
pressure drop makes a contribution. At the surface of the sphere, the total contribution
corresponds to the O(Re) correction to the sphere drag force, and along the tube
wall, the contribution comprises the O(Re) tube wall shear force correction featuring
in (4.8). Only the axial contributions are non-zero, leaving∫

Sleft

�p dS =Fwall1 + FD1. (4.10)

Substituting into (4.9), the reciprocal theorem yields

−�pQ′
rel0 − V

∫
Sleft

�p dS − FD1︸ ︷︷ ︸
Fwall1

= 0.

After substituting non-dimensional quantities and simplifying, this equation reduces
to

CDO(Re)
= CD − CDRe → 0

� �P
8

πdr
2

[
1
4
π + Qrel0

]
. (4.11)

Thus with dr= 0.6 and sr = 1.0, the relationship becomes

CD +
79.1

Re
� 2.96�P. (4.12)

Solving (4.12) for zero drag predicts �PRe ≈ 26.7, within 1 % of the computed
value. This demonstrates that this O(Re) analysis accurately describes the flow at the
zero-drag condition for this geometric configuration. Furthermore, when considered
in dimensional form, this condition reveals that

V ∝ �p.

This infers that at equilibrium, the dimensional sphere velocity is proportional to the
dimensional tube pressure gradient, and furthermore the constant of proportionality
contains coefficients obtained only from the creeping-flow solution to (4.3).
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In § 7, (4.11) will be further developed to elucidate the geometry dependence of the
zero-drag condition.

5. Nonlinear evolution of the axisymmetric Hopf transition
This section first describes the Landau modelling technique, which can be applied

to obtain information about the nonlinear evolution of transition modes, and then
describes the application of this technique to the axisymmetric Hopf transition
identified in the system under investigation in this study.

5.1. Landau modelling technique

Landau modelling has been employed in numerous studies to characterize transition
modes in fluid flows. Transitions can be supercritical, meaning that they exhibit no
hysteresis at onset, or they can be subcritical, meaning that hysteresis is expected in the
vicinity of transition. Provansal, Mathis & Boyer (1987) employed Landau modelling
to determine that the first-occurring transition in the wake behind a straight circular
cylinder occurs through a two-dimensional supercritical Hopf transition. Henderson &
Barkley (1996) determined that the first-occurring three-dimensional instability in the
wake behind a straight circular cylinder occurred through a subcritical bifurcation,
in agreement with Strouhal–Reynolds-number data from experiments (Williamson
1988), which showed the existence of hysteresis at the onset of the transition.

For free-sphere wakes, Landau modelling was used by Thompson et al. (2001) to
reveal that the first transition occurs through a regular (steady-to-steady) supercritical
non-axisymmetric transition, and the subsequent transition to unsteady flow is also
supercritical. Sheard, Thompson & Hourigan (2004) employed Landau modelling
to characterize a range of three-dimensional and Hopf transtions behind toroidal
axisymmetric bodies, identifying numerous supercritical and subcritical bifurcations.

Landau modelling assumes that the transition mode evolves nonlinearly according
to the relationship

dA

dt
= σA + l|A|2A + m|A|4A + · · · , (5.1)

where A is a complex oscillator whose magnitude and phase correspond to the
amplitude and frequency of the evolving oscillating mode. The coefficient σ is the
linear growth rate of the transition, and l, m, etc. are ‘saturation coefficients’, whose
sign and magnitude determine the nonlinear saturation and character of the mode.

In the simplest application of the model, A contains only real components, requiring
only the amplitude of the mode to be monitored over time. Dividing (5.1) through
out by A, and recognizing that 1/A= (d/dA) log |A| produces the following:

dA

dt

1

A
=

dA

dt

d log |A|
dA

=
d log |A|

dt
= σ + l|A|2 + m|A|4 + · · · .

A plot of d log |A|/dt against |A|2 can then be used to ascertain transition properties.
Specifically, the y-intercept corresponds to the growth rate σ , and the gradient at
the y-axis corresponds to l. A linear trend with negative gradient at the y-axis
is characteristic of a supercritical transition, whereas a nonlinear trend and positive
gradient at the y-axis indicates a subcritical transition, as such a trend is representative
of a mode which can exhibit bi-stability (hysteresis).

The mode amplitude A can relate to any quantity that reflects the evolution
behaviour of the mode, such as integral norms of the velocity field, change in the
velocity at a point in the flow, or evolution of the envelope of some formerly static
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Figure 9. (a) Plots of d log |A|/dt against |A|2 for several Reynolds numbers below the
axisymmetric Hopf transition. Supercritical behaviour is demonstrated by the negative slope
of the trends. (b) A plot of growth rate (σ ) against Re. Extrapolation to zero growth rate
yields a transition Reynolds number Ret = 671.

quantity such as the drag force. Each of these is relevant providing the mode grows
from a global instability (the quantities evolve in the same manner throughout the
flow, Provansal et al. 1987). In this study, A was equated to the envelope of the
oscillation of FD acting on the sphere.

5.2. Characterizing the Hopf transition mode

A saturated unsteady solution was used as an initial field for a number of
computations at Reynolds numbers in the vicinity of the transition. The amplitude
time histories were obtained, and figure 9(a) shows the results of these computations.

Each data set is nearly linear, terminating at the y-axis as the modes decayed
to a steady state. The negative slope and linear trends in the vicinity of the y-axis
demonstrate that this Hopf transition occurs through a supercritical bifurcation:
hence no hysteresis is expected to occur at onset.

Extrapolation of the trends in figure 9(a) to |A|2 = 0 gives the linear growth rate
σ for each Reynolds number in the vicinity of the transition. These growth rates are
plotted in figure 9(b), and with extrapolation to a zero growth rate, the point of neutral
stability at Re = 671 is obtained. This corresponds to the transition Reynolds number
for the onset of unsteady flow. As described earlier, the unsteady flow emerged as a
subtle pulsing of the velocity field. This critical Reynolds number was confirmed by
an extrapolation to |A|2 = 0 of a |A|2–Re plot, which produced a value within 0.01 %
of the value predicted from the growth rate extrapolation.
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6. Non-axisymmetric flow development
The literature describes numerous studies on either the wakes behind axisymmetric

bodies, or the flow through local constrictions in tubes, and in each of these flows a
non-axisymmetric transition mode (azimuthal mode number m � 1) is found to emerge
prior to an axisymmetric instability (m =0). For example, Natarajan & Acrivos (1993)
used a linear stability analysis to show that the steady axisymmetric wake behind both
spheres and bluff disks in a uniform flow first become unstable to a real instability
mode with azimuthal mode number m = 1. Likewise, Sheard et al. (2003) observed that
the steady axisymmetric wakes behind rings with thick cross-sections first transition
through a regular non-axisymmetric bifurcation. The axisymmetric wakes in that study
for near-spherical rings remained steady to far higher Reynolds numbers. For confined
flows in tubes, Sherwin & Blackburn (2005) found that the flow past a local stenosis
contraction became unstable to a subcritical regular bifurcation also with m =1. This
evidence suggests overwhelmingly that the axisymmetric Hopf transition predicted in
this study would be preceded by a non-axisymmetric bifurcation at a significantly
lower Reynolds number, probably a regular bifurcation with azimuthal mode
number m =1. This section reports on linear stability analysis and three-dimensional
computations which were carried out to verify the existence of such a mode.

6.1. Linear stability analysis prediction of non-axisymmetric flow transition

Linear stability analysis was performed over an extensive range of Reynolds
numbers to identify instability modes associated with possible non-axisymmetric
flow transitions. Several azimuthal modes were analysed, and consistently the fastest-
growing azimuthal mode had a wavenumber m =1, as expected. The lowest Reynolds
number at which the fastest-growing non-axisymmetric mode was found to be unstable
(with a Floquet multiplier exceeding the unit circle, i.e. |µ| > 1) was Re =367. The
m =2 and m = 3 azimuthal modes first became unstable at Re ≈ 5.2 × 102 and
Re ≈ 6.1 × 102, respectively.

These predicted instabilities evolved from steady base flows, which excluded subhar-
monic (negative real Floquet multipliers) bifurcations. The steady base flows also
permitted the magnitude of the Floquet multipliers of complex modes to be accurately
computed, by using the period of the mode invoked by its imaginary component.

In figure 10, the growth rates associated with the dominant Floquet multipliers
for each of the first three non-zero azimuthal modes are plotted against Reynolds
number. This plot demonstrates that the first-occurring non-axisymmetric instability
occurs with an azimuthal mode m =1. Over a small range of Reynolds numbers
367 � Re � 384, the flow is weakly unstable to a complex-conjugate mode, whereas
for Re � 402, a regular bifurcation occurs, which rapidly acquires a large growth rate.

The evolution of instability modes in a bifurcation scenario for a particular flow
is known to be sensitive to geometric variation. For example, consider the different
modes and the variation in onset order predicted in either square or circular cylinder
wakes (Barkley & Henderson 1996; Blackburn & Lopez 2003). Likewise, the critical
Reynolds numbers, and possibly the type and symmetry of the leading instabilities,
may differ for pressure-driven flow past spheres in a tube with variation in either
diameter ratio and sphere spacing.

Contour plots revealing the base flow vorticity field and the streamwise vorticity
of the fastest-growing Floquet mode with azimuthal mode number m =1 are shown
in figure 11(a). The plots were obtained at Re =403, just beyond the neutral stability
point of the regular mode. Figure 11(b) shows the same vorticity fields plotted



Flow past spheres in a tube 253

Re

σ

100 200 300 400 500 600
–2

–1

0

1

2

Re

σ

360 380 400
–0.2

0

0.2

Figure 10. A plot of growth rate (σ ) against Re for the non-axisymmetric instability modes
in the flows as predicted by Floquet linear stability analysis. The growth rate was recovered
from computed Floquet multipliers through σ = log(|µ|)/T . Azimuthal mode numbers m= 1,
2 and 3 are indicated by circles, squares and triangles, respectively. Dashed lines and grey
symbols represent complex modes, and solid lines and symbols represent real modes. Inset:
Detail of the dominant branches in the vicinity of the predicted non-axisymmetric transition.

(a) (b)

Figure 11. Plots of vorticity on the (z, r)-plane. (a) Azimuthal vorticity (top) of the base flow,
and streamwise vorticity (bottom) of the m= 1 perturbation field at Re = 403. (b) Azimuthal
(top) and streamwise (bottom) vorticity plotted on a plane extracted from the three-dimensional
solution at Re =405 (see figure 12). Positive and negative vorticity are shaded light and dark,
respectively, and the pressure gradient is driving the flow from left to right.
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Reynolds number (Re) Symmetry Time dependence

250, 360 Axisymmetric Steady
380 Non-axisymmetric Unsteady
400 Axisymmetric Steady
405 Non-axisymmetric Steady
�410 Non-axisymmetric Unsteady

Table 1. Symmetry and time-dependence of the saturated flows with sr =1.0, dr = 0.6 and
dP/dz = −0.8333̇, computed using the three-dimensional solver.

on planes extracted from a three-dimensional computation at Re = 405, which is
reported in the section to follow. The comparison is good, and provides validation
to the Floquet stability analysis solver. Only subtle differences can be detected in
the out-of-plane vorticity plots, and the differences observed between the streamwise
vorticity plots are due to figure 11(a) showing the form of the mode in the linear
regime, whereas figure 11(b) shows a slice of the saturated non-axisymmetric mode
which includes nonlinear features.

Returning to figure 11(a), the base flow vorticity field is indicative of the flow
properties expected based on results reported in this paper. Local to the sphere, the
base vorticity field is consistent with that of a sphere subject to a flow moving from
left to right. This is in agreement with the flow-rate computations, which showed that,
relative to the sphere, a net fluid flow from left to right is expected for Re > 112.0.
Nearer to the tube wall, positive vorticity is produced owing to the motion of the
sphere from left to right.

The streamwise vorticity field of the neutrally stable Floquet mode suggests that the
instability develops in the flow upstream of each sphere. Near to the upstream axis, a
counter-rotating vortical flow extends from just behind each sphere, gaining strength
as the flow proceeds towards the next sphere, before reaching maximum strength
near the forward stagnation point of each sphere, and diverting radially to follow
the sphere surface. A further region of substantial perturbation field strength may be
observed in the upstream region of the gap between the sphere and the tube wall.

6.2. Non-axisymmetric modes

This section reports on a validation of the Floquet stability analysis, performed using
the three-dimensional solver based on hexahedral spectral elements. Computations
were performed with elements of degree N = 8, at several Reynolds numbers in the
vicinity of the predicted complex and regular bifurcations. Table 1 summarizes the
results of these computations.

To verify that axisymmetry persists below Re � 367, simulations were performed at
Re = 250 and 360. Both of these simulations achieved steady-state axisymmetric
solutions, with flow rates and drag forces consistent with the corresponding
measurements from the axisymmetric solver.

A simulation at Re = 380 revealed the existence of a low-amplitude non-
axisymmetric oscillation in the side forces computed on the spheres. This was con-
sistent with the prediction that an imaginary mode was unstable for 367 � Re � 384.

At Re = 400, side forces on the spheres remained negligible, suggesting that the
predicted axisymmetry between the complex and regular instability regions was
correct. A simulations at Re = 405 revealed that a steady non-axisymmetric state
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Figure 12. Streamwise vorticity isosurface plot for the flow around spheres in a tube at
Re = 405 with sr = 1.0, dr = 0.6 and dP/dz = −0.8333̇. The pressure gradient is driving flow
from left to right, and green and yellow isosurfaces reveal positive and negative regions of
streamwise vorticity, respectively. The sphere is coloured blue, and the tube pink. (a) An
isometric view, with the plane used for comparison with Floquet analysis shown in white.
(b) The same structures viewed in (i) plan and (ii) elevation, with the tube removed for clarity.

emerged, consistent with the stability analysis predictions. An isosurface plot revealing
the non-axisymmetric structure of the flow at Re = 405 is shown in figure 12.
This figure also shows the orientation of the plane used to generate the plots in
figure 11(b). The solution to computations at Reynolds numbers Re � 410 showed
that a subsequent transition to unsteady flow developed after the initial bifurcation
to non-axisymmetry. This Reynolds-number range is substantially lower than the
predicted axisymmetric Hopf transition Reynolds number.

A pleasing quantitative validation between the Floquet analysis technique and
the three-dimensional solver was achieved by comparing the predicted and actual
growth rates of the developing regular m = 1 instability at Re = 420, 440 and 500. The
differences in growth rates were between 0.6 % and 1.1 %. In the three-dimensional
computations, the growth rates were calculated from the growth of a transverse force
component on the sphere (which must be zero in an axisymmetric flow). Application
of the Landau model to this evolution revealed that the regular non-axisymmetric
mode occurs through a supercritical bifurcation: that is, no hysteresis is expected
in the vicinity of transition. This behaviour is consistent with that observed for the
regular instability in the wake of a free sphere (Ghidersa & Dušek 2000; Thompson
et al. 2001).

The solution computed at Re = 405 is characterized by broad sheets of opposite-sign
streamwise vorticity extending over the tube wall either side of a plane of symmetry
that bisects the tube along the axis. The dominant non-axisymmetric structure within
the fluid is a counter-rotating pair of opposite-sign streamwise vortices emerging
at a point on each sphere near the tube wall with non-zero streamwise vorticity.
These structures remain close to the reflective symmetry plane, and terminate in
the vicinity of the tube axis behind each upstream sphere. Note the distinction
between the counter-rotating vortex pair wake computed here, and those observed
following the development of a similar regular bifurcation in the wake of a free sphere
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(Johnson & Patel 1999; Thompson et al. 2001; Sheard et al. 2004). In those flows,
the vortices extend far downstream of the sphere, whereas here they are obstructed
by the neighbouring spheres.

7. Geometry variation
The previous sections describe in detail the flow dynamics for spheres moving in a

pressure-driven fluid flow in a tube with dr = 0.6 and sr= 1.0. This section considers
the cases where both of these geometric parameters are varied independently. Of
particular interest is the Reynolds number at which the zero-drag condition occurs,
and whether it consistently occurs in the diffusion-dominated linear regime. This
information is useful in characterizing the conditions under which bodies would be
carried by a pressure-driven flow in tubes where variation occurs in either the tube
or particle size, or the particle concentration.

Rewriting (4.11) in terms of the total tube flow, Q, instead of the relative flow, Qrel,
yields

CD = CDRe→ 0
+ �P

8

πdr
2
Q0. (7.1)

Reynolds numbers based on sphere diameter and tube diameter are related by
Red = drRe, and therefore the Re → 0 drag contribution in (7.1) can be written as

CDRe→ 0
=

a

drRe
,

where a is a function of sr and dr.
Relationships for the zero-drag Reynolds number can be obtained by solving (7.1)

equal to zero, giving

ReCD = 0 = − π

8�P
(dr)

(
a

Q0

)
, (7.2)

or in terms of the pressure gradient,

ReCD =0 =
π

8

(
dP

dz

)−1 (
1

sr + 1

) (
a

Q0

)
. (7.3)

The values of the coefficient a/Q0 were computed by solving (4.3) and independently
varying dr or sr. The resulting trends are plotted in figure 13. With spacing fixed at
sr= 1, the coefficient was found to be described well by a relationship of the form

a/Q0 ≈ 20.9

dr − 1
− 58.2, (7.4)

and with diameter ratio fixed at dr =0.6, the coefficient obeyed the linear relationship

a/Q0 = −52.5(sr + 1.14). (7.5)

While the coefficients in these relationships were determined with sr = 1
(equation (7.4)) and dr =0.6 (equation (7.5)), further investigation suggests that a
hyperbolic relationship with dr and a linear relationship with sr are the appropriate
functional forms for these relationships.

Consider for a moment the functional form of a/Q0 with respect to sr. Combining
(7.5) and (7.2)–(7.3) demonstrates that for a constant �P , the zero-drag Reynolds
number exhibits a linear increase with sr. This occurs as a result of the linear increase
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Figure 13. Plots of a/Q0 against (a) dr and (b) sr. (a) sr = 1, (b) dr = 0.6. Symbols show
the computed values, and dashed lines are trends according to (7.4) and (7.5) for (a) and (b),
respectively.

in tube wall surface area, and therefore wall friction, that must be overcome by the
pressure drop along the pipe. For large sr, it is more instructive to work in terms of
the imposed pressure gradient along the pipe, and in the limit as sr → ∞, a zero-drag
Reynolds number ReCD = 0 = 24.7 is found for dr= 0.6. Note that this value depends
only on the gradient of the a/Q0–sr relationship, as

lim
SR→∞

ReCD =0 =
8

π

(
dP

dz

)−1
d (a/Q0)

d (sr)
.

For the case where the spheres are tightly packed, a value of ReCD =0 = 28.2 was found
as sr → 0 with dr =0.6.

Numerical simulations were performed to determine the zero-drag Reynolds-
number behaviour with variation in either dr or sr, and the results are plotted in
figure 14. The computed values are compared to predictions based on the approximate
formulae proposed here, where the coefficient a/Q0 was evaluated from the creeping-
flow solution to the u0 velocity field established in § 4.3. No discernible difference
between the trends was detected, verifying that for a wide range of dr and sr, the
zero-drag condition is consistently dominated by viscous effects. In figure 14(b), the
estimated values of the zero-drag Reynolds number at sr =0 and sr → ∞ are also
indicated. That trend supports the analysis of Wang & Skalak (1969), who reported
that the interference effects of a series of spheres in a pipe is only significant for
sr � 1. The present study reveals that when dr= 0.6, a similar change in the zero-
drag Reynolds number occurs over 0 � sr � 1 as it does over 1 � sr < ∞. This has
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Figure 14. Plots of zero-drag Reynolds numbers against (a) dr and (b) sr, with the
alternate parameter held constant at sr = 1 and dr =0.6, respectively. A pressure gradient
of dP/dz = − 0.8333̇ was imposed throughout. Symbols show the computed values, and
dashed lines show the trends predicted by (7.3). In (b), dash-dotted lines show the limiting
values of ReCD = 0 at sr = 0 and sr → ∞.

the implication that a line of spheres free to move in a pressure-driven tube flow will
propagate at approximately the same speed in a tube of constant diameter, regardless
of the sphere density over a given length.

This effect is highlighted by the vorticity contour plots provided in figure 15.
Although the Reynolds number is lower than the zero-drag condition, the high region
of vorticity generated by the shear flow past the sphere is consistent in shape and
intensity throughout all of the sr-variation plots, and remains localized in the vicinity
of the sphere. The absence of any significant impact on this high-shear region caused
by the change in sphere spacing verifies the finding of spacing ratio insensitivity for
the zero-drag Reynolds number.

Finally, this analysis supports a number of observations drawn from the numerical
data. First, the inertial effects included in the numerical simulations appear to have a
negligible influence on the flow at the zero-drag condition, for a wide range of geo-
metric parameters and pressure gradients. Secondly, with variation in diameter ratio,
a finite Reynolds number is approached as dr → 0, whereas as dr → 1, ReCD = 0 → ∞,
reflecting the total obstruction of the tube by the spheres. Thirdly, with variation in
sr, the zero-drag Reynolds number varies from a maximum value when the spheres
are touching, down to an asymptotic finite value which can be predicted based on
the gradient of the a/Q0–sr relationship determined from a creeping-flow solution
of (4.3).
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(a) (b)

Figure 15. Contour plots of vorticity in the flow around spheres in tubes, with flow from left
to right. (a) Diameter ratios (top to bottom) dr = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 for a
constant spacing sr = 1.0. (b) Spacing ratios (top to bottom) sr = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4,
1.6 and 1.8 for a constant diameter ratio dr =0.6. In all cases Re = 1 and dP/dz = −0.8333̇.
Dark and light contours correspond to positive and negative vorticity, respectively.

8. Conclusions
A numerical investigation of the pressure-driven flow past a line of axially

positioned equi-spaced rigid spheres moving in a tube at a fixed velocity has
been presented. This study has employed a spectral-element method to compute
the incompressible fluid flow. Periodic boundaries in the axial direction facilitate
efficient discretization of the geometry.

With a Reynolds number based on tube diameter and sphere velocity, axial force
measurements revealed that the zero-drag condition occurs at Re = 26.5 for a system
with sr = 1 and dr =0.6, whereas at Re = 112, the mean flow velocity in the tube
matched the sphere velocity. These results show that for spherical bodies free to move
along the axis of a pressure-driven flow, the spheres will exceed the mean fluid velocity
in the tube. The numerically imposed constraint whereby the spheres are not able to
rotate or translate off the axis does not invalidate the results of the study, as previous
investigations tracking particles free to move within a tube flow find that spherical
bodies tend to migrate towards the centreline (Pozirikidis 2005).

A regular perturbation analysis of the governing equations, combined with an
application of the reciprocal theorem, provided theoretical predictions for the flow
at low Reynolds number. The analysis provided an excellent prediction of the
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zero-drag condition, even without the inclusion of inertial terms. It was further
demonstrated that at this condition, the sphere velocity is proportional to the applied
pressure gradient, where the proportionality constant contains only terms derived
from creeping-flow solutions. Despite this, the theoretical trends were accurate for
Re � O(100).

A Landau analysis has shown that the first-occurring axisymmetric transition
occurs through a supercritical Hopf bifurcation, and the onset of this transition would
occur at Re t = 671 for the sr= 1 and dr =0.6 flow configuration. However, a three-
dimensional linear stability analysis of this flow determines that the axisymmetric
flow is weakly unstable to a complex instability mode with m =1 over 367 � Re � 384,
whereas beyond Re =403, a regular m = 1 bifurcation to non-axisymmetry occurs.
This prediction was independently validated by using a three-dimensional spectral-
element solver, and the emergence of a counter-rotating streamwise vortex pair in the
flow was evocative of the wake behind a sphere in open flow (Natarajan & Acrivos
1993; Sheard et al. 2003). The regular non-axisymmetric mode was also found to
occur through a supercritical bifurcation.

The zero-drag condition relating to the equilibrium condition for spheres free to
travel in a pressure-driven flow in a tube is found to occur at Reynolds numbers
which increase with an increase in diameter ratio dr, but are almost independent of
variation in sphere spacing sr. Importantly, the sphere spacing has minimal impact
on the resistance of a pressure-driven flow of spheres free to propagate in a uniform-
diameter tube. The finding that the flow is highly linear at the zero-drag condition
for a wide range of geometric parameters dr= [0.1, 0.9] and sr = [0.2, 50] could be
exploited for the future development of models for the motion of bodies through
tubes.

Computations were performed on the facilities of the Australian Partnership for
Advanced Computing thanks to a Merit Allocation Scheme grant. The authors
received salary support from the Australian Research Council through Australian
Postdoctoral Fellowships (G. J. S. from ARC Discovery Project DP0555897 and K. R.
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