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ABSTRACT 
 
A novel method utilizing a correlation-based approach for 
high-resolution velocity measurements is presented. Existing 
techniques for high-resolution velocity measurements use the 
modal velocity for estimating the displacement, and a wealth 
of information stored in the cross-correlation is discarded. A 
background study on optimizing the measurement accuracy of 
PIV in estimating the displacement and the gradient of the 
flow is presented. We introduce a novel method, which can 
yield velocity measurements that have infinite resolution, and 
the velocity gradient that is directly computable. 
 
1. INTRODUCTION  
 
Over the past two decades, Particle Image Velocimetry, or 
PIV, has gained popularity as a method for many experimental 
fluid mechanics investigations. Over this period, significant 
advances have been made to improve the spatial resolution 
and the accuracy of PIV measurements. The accuracy of PIV 
measurements have been shown to be affected by numerous 
factors ranging from correlation errors due to inadequate 
tracer seeding [1,2], to velocity gradients in the underlying 
flow [2] to name a few. 
 
As the general PIV technique offers measurements that are 
discretized into sampling windows or interrogation windows, 
there lies a limit to which the size of a given sampling window 
can be reduced. At larger sampling window sizes, the spatial 
resolution to resolve specific structures in the flow is lost. At 
smaller window sizes, a loss of sufficient particle image pairs 
can lead to correlation errors leading to biased measurements. 
This results in a trade-off between the measurement accuracy 
and the spatial resolution of the measurements.  
 
Existing techniques for high-resolution velocity measurements 
include hybrid PTV/PIV techniques [3], recursive local 
correlation [4], single-pixel evaluation techniques [5] and 
iterative multi-grid methods [6]. However, these methods use 
the modal velocity for estimating the displacement, and a 
wealth of information stored in the cross-correlation is 
discarded.  
 
Other methods such as image deformation [7] have long been 
in use to improve the spatial resolution of PIV measurements 
while improving the measured velocity gradient. Recently, this 
technique has been applied to 3D volumetric data using a least 
squares matching algorithm [8]. Scharnowski et al, [9] showed 
recently that smearing of the cross-correlation with velocity 
gradients could be used to calculate the Reynolds stresses.  

 
Recently, correlation-based least squares methods have been 
shown to utilize the depth information for 3D flow 
measurements [10, 11]. The underlying concept of these 
methods is that the cross-correlation map for a given window 
is the sum of the individual cross-correlation maps at each 
depth. The cross-correlation function in an interrogation 
window at a given depth is modeled as the convolution of the 
probability distribution of the displacement in that domain, 
and the auto-correlation of the particle image at that depth. To 
decode the depth information, Holographic Correlation 
Velocimetry [11] (also presented in this conference) uses the 
particle image diffraction pattern, while Volumetric 
Correlation Velocimetry [10] uses the out-of-focus effects on 
the particle image. While these methods are capable of 
offering high-resolution measurements in the out-of-plane axis, 
the measurements are still discretized into interrogation sub-
regions in which the cross-correlation is calculated, and are 
subject to inaccuracies in estimating flow gradients. 
 
We present a background study on optimizing the PIV 
measurement accuracy for estimating the displacement and 
flow gradient in Sect. 2. In Sect. 3, we present a novel method 
that can directly solve for an equation for the flow in a 
sampling window based on its cross-correlation map. The 
velocity components and its derivatives are readily available at 
an infinite resolution. In Sect. 4 we conduct a preliminary 
comparison of the novel method to PIV and a CFD solution 
for the flow around a square cylinder. 
 
2. ANALYSIS OF PIV ACCURACY 
 
With standard PIV, analysis or interrogation is conducted on a 
sequence of image pairs, where each pair is sub-divided to 
regions called sampling windows. This results in velocity 
measurements that are discretized to these sub-regions. High 
spatial resolution PIV measurements can be obtained in two 
ways: reducing the sampling window size, and overlapping 
sampling windows to further improve resolution. 
 
A Monte Carlo simulation using synthetic images was 
conducted to study the PIV measurement accuracy in 
estimating the displacement as functions of the sampling 
window size and window overlapping. Synthetic images of 
resolution 2,048×2,048 px2 were generated for a Lamb-Oseen 
vortex flow [12], where the in-plane tangential velocity and 
out-of-plane vorticity field is given by:  
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where r2 = X2 + Y2 and (X, Y) are global in-plane Cartesian 
coordinates, Γ is the circulation, ν is the kinematic viscosity 
and t is time. The size of the Oseen vortex, L, is defined as  
 

L = 4!t              (3) 
 
The numerical analysis has been conducted for a circulation, Γ, 
of 1,000 px2/s and a core vortex diameter, L, of 200 px. All 
images are generated with 256 gray levels and a pixel fill 
factor of 0 (i.e. gray value sampled at the center of the pixel).  
 
The error in the measurement is the difference between the 
estimate from PIV and the analytical solution from equations 1 
and 2. The sampling window size, W, is varied from 8 px to 
256 px. Varying the sampling distance, Δ, varies the window-
overlap ratio and is varied from 8 px to 256 px. Figure 1 
shows a line plot of the RMS of the PIV error in estimating the 
velocity components, u and v, as a function of sampling 
window size, W. Decreasing window size increases the error 
in the measurement as there is a loss of correlation due to the 
smaller window sizes; while increasing window size increases 
the error since the structure of the flow cannot be resolved. 
The RMS error is optimal when the sampling window size is 
64 px. Only the plot for a sampling distance of 8 px is shown, 
as there is minimal variation to the RMS error with increasing 
sampling distance. 
 

 
Figure 1: RMS of the PIV error in estimating the velocity 
components, as a function of the sampling window size, W, for 
a sampling distance, Δ, of 8 px. 
 
Another important measurement is the vorticity field, which 
can be computed directly from the velocity field.  Figure 2 
shows a contour plot of the RMS of the PIV error in 
estimating vorticity, as a function of sampling window size, W, 
and the sampling distance, Δ, normalized to the vortex size, L. 
The vorticity field is calculated using the method discussed by 
Fouras and Soria [13]. 
 
In figure 2, when the sampling distance is 8 px, i.e. when Δ/L 
= 0.04, the RMS error is optimal at a window size of 64 px 
(W/L = 0.32). This agrees with the result for the velocity 
component in figure 1. There is almost no variation in the 
error below Δ/L ~ 0.16, sampling window size alone 

optimizes the vorticity accuracy. However, as the sampling 
distance is increased further, sampling window size as well as 
the sampling distance optimizes the vorticity measurement as 
the number of data points in estimating the vorticity decreases. 

 
Figure 2: RMS of the error in estimating the vorticity  (contours), 
as a function of the sampling window size, W, and the sampling 
distance, Δ, normalized to vortex size, L. The accuracy of 
estimating vorticity is optimized with sampling window size as 
well as offset. 
 
We can see that with PIV, the accuracy of the measurement is 
affected by the resolution, especially in estimating the flow 
gradients from the velocity field. In this paper, we propose a 
novel cross-correlation based method, which uses a least-
squares solver to solve for a polynomial equation that 
describes the flow within each sampling window. This 
polynomial can then be directly used to determine flow 
gradients with infinite resolution. 
 
2. THE NOVEL METHOD 
 
A novel method to directly determine a piece-wise grid of 
two-dimensional polynomials, which describes the entire flow 
field, is presented. The method, which we term ‘Polynomial 
Element Velocimetry’ or PEV, solves for a tensor-product of 
cubic polynomials by modelling an estimate for the cross-
correlation map and performing a non-linear minimization 
with the measured cross-correlation map obtained from 
standard PIV. Figure 3 shows a graphical representation of the 
steps involved in the PEV method. The steps involved are as 
follows: 
 

1) The overall flow field is discretised into a grid of 
regular regions called ‘elements’, which are 
analogous to sampling windows used in PIV. 
Standard PIV with smaller sampling windows is 
conducted within the larger elements to fit a first 
approximation of the polynomials describing the 
flow over each element. 
 

2) For each element, the polynomial equations for the u 
and v-components of velocity are used to construct a 
probability distribution function (PDF), P, for the 
underlying flow. This function is convolved with the 
element’s corresponding measured auto-correlation 
function, A, to obtain an estimate for the cross-
correlation map, C, as shown in equation 4. 
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3) The estimate for the cross-correlation map is 

compared to the measured cross-correlation map 
determined within the element from standard PIV. 
The polynomial for the flow is refined, and 
processes 2 and 3 are repeated until the error 
between the estimated cross-correlation map and the 
measured cross-correlation map is minimised. 

 

 
Figure 3: Graphical representation of the PEV algorithm. This 
novel method minimises the measured cross-correlation map 
from raw PIV data to determine a polynomial that defines the 
flow. Displacement measurements from PIV data are used as 
estimates to the PEV method (1). Polynomials that define the 
displacement inside an element in x and y, are used to model a 
probability distribution function (PDF) of the displacement within 
the element, P. The PDF is then convolved with the auto-
correlation of the element, A, to obtain the model cross-
correlation, C (2). This process is iterated until the error 
between the modelled and the measured cross-correlation 
maps is minimised (3).   
 

 

 

 
Figure 4: Contour plots for the flow gradient, dv/dy for the flow 
behind a square cylinder at a Reynoldʼs number of 30, as 
obtained from (a) the CFD solution, (b) standard PIV and (c) the 
PEV method. 
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The solver uses a Levenberg-Marquardt [14] non-linear least 
squares solver to perform the error minimization described in 
step 3). Steps 2 and3 are performed for each element until the 
error is minimized for the entire field. Since the flow should 
be continuous through the elements, a Tikhonov regularisation 
method [15] is employed during the error minimization 
process. This method adds weightings to minimise 
discontinuities in both the velocity components and their 
spatial derivatives at element interfaces. 
 
3. APPLICATION TO SYNTHETIC DATA  
 
To validate the accuracy of the novel PEV method, synthetic 
300 image pairs of resolution 1,000×1,000 px2 were generated 
for the flow around a square cylinder at a Reynold’s number 
of 30. The particles were displaced based on a CFD solution 
that was computed using in-house software. The keen reader is 
referred to the paper by Sheard et al., [16, 17], for further 
information on the CFD software used in this paper. Figure 4a 
shows the CFD solution data used for validating the novel 
PEV process. The contours show the velocity gradient dv/dy, 
while the vectors show the velocity. Only results in estimating 
the velocity gradients are shown in the following plots, as it is 
more sensitive to error, and hence can highlight discrepancies 
in either the calculated or measured velocity fields.  
 
The tracer particles used were assumed to be ideal and have a 
Gaussian shape with a particle diameter of 3 px. The pixel fill 
factor is 0. An element is 50×50 px2 in size, and the entire 
field consists of 20×20 elements.   
 
Since the polynomial for the flow is known in each element, 
the derivatives are readily computable. Figure 4b shows the 
flow gradient, dv/dy, computed by the method proposed by 
Fouras and Soria [13]. The PIV velocity measurements were 
estimated using a correlation average of 300 image pairs, with 
a sampling window size of 50×50 px2, and a window overlap 
of 50% (i.e. a sampling distance of 25 px). The RMS PIV 
error in estimating the u and v components of the velocity 
compared to that of the CFD solution in figure 4a is 
approximately 0.15 px. Figure 4c shows the contour plot for 
the gradient, dv/dy, computed using the proposed PEV 
method. The flow field for PEV is defined over 20×20 
elements. The RMS error in estimating the components for 
velocity using in PEV is approximately 0.11 px. The 
percentage reduction in error from PIV to PEV is 
approximately 33%. The high spatial resolution of the 
measurements using PEV over PIV is clearly evident. Albeit 
minor irregularities in the estimated flow gradient due to 
aggressive ridge regression techniques, the PEV method 
estimates the gradient much more accurately. Small but 
significant features of the flow are visible with the velocity 
gradients measured using the proposed PEV method. These 
features include the flow directly behind the cylinder, and the 
smoothness of the flow gradient contours. 
 
4. CONCLUSIONS 
 
A novel process that yields a two-dimensional cubic 
polynomial to represent the flow is presented. This process, 
which we term Polynomial Element Velocimetry (PEV), 
solves for the said polynomial by modelling an estimate for 
the cross-correlation map and performing a non-linear 
minimization with the measured cross-correlation map 
obtained from standard PIV. This technique models the cross-
correlation map as the convolution of the auto-correlation of 
the particle image pair and the probability distribution of the 

displacement (Eq. 4) [10, 11]. This concept ensures that the 
PEV method optimally uses all the in-plane flow information 
in the cross-correlation map over the standard PIV process that 
yields the modal velocity.  
 
Once the two-dimensional cubic polynomials for the velocity 
are known, the velocity and the velocity gradient are directly 
calculable. Hence, this new method allows for accurate 
velocity measurements near a wall and the accurate location of 
flow features such as stagnation points, over current methods.   
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