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Abstract

The flow past three different aspect ratio toroids is studied numerically to elucidate the various non-axisymmetric wake
transition modes previously predicted by linear stability analysis. The transitions are modelled with respect to the Landau
equation, and the criticality of the various transitions is determined from the coefficients of the Landau equation.

The wake flow fields are simulated using a spectral-element scheme, incorporating a Fourier expansion of the two-
dimensional grids in the azimuthal direction to evolve the three-dimensional wake flow.

Linear Floquet stability analysis performed previously on the wakes of bluff rings has predicted a series of hon-axisymmetric
transitions at various aspect ratios. Bluff rings with smaller aspect ratios (those approaching the sphere geometry) are predicted
to undergo a regular asymmetric transition (i.e., steady to steady flow), followed by a Hopf bifurcation to an unsteady wake
with increasing Reynolds number. Three transition modes have been identified in this aspect ratio range, referred to as modes I,
Il and IlI, respective to increasing aspect ratio.

Tracer particle and iso-surface plots visualizing the aforementioned transition modes are provided, which reveal the details
of the wake structure associated with the saturated modes.
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1. Introduction

The various transitions in the wake of bluff rings, or toroids, have been studied over the past decade [1-3] with a rich
diversity of wake states being determined. The bluff ring geometry is of interest as a fundamental bluff body due to its inherent
characteristic whereby the adjustment of a single geometric parameter (the aspeat yatliows a wide range of geometry to
be represented. By varying the single geometric parametex uniform axisymmetric body is described varying from a sphere
atAr =0, to a straight cylinder at the limiir — oo. Fig. 1 shows a schematic diagram of the bluff ring system.

This paper studies aspect ratios in the range A& < 4. It has been predicted from linear stability analysis [2] that three
distinct three-dimensional transition modes exist over this range of aspect ratios, as shown in Fig. 3.

Aspect ratiodAr = 0.6, 1.6 and 20 are chosen to isolate each of the three asymmetric transition modes identified in previous
work (mode I, Il and Il transitions respectively). Asymmetric numerical computations employing a spectral-element method
with an azimuthal Fourier expansion (see [4,5] for a description of the numerical method, and [2,3] for grid resolution studies)
are used to compute the asymmetric wakes arising from these transitions. The Reynolds number length scale is based on the
diameterd.
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Fig. 1. Schematic diagram of the bluff ring system.
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Fig. 2. Cross-section views of three aspect ratio cases that are pertinent to the present study. Asgheyes(shown at the left, the centre
shows a solid ring (i.e., no hole on the axis), and the right shows a ring with a hole on the axis.

The Landau equation is used to determine whether the non-axisymmetric transitions are supercritical or subcritical. In the
Landau equation the growth of the unstable mode is described by a differential equation for the complex amplitdidies(
unstable mode that varies in timg:(
dA . .
E=(a+|w)A—l(1+|c)|A|2A+~-~. (1)
The standard treatment of the Landau equation is applied through a decomposition into real and imaginary parts (e.g., Le
Gal et al. [6]). By assuming that the saturated amplitude takes the dotnp exp(i®), wherep and @ are real variables for
the magnitude and phase angle of the amplitude, respectively, the cubic truncation of the Landau equation can be decomposed
into Egs. (2) and (3).

dlog(p)
dr

do .

e w— lc,o2 = wsat at saturation. 3)

For regular transitions phase information is neglected, and the non-linear behaviour is determined from the sign of the
I-term in Eq. (2). For Hopf bifurcations, phase information is considered, and application of Eq. (3) allows further transition
properties to be ascertained. A positive valud aflows the cubic term in Eq. (2) to cause saturation of the transition, and
such transitions are said to occur through a supercritical bifurcation. Supercritical transitions do not exhibit any hysteresis in the
vicinity of the critical Reynolds number for the transition. A negativealue requires quintic or higher-order amplitude terms
to be included in the truncation. These transitions occur through a subcritical bifurcation, with multi-valued solutions for the

o —1p2=0 at saturation, 2
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Fig. 3. Plot showing predicted critical transition Reynolds number profiles for dominant asymmetric stability modes in the wake of rings with
aspect ratios & Ar < 4. The mode |, Il and Ill transitions are represented by solid lines, with measured mode | and mode Il values indicated
by triangles and squares, respectively. Diamonds indicate the measured values of the critical Reynolds number for the Hopf transition in the
wake, with dashed lines for the mode | and Il aspect ratio ranges, and a solid line showing the mode |l transition range. The dotted line at
Ar = 1 marks the transition aspect ratio at which the hole through the center of the ring first emerges.

amplitude being described in the vicinity of the transition. Subcritical transitions exhibit hysteretic behaviour in the vicinity of
the critical Reynolds number of the transition.

To determine the nature of the transition, the azimuthal velocity signal is monitored at a point in the wake. This “point
method” has been applied by DuSek et al. [7] and Thompson et al. [5], and is applied in the present study. It relies on the
assumption that at any point in the near wake the transition behaviour will approximately represent the global behaviour of the
flow field.

2. Resultsl. Visualising the small aspect ratio 3D transition mode wakes

In this section, the non-axisymmetric wake structures that evolve following the regular mode | and lll transitions, and the
Hopf mode Il transition are investigated. The saturated non-axisymmetric wakes that evolve at Reynolds numbers greater than
the critical Reynolds numbers of the mode I, Il and Ill transitions are represented by streamwise vorticity isosurface plots in
Fig. 4.

It is clear from the isosurfaces plots in Fig. 4 that a plane of symmetry exists in the wakes through the centre of the ring
for all modes. This symmetry has been observed for the sphere [8,9], which is another example of the mode | transition. Note
that anm = 1 azimuthal symmetry maintained for each mode, as predicted by linear stability analysis [2]. In Fig. 4(a), wings of
streamwise vorticity located immediately behind the ring are observed, as is a pair of tails of vorticity stretching far downstream.
These structures are indicative of the classic “double threaded wake” observed in the wake of the sphere [8,5] following the first
asymmetric transition.

The near wake following the mode Il transition (Fig. 4(b)) is similar to the mode | near wake region, with wings of streamwise
vorticity of opposing sign wrapped around longer tails of streamwise vorticity extending downstream. Here, these tails are not
steady in time, instead they are shed downstream. The mode Il transition is a Hopf transition from a steady axisymmetric flow
to an asymmetric unsteady flow. This verifies the predictions of Sheard et al. [2], that the dominant linear transition mode is
oscillatory, resulting from a Hopf transition to an unsteady asymmetric wake.

The wake of the ring following the mode Il transition is shown in Fig. 4(c). This mode is a regular (steady-steady) transition
to asymmetry, as is mode I. Structurally the wake differs significantly from the mode | transition wake. Clearly, the absence
of asymmetrical vortical structures extending far downstream along the axis indicates that the mode Il wake is fundamentally
different to the mode | wake. The non-axisymmetric structures are localised within approximdtefyttte body, and are
situated directly downstream of the ring cross-section. The location of the non-axisymmetric structures indicates that the mode
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(b)

Fig. 4. Isosurface plots of streamwise vorticity indicating the asymmetric wake structures for bluff ring wakes following the mode |, Il and Ill
transitions. The mode | wake for the = 0.6 ring atRe= 130 is shown in part (a), the mode Il wake for #hie= 1.6 ring atRe= 100 is shown

in part (b), and the mode IIl wake for th = 2.0 ring atRe = 100 is shown in part (c). Light grey isosurfaces represent positive streamwise
vorticity, and dark grey isosurfaces represent negative streamwise vorticity. The bluff ring body is located at the upper left corner of each frame,
and the flow direction is from the top left to the bottom right in each case.
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Fig. 4. Continued.

Il transition involves a loss of azimuthal stability of the recirculation region behind the ring cross-section, rather than a
recirculation region at the axis as occurs for the mode | transition. This agrees with the stability analysis results of Sheard
etal. [2].

3. Results!l. Landau modelling of themode | and Il asymmetric transitions

The non-linear behaviour of the regular mode | and mode Il transitions is studied by determining the Landau coefficients for
an azimuthal velocity transient at a point displaced radially from the axis, and positidraicedtly downstream of the cross-
section of each ring. The criticality of each mode is determined, and where applicable comparisons are drawn with previous
work on sphere stability [5] and bluff rings [2]. The mode Il Hopf transition, and the Hopf transitions following the regular
mode | and mode Il transitions are studied later.

3.1. Themode| transition

The mode | transition has been found to be supercritical foAthe 0.6 ring, in agreement with Ghidersa and DuSek [10],
and Thompson et al. [5], who determined that the regular asymmetric transition of the wake of a sphere (a geometry in the mode
| aspect ratio regime) is supercritical. The plots in Fig. 5 illustrate the supercritical behaviour.

The critical Reynolds number for the mode | transition was determined from the growtlw)di®ifr the Landau model.
The resulting critical Reynolds numbers matched those predicted by the linear Floquet stability analysis of Sheard et al. [2] to
within 0.5%; with Re. = 114 for theAr = 0.6 ring being found.
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Fig. 5. Part (a) shows the evolution of the asymmetric transient in the wake @ the0.6 ring atRe= 130. Part (b) shows the amplitude
derivative versus amplitude squared plot. Theaxis intercept gives growth rate’), and the gradient close tp-axis provides the saturation
term, /. The negative slope and linear behaviour neanttais indicate that the transition is supercritical.

3.2. Themode Il transition

The mode Il transition is a regular transition, whereby the steady axisymmetric wake bifurcates to a steady asymmetric
wake. Landau modelling of the non-linear behaviour of the transition shows it to be subcritical. The behaviour of this transition
for aring withAr = 2 atRe = 98 is shown in Fig. 6. Fig. 6(b) shows subcritical behaviour, with a positive gradient gittier-
cept and a distinctly non-linear profile. Thus higher order terms are required for the Landau equation to adequately model the
growth of the transition to saturation.
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Fig. 6. Part (a) shows the evolution of an asymmetric transient in the waké&rofe2 ring atRe = 98. Part (b) shows the amplitude derivative
versus amplitude squared plot. Theaxis intercept gives growth rate’Y and the gradient at the-axis provides the saturation terin, The
positive gradient and non-linear profile in the vicinity of theixis indicate that the transition is subcritical.

4. Resultslll. Visualising the hopf transition modes of small aspect ratio ring wakes

This section provides visualisations of the vortical structure of the unsteady wakes computed at Reynolds numbers greater
than the critical Reynolds number of the Hopf transitions in the aspect ratio ranges of the mode |, Il and lll transitions. Iso-
surfaces are plotted using the method of Jeong and Hussain [11] to capture the non-axisymmetric vortical structures present in
the wakes.

The regular mode | and mode Il transitions are followed by a secondary Hopf transition to an unsteady asymmetric
wake flow at higher Reynolds numbers. For a sphere wake this transition ocdRes=a272 [9,5], and the resulting wake
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(b)

Fig. 7. Vortical iso-surface plots elucidating the wake structure of the bluff rings at Reynolds numbers above the Hopf transitions in the mode I,
mode Il and mode Ill aspect ratio ranges. The wake following the Hopf transition in the mode | transition aspect ratio regime is shown in part
(a) for theAr = 0.6 ring atRe = 160. The mode Il Hopf transition wake is shown in part (b) for fre= 1.6 ring atRe = 100. The wake
following the Hopf transition in the mode Ill aspect ratio regime is shown in part (c) foAthe 2.0 ring atRe = 150. Note the plane of
symmetry through centre of each ring, and the similar hairpin-type vortical structure of the wakes. Flow is from top left to bottom right in each

frame.
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Fig. 7. Continued.

is characterised by a plane of symmetry along the axis, and an azimuthal synmmetdy. The wake structure consists of
hairpin shaped vortex loops shedding alternately from opposite sides of the axis. The plots in Fig. 7 show similar “hairpin”
structures in the wakes of both &n = 0.6 and anAr = 2.0 ring subsequent to the mode | and mode Il transitionsmAa 1
azimuthal symmetry is observed for each of the wakes presented here, and a plane of symmetry exists along the axis in each
case.

The mode Il wake (in Fig. 7(b)) differs from the wakes in parts (a) and (c) in that the Strouhal frequency of the oscillation
is not periodic, and the average Strouhal frequency obtained was also far lower (being approximately 30% of the Strouhal
frequencies of the wakes in the mode | and mode Il transition regimes. The vortical isosurfaces plot of the mode Il wake has
been obtained from the same velocity field as the streamwise vorticity plot in Fig. 7(b). The mode Il wake differs from the
classic hairpin wake in that long vortical folds are cast into the wake from one side of the axis only.

4.1. Symmetry characteristics of the mode |11 transition

Interestingly, the mode Il transition wake undergoes an azimuthal symmetry-breaking phenomenon Betwetand
Ar =3, from anm = 1 to anm = 2 mode. The scaling characteristics of the mode Il transition are discussed shortly, however
it should be noted that the non-axisymmetric wake structures associated with the mode Il transition appear to occur with an
azimuthal length proportional th. The change in symmetry is highlighted by the visualisations from particle trace computations
presented in Figs. 8 and 9. The particle trace computations involved the simulated injection of particles into the saturated non-
axisymmetric wake. The injection points were carefully chosen so that the particle motion would best mimic the entrainment
of dye into the wake that one would observe experimentally. This was achieved by placing the injection points in the vicinity
of the rear separation points around the ring cross-section, and near to the surface (raised approxtiatkbn®the ring
surface).

Notice that the wake in Fig. 8 appears to adopt a similar hairpin structure to the unsteady sphere wake [9,5], and the small
aspect ratio ring wakes in Fig. 7. In fact, the particle trace visualisation in Fig. 8 is produced from the same computation that
provided the iso-surface plot in Fig. 7(c). In Fig. 9, the plan and profile views clearly indicaie +h2 azimuthal symmetry,
with two perpendicular planes of symmetry observed in the wake.
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(b)

Fig. 8. Plan (a) and profile (b) views of the unsteady wake oftthe: 2 ring atRe = 150, visualised from particle trace computations. Notice
the azimuthal mode number = 1 symmetry of the wake, and the similarity in wake structure to the classic unsteady sphere wake. In each
frame the ring is located at the far left, and flow is from left to right.

The symmetry of the wakes of th = 2 ring presented in Fig. 8, and tihe = 3 ring presented in Fig. 9 may be quantified
by the relationships of Egs. (4) and (5), respectively. The period of oscillation of the wake is gienamygl the cylindrical
polar coordinates arg r andé. The velocity fields of thé\r = 2 andAr = 3 rings are given by ar—> andua,—3, respectively.

upr=2(z,1,0,1) =up=2(z, 1,0 + 7,1 +T/2), 4)
upr=3(z,7,0,1) =upn=3(, 1,0 +7/2,1 +T/2). (5)

By observing the location of the non-axisymmetric wake structures in Fig. 4(c), it is clear that the non-axisymmetric wake
structures are located directly downstream of the cross-section of the ring. This indicates that the non-axisymmetric instability
mode scales with the local recirculating wake region directly downstream of the ring cross-section, hence scaling with the
cross-section diameted, This explains the increasing azimuthal mode number of the mode 11l transition wakes with aspect
ratio, as the transition mode attempts to conform to a particular azimuthal wavelength proportibnal to

5. Results|V. Landau modelling of the hopf transitionsfor small aspect ratiorings

The non-linear behaviour of the Hopf transitions of bluff rings with aspect ratios in the ragglrO< 4 is examined by
application of the Landau equation, and the results are summarised here.

5.1. Criticality of the Hopf transition modes

The Hopf transition following the mode | transition for the = 0.6 ring is a supercritical Hopf transition. The mode Il
transition is found to occur through a supercritical bifurcation of the steady axisymmetric wake, resulting in an unsteady
asymmetrical wake. The criticality of the Hopf transition that occurs in the wake of rings in the mode 1lI transition aspect
ratio regime is supercritical. It is interesting that the Hopf transition in the mode Il transition regime is supercritical, as the
regular mode Il transition is subcritical.
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(b)

Fig. 9. Plan (a) and profile (b) views of the unsteady wake offthe- 3 ring atRe = 138, visualised from patrticle trace computations. Notice
the azimuthal mode number = 2 symmetry of the wake, observable as perpendicular planes of symmetry in parts (a) and (b). In each frame
the ring is located at the far left, and flow is from left to right.
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Fig. 10. Variation of measured Landau constant values with aspect ratio.
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The consistent supercritical behaviour throughout the small aspect ratio ring rahge Q 4 supports observations of the
wake structures that indicate a similarity in vortical structure and hairpin-type shedding.

5.2. The Landau constant

The Landau constant in the complex Landau equation describes the shift in frequency between the linear growth regime of
the instability, and the saturated regime. The Landau constant is a global parameter, and is defined by Eq. (6), which is obtained
by combining Egs. (2) and (3).

@ — Wsat
c=—.

(6)
o

In Eq. (6),0 is the growth rate of the instabilityy is the angular oscillation frequency of the mode in the linear growth
regime, andosat is the angular oscillation frequency of the instability mode once a saturated state has been reached. Fig. 10
shows the variation in the values of the measured Landau constants over the aspect raticrangeQ

At Ar = 0, the measured Landau constant is in close agreement with the vatue 60.554 measured by Ghidersa and
DusSek [10] and Thompson et al. [5]. The measured Landau constants throughout the mode | aspect ratie rangeld
remain near to the Landau constant of the sphere wake. Interestingly, over the mode Il and Ill aspect ratio range, the magnitude
of the Landau constants grows significantly. &t= 4, the Landau constant= —9.9, which is approximately 18 times the
magnitude of the Landau constants measured over the mode | aspect ratio range.

6. Conclusions

Plots of streamwise vorticity, and iso-surface plots identifying the vortical structure of unsteady non-axisymmetric wakes
have enabled the regular and Hopf transitions of bluff rings with< 4 to be identified and characterised. The predicted
existence and characteristics of three transition modes has been verified, with initial regular transitions to steady non-
axisymmetric wakes occurring over the mode | and mode Il transition regimes, followed by Hopf transitions with increasing
Reynolds number. Furthermore, the predicted spontaneous Hopf transition to an unsteady non-axisymmetric wake was
confirmed over the mode Il transition regime.

By determining the Landau coefficients for the non-linear behaviour of azimuthal velocity transients in the wake of
these bluff rings, the criticality of the various transitions has been determined. The regular mode | transition is found to be
supercritical, as is the subsequent Hopf transition over the same aspect ratio range, in agreement with the previous studies of the
sphere wake by Thompson et al. [5], in 2001. The mode Il Hopf transition is found to occur through a supercritical bifurcation
from a steady, axisymmetric wake, to an unsteady asymmetrical wake, in the absence of a regular asymmetrical transition. This
corresponds to the linear Floquet stability analysis of Sheard et al. [2], in 2001. The mode Ill transition is found to be subcritical,
while the subsequent Hopf transition over the same aspect ratio range is found to be supercritical. This leads to the conclusion
that the hairpin wake scales with the ring diamef®y,rather than the ring cross-section diameterof the regular mode Il
transition, and therefore is the same transition mode for aspect ratios over the mode | and mode Il transition range.

The results of particle trace computations are presented to illustrate the azimuthal symmetry breaking in the mode Il
transition regime, between aspect rathis= 2 andAr = 3. The change in azimuthal mode number from=1 tom = 2
indicates that the wake in the mode Ill transition regime may in fact scale with the ring cross-section di@gnateer than
occurring for a particular azimuthal mode number. This hypothesis is supported by the observation from the iso-surface plot of
the regular mode IIl wake, clearly showing that the location of non-axisymmetry in the wake coincides with the recirculation
zone located directly downstream of the ring cross-section.

Landau constants measured over the aspect ratio raggr &< 4 increase in magnitude with increasing aspect ratio, from
¢=—055 atAr =0toc=—9.9 atAr = 4. The values determined @ — 0 were shown to approach the accepted value of
the Landau constant for the Hopf transition in the wake of a sphere.
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