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A coupled Landau model describing the Strouhal–Reynolds number profile
of a three-dimensional circular cylinder wake

G. J. Sheard, M. C. Thompson, and K. Hourigan
Fluid Dynamics Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical
Engineering, Monash University, Melbourne 3800, Victoria, Australia

~Received 17 March 2003; accepted 5 May 2003; published 23 July 2003!

A known bifurcation scenario describing the development and interaction of Mode A and Mode B
vortex shedding modes of a circular cylinder wake is extended to predict the Strouhal–Reynolds
number profile over the three-dimensional transitions. The mode amplitudes are described by
coupled Landau equations and, with frequency information being included by the addition of
complex coefficients, the model predicts the discontinuous nature of the Strouhal–Reynolds number
shedding profile of the circular cylinder wake throughout the laminar three-dimensional transition
regime. The model coefficients are determined from computations of the three-dimensional modes
of a circular cylinder wake. ©2003 American Institute of Physics.@DOI: 10.1063/1.1597471#
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The transition to three-dimensionality in the wake
bluff bodies is of great importance to myriad physical en
neering and scientific problems, and as such, the phen
enon has been afforded much attention through a great b
of research over many decades.

The canonical problem for research into bluff body wa
flows has been the flow around a straight circular cylind
Williamson,1 in 1988, identified two stages in the transitio
to three-dimensionality of the vortex-shedding wake beh
the circular cylinder. The stages are characterized by disc
tinuous transitions in the Strouhal–Reynolds number pro
coupled with the evolution of spanwise periodic deform
tions of the two-dimensional vortex-shedding street. The fi
transition, resulting in a discontinuous and hysteretic red
tion in the Strouhal frequency of shedding, has beco
known as Mode A. The Mode A wake sees the inception
streamwise vortex loops in the braid region between suc
sive rollers in the vortex shedding street, and the spanw
wavelength of the repeating three-dimensional structure
approximately four cylinder diameters (4d). The transition
to Mode A occurs over a hysteretic Reynolds number ra
of approximately 180,Re,190, and the subsequent trans
tion to the Mode B wake occurs gradually over an appro
mate Reynolds number range 230,Re,265.2 The Mode B
wake pattern has a much shorter spanwise wavelength~ap-
proximately 1d), and the transition to Mode B sees a gradu
transfer of energy from Mode A to Mode B wake structure
coupled with an increase in the Strouhal frequency of sh
ding near to the continuation of the laminar two-dimensio
Strouhal profile.

Three-dimensional numerical computations by Thom
son, Hourigan, and Sheridan,3 in 1996, provided striking vi-
sualizations of the three-dimensional structure and span
wavelength of the Mode A and Mode B wake structures,
well as divulging the spatiotemporal symmetry of the wak
Visualizations from similar computations have been p
sented by Zhanget al.,4 in 1995, and Henderson,2 in 1997.

A landmark application of a linear Floquet stabili
L681070-6631/2003/15(9)/68/4/$20.00
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analysis to the two-dimensional vortex shedding wake o
circular cylinder by Barkley and Henderson,5 in 1996, gave
predictions of the critical Reynolds numbers for the thre
dimensional transitions pertaining to both Mode A and Mo
B, as well as correctly identifying the respective spanw
wavelength and spatiotemporal symmetry characteristics
the transition modes. They predicted Mode A to first beco
unstable to perturbations with a spanwise wavelength
3.96d at Reu188.5, and the onset of Mode B to occur f
perturbations with a spanwise wavelength of 0.822d at
Reu259.

The nonlinear behavior of the three-dimensional tran
tion modes of the wake of the circular cylinder was fir
investigated by Henderson and Barkley,6 in 1996. They de-
termined the complex Landau coefficients and ascertai
whether the modes occurred through supercritical or subc
cal bifurcations. The linear coefficients of the Landau eq
tion were in agreement with the growth rates determin
from stability analysis, and an analysis of the cubic coe
cients provided the criticality of the transitions. Consiste
with previous observations, the Mode A transition was fou
to occur through a subcritical bifurcation, indicating a hy
teretic transition. The Mode B transition was found to occ
through a supercritical bifurcation, consistent with a nonh
teretic transition.

The Landau model has been applied successfully to v
ous two- and three-dimensional transition modes in fluid m
chanics applications. Provansal, Mathis, and Boyer,7 in 1987,
used the Landau equation to model the Hopf transition o
steady circular cylinder wake to an unsteady wake at aro
Re548.6. The criticality of the asymmetric regular and Ho
transitions of the wake of a sphere were also accurately
termined, in 2001, by Thompson, Leweke, and Provans8

and Ghidersa and Dusˇek.9

In 2000, Barkley, Tuckerman, and Golubitsky10 sug-
gested a bifurcation scenario consisting of coupled evolu
equations for the amplitudes of the Mode A and Mode
© 2003 American Institute of Physics
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L69Phys. Fluids, Vol. 15, No. 9, September 2003 A coupled Landau model
instabilities in the wake of a circular cylinder. The coupl
evolution equations

An115mA~Re!An1a1
AuAnu2An1g1

AuBnu2An

1a2
AuAnu4An ,

~1!
Bn115mB~Re!Bn1a1

BuBnu2Bn1g1
BuAnu2Bn ,

are, essentially, truncated discrete Landau equations, in
porating additional coupling terms forAn and Bn . A fifth
order truncation is sufficient to model the subcritical onse
Mode A, and a third order truncation is sufficient to mod
the supercritical onset of Mode B. These Landau equatio
incorporating third order coupling, are a normal form for t
simultaneous bifurcation of Modes A and B. In order
model Strouhal frequency variation of the transition mod
the coefficients in Eq.~1! are expanded into the comple
plane, and are evaluated for computed Strouhal frequen
of the saturated three-dimensional modes.

The values of the coefficients will be discussed lat
however it is pertinent to note thatAn andBn represent the
complex amplitudes of Mode A and Mode B, respective
for thenth oscillation period. ThemA andmB coefficients are
the real Floquet multipliers of the linear instabilities of th
cylinder wake, and thea1

A anda1
B coefficients are the cubic

coefficients of the Landau model from the Henderson2 study.
The a2

A term is the additional quintic coefficient required
describe the saturation and hysteresis of Mode A, and fin
the g1

A and g1
B coefficients determine the mode coupling

the system, and have been estimated from experime
observations1 of the transition from Mode A to Mode B in
the circular cylinder wake.

In order to incorporate temporal information into th
coupled amplitude equations, we replace the evolution
plitudesAn andBn with complex amplitudesA andB, and in
addition, the evolution equations are recast in the fami
differential equation form of the Landau equations. From
Floquet multiplier definition,m[exp(sT), we insert the lin-
ear growth rate coefficient~s! into the Landau equations
whereT is the period of oscillation of the two-dimension
shedding mode, giving

dA

dt
5@sA~Re!1 ivA#A1a1

A~11 ic1
A!uAu2A

1g1
A~11 id1

A!uBu2A1a2
A~11 ic2

A!uAu4A,
~2!

dB

dt
5@sB~Re!1 ivB#B1a1

B~11 ic1
B!uBu2B

1g1
B~11 id1

B!uAu2B.

In Eq. ~2!, the angular frequency of the modes for infinite
mal amplitudes is given byvA5vB5v[2p/T, whereT is
the period of oscillation.

The linear complex coefficients,vA and vB, are func-
tions of Reynolds number, and provide the angular osci
tion frequency in the linear regime of the transition mod
corresponding to the laminar Strouhal number profile of
two-dimensional vortex shedding street. The complex co
ficients,c1

A , c2
A , andc1

B , determine the frequency behavio
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of the modes through saturation. The calculation of th
coefficients is relatively simple, as they may be calcula
independently for Mode A and Mode B. Thec1

B term is sim-
ply the Landau constant of the Mode B transition, and as
model the Mode B transition with a cubic truncation of th
Landau model, the value of the coefficient may be de
mined by following the analysis of Dusˇek et al.,11 in 1994,
and Le Gal, Nadim, and Thompson,12 in 2001. By assuming
at saturationB5rB exp(iFB) in a cubic truncation of the
Landau equation for Mode B alone, whererB5uBu and
dFB/dt5vB, the Landau constant can be expressed a
function of the global system parametersc1

B5(vB

2vsat
B )/sB, wherevsat

B is the saturated oscillation frequenc
These global parameters are determined from a th
dimensional computation including only Mode B.

For calculation of thea1
A , a2

A , c1
A , andc2

A terms of the
quintic Mode A transition model, two pairs of equations a
formed for separate computations of the Mode A wake.
substitutingA5rA exp(iFA) in the quintic Mode A Landau
equation, neglecting the coupling term and grouping real
imaginary parts, the relationships

05sA1a1
ArA

21a2
ArA

4,
~3!

05vA2vsat
A 1a1

Ac1
ArA

21a2
Ac2

ArA
4,

result for the sine and cosine coefficients.
The global parameters,vA, vsat

A , sA, andrA , are deter-
mined for computations at two discrete Reynolds number
the Mode A transition regime, not far in excess of the critic
Reynolds number, and the two pairs of equations are so
for the four unknown coefficients:a1

A , a2
A , c1

A , and c2
A .

From the calculated values ofa1
A anda2

A , the predicted Rey-
nolds number range of hysteresis (D ReA) may be found
from

D ReA5
2~a1

A!2

4mAa2
A , ~4!

where mA is the gradient of the growth rate,sA(Re). The
values determined for the present study predictD ReAu16.2,
which is of the same order as the estimation ofD ReA'10
from Henderson.2 Note that this figure is solely determine
from the pair of computations of Mode A above the critic
Reynolds number.

The real coupling coefficients are determined by us
the experimentally observed1 Reynolds numbers for the first
occurring instance of Mode B, and the last-occurring
stance of Mode A, in the cylinder wake. The coupled Mo
A and Mode B equations are each evaluated at the Reyn
numbers at which their corresponding wake structures
last observed and first observed, respectively. For Mod
and Mode B, these critical Reynolds numbers are Rlast

A

'260 and Refirst
B '230, respectively. SubstitutinguAu50 and

uBu50 in the Mode A and Mode B equations, respective
and solving for the coupled coefficients gives
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



an

es
al
u-
or

t
if-
tu

n

iv

ra

th
on
e
th
m
l–
e

ni-
sed

ed
e-
de

fi-

fre-
et of
d

ere
er

ex

the
an-
dif-
nal
g–
nd
m-
rth
on.
or-
at
eri-
e

sed

in

oral
esti-

nd
e
ing
be-

the

d

iated

L70 Phys. Fluids, Vol. 15, No. 9, September 2003 Sheard, Thompson, and Hourigan
g1
A5

2sRe5Re
last
A

A

uBRe5Re
last
A u2

5

a1
BsRe5Re

last
A

A

sRe5Re
last
A

B ,

~5!

g1
B5

2sRe5Re
first
B

B

uARe5Re
first
B u2

5

2a2
AsRe5Re

first
B

B

a1
A1A~a1

A!224a2
AsRe5Re

first
B

A
.

The mode amplitude normsuAu and uBu in the present
study are obtained from three-dimensional computations
are evaluated by the relationship

uAu[FCcylinderE
V

uwAu2dVG1/2

, ~6!

whereuAu is the amplitude of the mode in question,Ccylinder

is a normalizing coefficient set to unity for simplicity,V is a
cross section of the computational domain in thex–y plane,
andwA is the spanwise Fourier coefficient of thew-velocity
field corresponding to the wavelength of the mode in qu
tion. This amplitude quantity, while not strictly a glob
wake property~due to truncation of the mode at the comp
tational domain outlet!, has been employed successfully f
circular cylinder wakes by Henderson,2 in 1997, and Thomp-
son, Leweke, and Provansal,8 in 2001. Differences in both
the integral chosen to evaluate the amplitude norm, and
choice of normalizing coefficient result in a quantitative d
ference between the values obtained for the present s
and the study of Barkley, Tuckerman, and Golubitsky,10 as
well as resulting in a large discrepancy between the presea
andg parameters, and previously obtained values.10 The am-
plitude norm magnitudes are arbitrary, and the qualitat
comparison between the present and previous work10 is simi-
lar, suggesting that a high degree of computational accu
exists for both studies.

Table I summarizes the values of the coefficients of
complex amplitude equations employed in this investigati
All real coefficients have been calculated from thre
dimensional computations performed to complement
present study. The complex coefficients of first-order ter
are derived from a parallel vortex shedding Strouha
Reynolds number relationship determined from the pres

TABLE I. Values of coefficients determined for the present model.

Coefficient Value

sA 1.69931023(Re2187.41)
sB 4.86831023(Re2258.24)

vA andvB 2p(8.53931025 Re10.199924.009/Re)
a1

A 1.2033103

a2
A 21.3133107

a1
B 27.2973103

g1
A 21.0483105

g1
B 1.0333103

c1
A 21.055

c2
A 20.3276

c1
B 8.34231022

d1
A 20.2

d1
B 20.25
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numerical calculations, employing the same form as the u
versal laminar Strouhal–Reynolds number profile propo
by Williamson,13 in 1988.

The higher-order complex coefficients are determin
from computations of the evolution and saturation of thre
dimensional wakes corresponding to the Mode A and Mo
B instabilities. Computations at Reynolds numbers Re5195
and Re5200 were employed to evaluate the coefficientsc1

A

and c2
A for the Mode A instability. A computation of the

Mode B wake at Re5265 was used to evaluate the coef
cient c1

B . Values for the complex coupling coefficients,d1
A

and d1
B , were chosen to equate the computed Strouhal

quencies at the last appearance of Mode A, and the ons
Mode B, respectively, with experimentally obtaine
frequencies.1

The coupled complex amplitude equations proposed h
are solved simultaneously by employing a third ord
Adams–Bashforth scheme, giving

Ai 115Ai1
Dt

12
@23f i

A216f i 21
A 15 f i 22

A #,

~7!

Bi 115Bi1
Dt

12
@23f i

B216f i 21
B 15 f i 22

B #,

where f i
A and f i

B denote the right hand sides of the compl
coupled Landau equations evaluated at thei th time step. The
asymptotic frequency information may be evaluated from
saturated mode amplitudes directly, however, a future exp
sion of the present model intends to include a spanwise
fusion term to model long-wavelength three-dimensio
wake patterns, in a fashion similar to the complex Ginzbur
Landau model applied to bluff ring wakes by Leweke a
Provansal,14 in 1995. The future expansion necessitates te
poral integration of the model, and the Adams–Bashfo
method is implemented here for the purpose of validati
The Adams–Bashforth method maintains an accuracy of
derDt4, as verified by a brief temporal resolution study th
determines the stability and accuracy of the present num
cal formulation. Temporal stability was achieved for tim
stepsDt<0.125. The computed Strouhal frequency was u
to monitor convergence of the model. At a time step ofDt
50.125, the computed Strouhal frequency was with
0.032% of the Strouhal frequency computed atDt59.766
31024. The present study employs a time step ofDt50.1,
maintaining an accuracy of better than 0.025% and temp
convergence over the Reynolds number range being inv
gated.

The evolution equations of Barkley, Tuckerman, a
Golubitsky10 predict a bifurcation diagram showing thre
distinct three-dimensional mode branches for increas
Reynolds number. The present model predicts the same
havior, as displayed in Fig. 1. Notice the hysteresis at
onset of the Mode A branch for 180&Re&188, and the
mixed A/B branch for 230&Re&260 as energy is transferre
from Mode A to Mode B.

The present model evaluates the frequencies assoc
with the modes from the evolution equations in Eq.~1!.10

Strouhal frequencies are determined at increments ofD Re
51 through the Reynolds number range 48,Re,300. Over
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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L71Phys. Fluids, Vol. 15, No. 9, September 2003 A coupled Landau model
the mixed A/B regime (230&Re&260), discrete oscillation
frequencies were present for the Mode A and Mode B a
plitudes. This corresponds to the discontinuous region of
Strouhal–Reynolds number profile of the circular cylind
wake where energy is transferred from Mode A wake str
tures to Mode B. The predicted Strouhal–Reynolds num
profile from the present model is presented in Fig. 2. T
experimental circular cylinder wake Strouhal–Reyno

FIG. 1. Amplitude norm (AuAu21uBu2) variation with Reynolds number
computed using the proposed coupled Landau model for Modes A an
Dotted lines indicate the amplitudes of the uncoupled A and B branc
Time-averaged values are provided for 255,Re,260, due to fluctuation of
the amplitude norm measurements in that range.

FIG. 2. A Strouhal–Reynolds number profile showing the computed St
hal frequencies from the proposed coupled Landau model~indicated by
dashed lines!, and the experimental universal Strouhal curve determined
Williamson ~Refs. 1 and 13! in 1988 ~indicated by open circles!.
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number data, corrected for parallel shedding
Williamson,1,13 in 1988, are included for comparison.

Despite only evaluating the complex model coefficien
for Strouhal frequencies in the vicinity of the Mode A an
Mode B transitions, the computations presented here s
that a remarkable qualitative agreement is observed betw
the experimental Strouhal–Reynolds number profile of a
cular cylinder wake through the three-dimensional transit
regime, and the Strouhal frequencies determined using
present coupled Landau model. The shedding frequenc
both Mode A and Mode B are very well predicted by th
present model for Re&260. The constant Strouhal frequenc
of St'0.203, observed experimentally for Re*260, differs
from the increasing Strouhal frequency predicted by
model, probably due to longer-span instabilities that low
the shedding frequency from that of the pure Mode B wa
computed for the coefficients of the present model. The tw
dimensional shedding Strouhal profile also lies in go
agreement with the corrected experimental data for para
shedding.
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