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This experimental study investigates the effect of imposed rotary oscillation on the
flow-induced vibration of a sphere that is elastically mounted in the cross-flow
direction, employing simultaneous displacement, force and vorticity measurements.
The response is studied over a wide range of forcing parameters, including the
frequency ratio fR and velocity ratio αR of the oscillatory forcing, which vary between
0 6 fR 6 5 and 0 6 αR 6 2. The effect of another important flow parameter, the
reduced velocity, U∗, is also investigated by varying it in small increments between
0 6 U∗ 6 20, corresponding to the Reynolds number range of 5000 . Re . 30 000. It
has been found that when the forcing frequency of the imposed rotary oscillations,
fr, is close to the natural frequency of the system, fnw, (so that fR = fr/fnw ∼ 1), the
sphere vibrations lock on to fr instead of fnw. This inhibits the normal resonance or
lock-in leading to a highly reduced vibration response amplitude. This phenomenon
has been termed ‘rotary lock-on’, and occurs for only a narrow range of fR in the
vicinity of fR = 1. When rotary lock-on occurs, the phase difference between the
total transverse force coefficient and the sphere displacement, φtotal, jumps from
0◦ (in phase) to 180◦ (out of phase). A corresponding dip in the total transverse
force coefficient Cy (rms) is also observed. Outside the lock-on boundaries, a highly
modulated amplitude response is observed. Higher velocity ratios (αR > 0.5) are more
effective in reducing the vibration response of a sphere to much lower values. The
mode I sphere vortex-induced vibration (VIV) response is found to resist suppression,
requiring very high velocity ratios (αR > 1.5) to significantly suppress vibrations
for the entire range of fR tested. On the other hand, mode II and mode III are
suppressed for αR > 1. The width of the lock-on region increases with an increase
in αR. Interestingly, a reduction of VIV is also observed in non-lock-on regions
for high fR and αR values. For a fixed αR, when U∗ is progressively increased, the
response of the sphere is very rich, exhibiting characteristically different vibration
responses for different fR values. The phase difference between the imposed rotary
oscillation and the sphere displacement φrot is found to be crucial in determining the
response. For selected fR values, the vibration amplitude increases monotonically with
an increase in flow velocity, reaching magnitudes much higher than the peak VIV
response for a non-rotating sphere. For these cases, the vibrations are always locked
to the forcing frequency, and there is a linear decrease in φrot. Such vibrations have
been termed ‘rotary-induced vibrations’. The wake measurements in the cross-plane
1.5D downstream of the sphere position reveal that the sphere wake consists of vortex
loops, similar to the wake of a sphere without any imposed rotation; however, there
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is a change in the timing of vortex formation. On the other hand, for high fR values,
there is a reduction in the streamwise vorticity, presumably leading to a decreased
total transverse force acting on the sphere and resulting in a reduced response.

Key words: flow–structure interactions, vortex streets, wakes

1. Introduction
Vortex-induced vibration (VIV) of structures is encountered in a variety of

engineering situations, such as for flows past offshore structures, bridges, heat
exchangers, aircraft, pipelines and other hydrodynamic applications. The practical
significance of VIV has led to numerous studies focusing on understanding the
underlying physics, including the comprehensive reviews by Bearman (1984), Blevins
(1990), Sarpkaya (2004), Williamson & Govardhan (2004), Païdoussis, Price & De
Langre (2010) and Naudascher & Rockwell (2012). Most of the previous studies,
however, were focused on two-dimensional (2-D) bluff bodies like cylinders. There
are relatively fewer studies on the VIV of elastically mounted or tethered spheres
despite their ubiquitous practical significance, such as marine buoys, underwater
mines, other offshore structures and tethered or towed spheroidal objects. Govardhan
& Williamson (1997), Williamson & Govardhan (1997) and Jauvtis, Govardhan &
Williamson (2001) were among the first to report on the VIV response of a sphere
identifying three fundamental modes of vibration, namely modes I, II and III. Since
then, a number of systematic studies have investigated the VIV response of spheres,
e.g. Pregnalato (2003), Govardhan & Williamson (2005), van Hout, Krakovich &
Gottlieb (2010), Behara, Borazjani & Sotiropoulos (2011), Krakovich, Eshbal & van
Hout (2013), Lee, Hourigan & Thompson (2013), Behara & Sotiropoulos (2016) and
Sareen et al. (2018a).

Large-amplitude vibration caused by VIV over a wide range of Reynolds number
is a common cause of serious structural fatigue and damage, which has led to a
plethora of research studies focusing on suppressing VIV over last four decades. For
this reason, several active and passive control methods have been studied previously
for 2-D bluff bodies. Choi, Jeon & Kim (2008) provide a review of various control
methods employed for flow over bluff bodies. Although passive control methods
do not consume external energy and are fairly insensitive to changes in the flow
direction, it tends to be difficult to dramatically reduce VIV, and the drag often
increases. In contrast, active control methods such as moving-surface boundary-layer
control (MSBC) (Mittal 2001) and windward suction leeward blowing (WSLB) (Dong,
Triantafyllou & Karniadakis 2008) reduce VIV to a much lower level; however, the
efficacy of both these active methods depends on the flow direction.

The control of VIV by rotary motion has received increased attention recently due
to its insensitivity to flow direction, efficacy over a broader range of flow parameters
and the greater extent of VIV reduction. A recent experimental study by Sareen et al.
(2018a) reported suppression of VIV of a sphere by means of an imposed transverse
rotation for a wide range of Reynolds numbers and reduced velocities. They reported
a reduction in the strength of the vortex street, which can be associated with a
reduction of the transverse force acting on the sphere. VIV can also be suppressed
by forced sinusoidal rotary oscillations of the bluff body, to prohibit the phenomenon
of resonance or ‘lock-in’ by deviating the vortex shedding frequency from the natural
frequency of the system towards the forcing frequency (also known as ‘lock-on’).
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This approach has been extensively investigated on a fixed cylinder over the last
four decades. Taneda (1978) was the first to examine this experimentally for a rotary
oscillating cylinder, and reported the disappearance of vortex shedding for very high
forcing frequencies. Later, Tokumaru & Dimotakis (1991) reported a drag reduction
of up to 80 % for a certain range of forcing frequencies and amplitudes of sinusoidal
rotary oscillations. This pioneering study inspired a number of systematic numerical
studies aimed at understanding this wake control and the underlying dynamics, such
as Tokumaru & Dimotakis (1991), Lu & Sato (1996), Chou (1997), Baek & Sung
(2000), Mahfouz & Badr (2000), Cheng, Chew & Luo (2001), Shiels & Leonard
(2001), Choi, Choi & Kang (2002), Lee & Lee (2006) and Kumar et al. (2013). It is
known for the case of a fixed cylinder that for a certain range of forcing frequency
ratios encompassing the natural frequency of the system, the vortex shedding locks
to the forcing frequency, leading to the ‘lock-on’ phenomenon (Chou 1997; Baek
& Sung 2000). The state is accompanied by a significant drag reduction (Tokumaru
& Dimotakis 1991; Lu & Sato 1996; Chou 1997). The lock-on region widens with
increasing rotational speed (Mahfouz & Badr 2000). The boundaries of lock-on and
non-lock-on regions are associated with the modulation of the drag, lift and velocity
(Choi et al. 2002), and the non-lock-on regions exhibit quasi-periodicity (Baek &
Sung 2000). Several studies have focused on understanding the underlying dynamics.
It was found that the lock-on region is associated with enhanced separation and vortex
coalescence in the wake (Cheng et al. 2001; Shiels & Leonard 2001; Lee & Lee
2006). The experimental investigation by Thiria, Goujon-Durand & Wesfreid (2006)
also revealed that the phase lag between the vortex shedding and the rotary motion
of the cylinder effectively gives either a constructive or destructive contribution to
the wake, leading to a global decrease or increase in fluctuations in the wake.

Recently, Du & Sun (2015) investigated numerically the potential of rotary
oscillations to suppress VIV of an elastically mounted cylinder at Re = 350. They
found ‘lock-on’ for the elastically mounted cylinder, which led to switching of vortex
shedding from the natural frequency to the forcing frequency, inhibiting resonance or
VIV. They observed effective control only for large enough velocity ratios, and the
lock-on regime became narrower with an increase in reduced velocity. They observed
no significant reduction in the strength of vortices in the wake.

The papers discussed so far report on rotational control of 2-D bluff bodies.
However, there do not appear to be studies investigating the potential of rotary
oscillations in wake control for 3-D bluff bodies, such as spheres. However, a
sphere is the most basic 3-D body shape; certainly the one with the most symmetry,
and clearly spheres can undergo significant amplitude VIV. A sphere provides a
starting framework to comprehend VIV control of more complex three-dimensional
bluff bodies. The current study aims at producing an understanding of the effect of
imposed rotary oscillations on the VIV response of a sphere for a wide range of
forcing and flow parameters. One question to be addressed is whether similar features
(as discussed above for a fixed cylinder) are exhibited in the case of an elastically
mounted sphere. Specifically, this study addresses the following fundamental questions:
Is ‘lock-on’ also observed for a sphere exhibiting a 3-D wake? If so, how does
the lock-on range depend on various forcing and flow parameters? How does this
phenomenon affect the 3-D wake structures of the flow past a sphere?

The outline of the article is as follows. The experimental methodology for the
current experiments is detailed in § 2. The VIV response of a non-rotating oscillating
sphere is briefly presented in § 3. Section 4.1 discusses in detail the effect of frequency
ratio on the VIV response of a sphere, followed by § 4.2 on the effect of velocity ratio.
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Top view

U

œ = œo sin (2πfr t)
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y

FIGURE 1. Definition sketch for the transverse vortex-induced vibration of a sphere
undergoing forced rotary oscillations. The hydro-elastic system is simplified as a
one-degree-of-freedom (1-DOF) system constrained to move only in the cross-flow
direction. The axis of rotation (z) is transverse to both the flow direction (x-axis) and
the oscillation axis (y-axis). Here, U is the free-stream velocity, k the spring constant, D
the sphere diameter, c the structural damping and θ the imposed angular displacement.

§ 4.3 focuses on the effect of the reduced velocity on the VIV response. Section 5
discusses the effect on the wake structures, and finally § 6 draws conclusions, and
summarises the important findings and significance of the current study. To be clear,
in this article, if the vibrations are locked to the natural frequency, the phenomenon
is termed ‘lock-in’ or ‘resonance’, and if they are locked to the forcing frequency
instead, it is termed ‘lock-on’ or, in this case,‘rotary lock-on’.

2. Experimental method
A schematic showing the experimental arrangement of the current fluid–structure

interaction problem is presented in figure 1. The sphere is elastically mounted in the
direction transverse to the incoming flow. The axis of the sinusoidal rotary oscillations
imposed on the sphere is transverse to the flow direction and the free vibration axis.

The two important parameters characterising the rotary oscillation motion of the
sphere are fR and αR. Here, fR is the forcing frequency ratio, expressed as the ratio of
forcing frequency, fr, and the natural frequency of the system, fnw, as

fR = fr/fnw. (2.1)

Alternatively, sometimes the non-dimensional forcing Strouhal number is used to
characterise the forcing

Sf =
frD
U
. (2.2)

The other key parameter, αR, is the forcing velocity ratio expressed as the ratio of the
maximum tangential velocity of the sphere surface and the free-stream velocity U as

αR =
Dθ̇max

2U
, (2.3)
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Amplitude ratio A∗rms

√
2Arms/D

Damping ratio ζ c/
√

k(m+mA)

Forcing frequency ratio fR fr/fnw

Frequency ratio f ∗ f /fnw

Forcing Strouhal number Sf frD/U
Mass ratio m∗ m/md

Mass-damping parameter ξ (m∗ +CA)ζ

Reduced velocity U∗ U/( fnwD)
Reynolds number Re UD/ν
Scaled normalised velocity U∗S (U∗/f ∗)S= fvo/f
Strouhal number S fvoD/U
Transverse force coefficient Cy (rms) Fy/(

1
8ρU2πD2)

Velocity ratio αR Dθ̇max/(2U)

TABLE 1. Non-dimensional parameters used in this study. In this table: Arms is the root-
mean-square (r.m.s.) value of the vibration amplitude in the y direction; D is the sphere
diameter; f is the body oscillation frequency; fr is the frequency of the imposed rotary
oscillation; and fnw is the natural frequency of the system in quiescent water. In addition, m
is the total oscillating mass; c is the structural damping factor with k the spring constant;
U is the free-stream velocity; ν is the kinematic viscosity; mA denotes the added mass,
defined by mA =CAmd, where md is the mass of the displaced fluid and CA is the added
mass coefficient (0.5 for a sphere); θ̇max = maximum angular velocity of the sphere; fvo
is the vortex shedding frequency of a fixed body and Fy is the fluid force acting on the
sphere in the transverse direction.

where θ̇max is the maximum angular velocity of the sphere. All other relevant non-
dimensional parameters for the current study are listed in table 1.

The governing equation of motion describing the cross-flow motion of the sphere
can be written as

mÿ+ cẏ+ ky= Fy, (2.4)

where Fy is the fluid force in the transverse direction, m is the total oscillating mass
of the system, y is the displacement in the transverse direction, c is the structural
damping of the system and k is the spring constant. Using the above equation, the
total fluid force in the transverse direction can be calculated with the knowledge of
the directly measured displacement, and its time derivatives. The sinusoidal rotation
imposed on the sphere can be expressed as

θ(t)= θo sin(2πfrt), (2.5)

where θ is time-dependent imposed angular displacement, θo is maximum angular
displacement and fr is the forcing frequency. In terms of the angular velocity, the
imposed rotation can be represented as

θ̇ = 2πfrθo cos(2πfrt). (2.6)

The velocity ratio αR given in (2.3) can thus be written as

αR =
πfrθoD

U
. (2.7)
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Laser sheet

Shroud support

system 

U

Test sphere

Air bearing

(DOF normal to page)
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Side view Top view

Laser
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z

45°

U
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y

Camera

Laser sheet

Mirror

Linear encoder

Springs

Rotor

Mirror

FIGURE 2. (Colour online) Schematic of the experimental set-up for the current study
showing the side and top-down views.

2.1. Experimental details
The experiments were conducted in the recirculating free-surface water channel of
the Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Monash
University, Australia. The test section of the water channel is 600 mm in width,
800 mm in depth and 4000 mm in length. The free-stream velocity can be varied
continuously over a range of 0.056U 6 0.45 m s−1. The free-stream turbulence level
for the current experiments was less than 1 % at intermediate flow speeds.

Figure 2 shows a schematic of the current experimental set-up. The sphere was
elastically mounted in the transverse direction using a low-friction air-bearing system
that provides low structural damping. The structural stiffness was controlled by
extension springs. More details of the hydro-elastic facility can be found in Zhao et al.
(2018). A solid spherical ball of diameter D= 80 mm (accuracy within ±0.200 mm)
precision-machined from acrylic plastic was used in the current experiments. The
sphere model had a smooth polished surface finish. It was supported with a cylindrical
shroud support system. The immersed length of the total support set-up for the sphere
was one diameter. A more complete description of the current experimental set-up
can be found in Sareen et al. (2018a).

The rotary motion was driven using a miniature low-voltage micro-stepping motor
(model: LV172, Parker Hannifin, US) with a resolution of 25 000 steps/revolution.
The rotary oscillations were monitored using a digital optical rotary encoder (model:
E5-1000, US Digital, US) with a resolution of 4000 counts/revolution. The sphere
displacement was measured using a linear encoder (model: RGH24, Renishaw, UK)
with a resolution of 1 µm. The data acquisition and the controls of the flow velocity
and the sphere oscillations were automated via customised LabVIEW programs.
For each data set, the signal was acquired at a sampling frequency of 100 Hz for
more than 100 vibration cycles. The natural frequencies and structural damping of
the system in both air and water were measured by conducting free decay tests
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The effect of imposed rotary oscillation on the FIV of a sphere 709

individually in air and in quiescent water. The natural frequencies in air and water
were found to be fna = 0.208 ± 0.005 and fnw = 0.200 ± 0.005, respectively. The
structural damping ratio with consideration of the added mass was determined to be
ζ = 4.3 × 10−3

± 0.0006. The results in the current study are reported for a mass
ratio of m∗ = 12.116± 0.004.

To gain better insight into the flow dynamics, particle image velocimetry (PIV)
measurements were employed in the cross-plane, 1.5 diameters downstream of the
sphere. The flow was seeded with 13 µm hollow micro-spheres having a specific
weight of 1.1 g m−3. A continuous laser (model: MLL-N-532-5W, CNI, China) was
used to illuminate a laser plane of ∼3 mm thickness aligned parallel to the y–z plane.
A mirror was placed at 45◦ angle to the free-stream direction towards the downstream
side of the sphere. The mirror was placed more than 6 diameters downstream of the
sphere to limit any upstream disturbance. A distance of ≈2 diameters is sufficient to
avoid any upstream effect of the mirror in this set-up (see Venning 2016). Imaging
was performed using a high-speed camera (model: Dimax S4, PCO, AG) with a
resolution of 2016× 2016 pixels2. The camera was equipped with a 105 mm Nikon
lens, giving a magnification factor of 10.73 pixel mm−1 for the field-of-view. Velocity
fields were deduced using in-house PIV software developed originally by Fouras, Lo
Jacono & Hourigan (2008), using 32 × 32 pixel2 interrogation windows in a grid
layout with 50 % window overlap. All the vorticity fields shown in the current study
were phase-averaged over more than 100 cycles. For each PIV measurement case, a
set of 3100 image pairs were collected by sampling at 10 Hz. Each image set was
sorted into 24 phase bins based on the sphere’s displacement and velocity, resulting
in more than 120 image pairs for averaging at each phase. The final phase-averaged
vorticity fields were smoothed slightly using an iterative Laplace filter to remove
small length-scale structures and to better highlight the larger-scale structures that
dominate the wake.

3. VIV response of a sphere without control

In this section, we provide a brief overview of what is already known for an
elastically mounted sphere undergoing VIV. A more detailed validation study based
on the VIV response of an elastically mounted sphere without imposed rotation can
be found in Sareen et al. (2018a,b).

The VIV response of an elastically mounted sphere (1-DOF) without imposed
rotation consists of two fundamental modes of vibration, modes I and II, in the
synchronisation region followed by a ‘plateau branch’, which appears to be a precursor
to mode III, seen at higher reduced velocities (Govardhan & Williamson 2005; Sareen
et al. 2018a,b). The vibrations in the plateau region are not as highly periodic as
the vibrations in mode II, albeit that the frequency of oscillation stays close to the
natural frequency of the system for the entire U∗ range. Although the vortex shedding
remains similar in all three modes of vibration, there is a change in the timing of
the vortex formation. Govardhan & Williamson (2005) and Sareen et al. (2018a,b)
showed that the sphere vibration response transitions from mode I to mode II when
the phase difference between the vortex force and the sphere displacement, φvortex,
crosses through 90◦, corresponding to an inflection point in the amplitude response.
Similarly, within mode II, the phase difference between the total transverse force
and sphere displacement, φtotal, passes through 90◦, corresponding to the peak of the
amplitude response. The variations of φtotal and φvortex for the current experimental
set-up can be found in Sareen et al. (2018a,b).
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ModeI

A* rm
s

Plateau branch

ModeII

0
0.5 1.0 1.5 2.0 2.5

(U*/f*)S
3.0 3.5

FIGURE 3. (Colour online) Amplitude response of an elastically mounted sphere (1-DOF)
obtained in the current study (u) with a mass damping of (m∗ + CA)ζ = 0.03 compared
to previous studies by Govardhan & Williamson (2005) (c) with a mass damping
approximately 0.92 and Sareen et al. (2018b) (p) with a mass damping of 0.0169.

Unlike the case of a tethered sphere with 2-DOF, where the modes are separated
by a desynchronised reduced velocity range (Jauvtis et al. 2001; Govardhan &
Williamson 2005), the vibration amplitude for a sphere in the 1-DOF case increases
gradually and continuously from mode I to mode II (4.5 . U∗ . 15) leading to
an almost constant amplitude in the plateau branch (15 6 U∗ < 30). Although it
is difficult to demarcate the two modes in the 1-DOF case, there are considerable
changes in the phase difference between the sphere displacement and the total
transverse force φtotal, and the phase difference between the sphere displacement and
the vortex force, φvortex. The response transitions from mode I to mode II when
φvortex crosses through 90◦, corresponding to the ‘inflection point’ in the amplitude
response. Likewise, within the mode II regime, φtotal passes continuously through 90◦,
corresponding to the peak of the amplitude response (Govardhan & Williamson 2005;
Sareen et al. 2018a,b). Lowering the mass-damping parameter (m∗ + CA)ζ leads to
greater vibration amplitudes and a widened synchronisation regime, as shown in
figure 3. The mass damping of the current study is (m∗ + CA)ζ = 0.03, compared to
approximately 0.92 in the study by Govardhan & Williamson (2005) and 0.0169 in
the study by Sareen et al. (2018b). When plotted against the scaled U∗S , defined as
U∗S = (U

∗/f ∗)S≡ fvo/f , where S is the Strouhal number for vortex shedding (≈0.18 in
this case), the saturation amplitudes (peaks) line up for all the results with different
mass-damping parameters, as was demonstrated by Govardhan & Williamson (2005).

4. Effect of rotary oscillations on the vibration response
4.1. Effect of the forcing frequency ratio

In this section, the effect of forcing frequency ratio, fR, on the sphere VIV response is
discussed. The response is studied for a wide range of frequency ratios varying from
0 to 5 in small increments at several fixed velocity ratios; however, only a few of the
representative cases are discussed in detail here. The results are presented for three U∗
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values of U∗= 6, 10 and 15, corresponding to modes I, II and mode III, respectively,
of the sphere VIV response.

4.1.1. Mode I
Figure 4(a) shows the variation of the r.m.s. of the amplitude of the sphere

oscillations, A∗rms, with fR. Figures 4(b) and 4(c) present the frequency power spectral
density (PSD) contours of the sphere displacement and the total transverse force,
respectively. Figures 4(d) and (e) show the variation of the coefficient of the total
transverse force, Cy (rms), and the total phase difference, φtotal, respectively.

As evident in figure 4(a), when fR is gradually increased from 0 to ∼0.5, A∗rms
progressively decreases in magnitude. The vibrations remain locked to the natural
frequency of the system, i.e. f ∗ = 1, as shown in figure 4(b). Although the frequency
response shows a clear dominant frequency at f ∗=1, the displacement is modulated in
the presence of the forcing, as is clear from the time trace of the sphere displacement
shown in figure 5(a). As is also evident from figure 4(c), unlike the frequency contour
plot of the sphere displacement, the PSD of the total transverse force does not show
a single frequency in this region. Previous studies on rotationally oscillating cylinders
have also noted highly modulated states in the non-lock-on regions (Choi et al. 2002).

When fR is further increased to higher values beyond 0.5, the vibrations start to
lock on to fR instead of fnw, as is clearly discernible in figure 4(b). Figure 4(c) shows
that the total lift force also locks on to fR. This marks the start of the rotary lock-on
(RLO) region that extends from 0.5 . fR . 1.5 (bounded by dashed vertical lines).
In the RLO region, the vibrations and the total transverse force are locked to the
forcing frequency instead of the natural frequency, which prohibits the fluid–structure
energy transfer. The vibrations are highly suppressed in this range except the case
when all the characteristic frequencies of the system are equal, i.e. fR= f ∗= fnw; here,
the vibration amplitude is close to that of a sphere without imposed rotation, and the
displacement signal is highly periodic as shown in figure 5(c). In the RLO region,
Cy (rms) drops to lower values with a sudden dip for the fR = f ∗ = fnw case (shown
in figure 4d). Also, figure 4(e) shows that there is a sudden jump in the total phase
difference, φtotal, from almost 0◦ (in phase) to 180◦ (out of phase). Such a sudden jump
in φtotal is associated with the change in the timing of vortex formation, as will be
shown later in § 5 through wake measurements. Such a region of rotary lock-on, where
the sphere displacement locks on to the forcing frequency, has also been observed
recently for an elastically mounted cylinder under imposed rotary oscillation in the
experimental study by Wong et al. (2018). They also observed a sudden jump in φtotal

from 0◦ to 180◦ for a cylinder in the rotary lock-on region.
One can also note a transition region near the lock-on boundaries in figure 4(b).

This region has a richness in frequency content and relatively broadened spectral
densities that appear to be caused by competing fnw and fr. This is clearer for higher
U∗ responses shown later in this section. The time traces of the displacement signal
near the boundaries (shown in figures 5b and 5d) indicate a quasi-periodic state. Baek
& Sung (2000) previously reported quasi-periodic states near the lock-on boundaries
for a cylinder. When fR is further increased to higher values, fR > 2, the vibrations
again start to lock in to the natural frequency of the system instead of the forcing
frequency. For 2 < fR 6 5, the vibration amplitudes and φtotal recover and become
close to their initial values without imposed rotation (shown in a and d). The time
trace of the sphere displacement (figure 5e) shows a highly periodic response in this
range.
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FIGURE 4. (Colour online) The response of an elastically mounted sphere under imposed
rotary oscillation is presented as a function of forcing frequency ratio, fR, at a fixed
velocity ratio of αR = 1 for the mode 1 response (U∗ = 6). (a) The variation of r.m.s.
of the oscillation amplitude (A∗rms). The dotted line represents the amplitude of a sphere
with no imposed rotation. (b,c) Power spectral density (PSD) contour plots of the sphere
displacement signal and the total transverse force (coefficient), respectively. The dotted
line represents where the normalised frequency response, f ∗, equals the forcing frequency
ratio fR. (d) The variation of the r.m.s. force coefficient of the total transverse lift
Cy (rms). (e) The variation of the total phase difference, φtotal. The horizontal dotted line
shows φtotal for a non-rotating sphere. The dashed vertical lines indicate the approximate
lock-on boundaries. Note that the colour bar applies to the frequency plot, indicating the
normalised spectral power on a log10 scale.
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FIGURE 5. (Colour online) Time traces of the sphere displacement in mode I for different
frequency ratios of (a) fR = 0.3, (b) fR = 0.5, (c) fR = 1, (d) fR = 1.9 and (e) fR = 4. The
velocity ratio is fixed at αR = 1.

Figure 6 shows the response characteristics, similar to those shown previously, but
for a relatively higher velocity ratio of αR = 1.5 in mode I. One can clearly see
the difference that the transition region (or the non-lock-on region, where the flow is
neither locked in nor locked on), where a wide spectrum of frequencies is observed,
now extends for a wider range of fR values between 1.5 . fR . 3. Also, the lock-in
region is observed for a narrow range of high fR values in the range 3< fR < 5. The
vibration amplitude in the lock-in region does not recover to the values close to the
non-rotating case but rather remains <0.2D. So, as the velocity ratio is increased to
αR = 1.5, the transition region becomes wider, and lock-in occurs for a narrow range
of fR values. For even higher velocity ratio of αR= 2 (not discussed here), the lock-in
region disappears, and the transition range extends until the maximum fR tested in the
current study.

4.1.2. Mode II
Figure 7 shows the response quantities for U∗ = 10, (in the heart of mode II) at a

fixed velocity ratio of αR = 0.5. One can note here that unlike mode I, the vibration
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FIGURE 6. (Colour online) The response of an elastically mounted sphere under imposed
rotary oscillation is presented as a function of forcing frequency ratio, fR, at the fixed
velocity ratio of αR = 1.5 in the mode I region (U∗ = 6). Refer to figure 4 for further
details.

amplitudes do not drop at all before entering the RLO region. However, as the sphere
response enters the RLO region, the response characteristics are similar to mode I,
with a sudden jump in A∗rms for fR = 1 and a corresponding drop in Cy (rms) and φtotal.
Immediately past fR = 1, the vibrations become out of phase with the total transverse
force, and the vibration amplitudes drop to highly reduced values. A transition region
with a wide spectrum of frequencies and highly modulated vibration amplitudes (see
figure 8b) is also evident in the frequency contour plot as the response exits the RLO
region. For 2 . fR . 3, the vibrations lock back to fnw and the vibration amplitudes
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FIGURE 7. (Colour online) The response quantities of an elastically mounted sphere with
imposed rotary oscillations is presented as a function of forcing frequency ratio, fR, at a
fixed velocity ratio of αR= 0.5 in mode II (U∗= 10). Refer to figure 4 for further details.

start to recover. The dominant frequency of the transverse force, however, remains
the forcing frequency (see figure 7c). As the response approaches the vicinity of fR=

3, the vibrations lock on to the third subharmonic of the forcing frequency, f ∗ =
fR/3, although the effect is localised to a small fR range. Figure 7(c) shows that the
transverse force locks on simultaneously to the third harmonic as well. This is termed
‘tertiary lock-on’ (TLO). Such a region of tertiary lock-on has also been observed
previously for a cylinder allowing 1-DOF transverse movement under imposed rotary
oscillation (Wong et al. 2018), and also for a rigidly mounted cylinder (Choi et al.
2002; Thiria et al. 2006). The TLO region is also characterised by a sudden jump
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FIGURE 8. (Colour online) Time traces of the sphere displacement in mode II for different
frequency ratios of (a) fR = 1.1, (b) fR = 2, (c) fR = 3 and (d) fR = 4.8. The velocity ratio
is fixed at αR = 0.5.

in φtotal and Cy (rms), as evident from figures 7(e) and (d), respectively. The time trace
of the sphere displacement reveals a highly periodic response in the TLO region (see
figure 8c). As the sphere exits the TLO region, the dominant frequency again becomes
fnw; however, unlike standard lock-in, there is no clean single frequency response. The
vibrations exhibit amplitude modulation, as evident from figure 8(d). The vibration
amplitude drops to lower values, ∼0.2, and remains almost constant until fR = 5.

It is interesting to see how the response changes as the velocity ratio is increased to
αR= 1. Figure 9 shows the observed response for a higher velocity ratio of αR= 1 in
mode II. The lock-in and the tertiary lock-on regions are absent for αR= 1, unlike the
αR = 0.5 case. Again, the vibration amplitude for the fR = f ∗ = fnw case in the mode
II region is even higher than the non-rotating case (shown as a dashed line in a). An
interesting point to note here is that for fR > 2, although φtotal recovers to its initial
non-rotating values, the vibration amplitude does not recover to its initial value as
observed in mode I. Near the lock-on boundaries, a rich frequency content is observed,
however; it extends until fR= 3. For fR> 3, the frequency no longer follows the fR line
and the vibration is highly reduced. In this case, the vibration is neither locked in (as
characterised by a single frequency response at f ∗= 1) nor locked on (as characterised
by a single frequency response at f ∗= fR). Interestingly, the dominant frequency of the
lift force remains fR for fR > 3. Overall, the characteristics of the RLO region remain
the same with a sudden jump in φtotal from 0◦ to 180◦, and a drop in Cy (rms) correlated
with the jump in A∗rms.
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FIGURE 9. (Colour online) The response of an elastically mounted sphere with imposed
rotary oscillations is presented as a function of forcing frequency ratio, fR, at a fixed
velocity ratio of αR = 1 in mode II (U∗ = 10). Refer to figure 4 for further details.

4.1.3. Mode III
Figure 10 shows the response curves at even higher U∗ values towards the mode III

region. As evident from the figure, the width of rotary lock-on region is decreased in
mode III, extending only between 0.8< fR < 1.4. Another interesting point to note is
that for the fR= f ∗= fnw case, the vibration amplitude reaches a value of more than one
sphere diameter, which is ∼66 % higher than for the non-rotating case. The imposed
rotation is very effective in mode III in suppressing vibration for the entire range of fR
tested in the current study (except of course the fR= fnw resonant case). The response
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FIGURE 10. (Colour online) The response of an elastically mounted sphere with imposed
rotary oscillations is presented as a function of forcing frequency ratio, fR, at a fixed
velocity ratio of αR = 1 in mode III (U∗ = 15). Refer to figure 4 for further details.

characteristics in mode III are quite similar to mode II (the αR = 1 case), where the
vibrations do not recover to higher values after exiting the rotary lock-on region, and
a broad frequency spectrum is observed for higher fR values. However, in mode III,
the vibration frequency and the lift frequency follows the f ∗ = fR line for the entire
range of fR tested, unlike in the case of mode II. It appears that the transition region
extends until fR = 5 in this case. Interestingly, a clean single frequency response is
observed for the lift force for 2 . fR . 4, as seen in figure 10(c).
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FIGURE 11. (Colour online) The response quantities of an elastically mounted sphere
with imposed rotary oscillations is presented as a function of velocity ratio, αR, at fixed
frequency ratios of fR = 1.2 (a,c,e) and fR = 3 (b,d, f ) in mode II. The dashed red line
demarcates the two regions obtained as the velocity ratio is varied in the above cases.
The vibrations are greatly suppressed beyond the dashed line for both the frequency ratios
shown above.

4.2. Effect of velocity ratio
In this section, the effect of another important forcing parameter on the sphere
vibration response, the velocity ratio αR, is investigated. The velocity ratio was varied
over the range 0 6 αR 6 2 in small increments, keeping constant values of U∗ and
fR. The response was studied for U∗ = 10 (heart of mode II) and frequency ratios of
fR = 1 (resonance), fR = 1.2 (lock-on) and fR = 3 (non-lock-on).

Figure 11(a) shows the response as a function of αR at a constant value of fR =

1.2 in mode II. It can be seen that when the velocity ratio is increased gradually to
αR = 0.5, there is a progressive decrease in A∗rms. The dominant frequency remains
as fnw (see figure 11c). However, when αR is increased beyond 0.5, the oscillation
frequency locks on to the forcing frequency (f ∗ = 1.2), as shown in figure 11(c), and
the displacement becomes out of phase with the total transverse force, as shown in
figure 11(e). The vibrations are highly suppressed for αR >0.5 with ∼77.7 % reduction
in the vibration amplitude compared to the case of a sphere without imposed rotation.
This demonstrates that values of αR > 0.5 are desirable for effective suppression of
VIV in mode II, at least for fR = 1.2. An obvious question is that when fR is outside
the lock-on range, what velocity ratios are favourable for reducing the amplitude of
oscillations?

To answer this question, another frequency ratio was chosen in the non-lock-on
range and the response was investigated. Figure 11(b,d, f ) shows the response
quantities for fR = 3.0 in mode II. Initially, when αR is increased, there are no
significant changes in the vibration amplitude compared to the case of the sphere
without any imposed forcing. The oscillations are locked to the natural frequency of
the system, as shown in figure 11(d). However, there is a sharp reduction in A∗rms
beyond αR & 0.7. For higher αR values, the vibrations are suppressed completely. In
the frequency spectrum plot figure 11(d), a wide spectrum of frequencies is evident
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FIGURE 12. (Colour online) Time traces of the sphere displacement for frequency ratios
fR = 1.2 (a,c) and fR = 3 (b,d) at two different velocity ratios of αR = 0.3 and αR = 1.3.

for αR > 0.7. The forcing frequency fR = 3 is also present; however, fnw remains the
dominant frequency. For this case, the sphere vibrations are neither locked in (single
frequency response at f ∗ = 1) nor locked on (single frequency response at f ∗ = fR)
and the frequency contour map is characterised by a wide spectrum of frequencies.
φtotal remain close to 90◦ for the entire range of αR (except the higher αR values,
where small deviation can be observed). An interesting thing to note here is that
suppression of vibrations can be observed for a sphere even in the non-lock-on range
for high enough αR values.

Figure 12(a,c) shows the time trace of the sphere displacement at fR = 1.2 for the
two different velocity ratios of αR= 0.3 (a) and αR= 1.3 (c). For αR= 0.3, a pulsating
signal is evident with a beating frequency ∼|fr− fnw|. For αR= 1.3, on the other hand,
beating is not clear and the vibrations are not very periodic. Figure 12(b,d) shows the
time trace of the sphere displacement at fR=3 for two different velocity ratios αR=0.3
(b) and αR= 1.3 (d). For αR= 0.3, the vibrations are highly periodic without any signs
of amplitude modulation. On the contrary, at αR=1.3, where highly reduced vibrations
are observed (A∗rms< 0.08), the displacement signal is highly non-periodic with chaotic
intermittent vibrations similar to the ones reported by Sareen et al. (2018a) in their
experimental study on an elastically mounted sphere with imposed constant rotation.

Another interesting case to examine is fR = 1, where vibration amplitudes higher
than the non-rotating case can be observed, depending on the U∗ and αR, as was
shown in § 4.1. Figure 13 shows the response quantities for fR= 1 for varying velocity
ratios in mode II. As αR increases from 0 6 αR 6 0.5, φtotal decreases almost linearly
from 90◦ to 0◦ but the vibration amplitudes remain close to the non-rotating sphere
case. In this range, the sphere displacement has modulation over a very large period
of ∼40 cycles, as is clear from the time trace of the sphere displacement shown in
figure 13(b). The degree of modulation decreases for αR = 0.6 (see figure 13(d)). For
0.5<αR 62, the vibration amplitudes increase by ∼94 % compared to the non-rotating
sphere case. In this range, the displacement is always in phase with the total transverse
force acting on the sphere, and the vibrations become highly periodic without any
signs of amplitude modulation (see figure 13( f )).

To summarise the discussions so far on the effect of the two main forcing
parameters on the vibration response of a sphere, all the results are synthesised
and presented as contour plots in Figure 14. Figure 14(a–c) shows the amplitude
response (A∗rms) contours over the fR − αR parameter space for all three modes of
sphere vibrations. The contour plots show there are two observed lock-on regions:
rotary lock-on (RLO) and tertiary lock-on (TLO). These regimes are determined
by examining the body vibration frequency response as a function of fR for each
fixed αR. Such regions have also been recently identified for an elastically mounted

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

08
 O

ct
 2

01
8 

at
 2

2:
43

:1
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
66

7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.667


The effect of imposed rotary oscillation on the FIV of a sphere 721

0

0.5

1.0

0

90

180
0.5

1.0

1.5

-1

0

1

-1

0

1

-1

0

1

0.5 1.0

†åR

1.5 2.0 0 20 40 60 80 100 120

(b)(a)

(d)

(f)

(c)

(e)

y/D

y/D

y/D

ƒ t
ot

al
 (d

eg
.)

A* rm
s

f*

FIGURE 13. (Colour online) The response quantities of an elastically mounted sphere
with the imposed rotary oscillations is presented as a function of velocity ratio, αR, at
a fixed frequency ratio of fR= 1 (a,c,e) for mode II. (b,d, f ) The time traces of the sphere
displacement for αR = 0.3 (d), αR = 0.6 (d) and αR = 1.2 ( f ).

cylinder by Wong et al. (2018). Evidently, these lock-on regions are a function of
all three forcing parameters: fR, αR and U∗. For all three sphere vibration modes,
the RLO region exists over a narrow window in the vicinity of fR = 1. For αR < 1,
the RLO region occurs in a narrow band around fR = 1 but becomes considerably
wider for higher velocity ratios, resulting in an inverted pear-shaped region. A tertiary
lock-on region (TLO) was also observed in mode II in the vicinity of fR= 3 for very
low velocity ratios of αR 6 0.5. The RLO region remains fairly similar in mode I
and mode II. However, for mode III, the RLO region becomes narrower for αR 6 1
and considerably wider for higher velocity ratios of αR > 1.5. As evident from the
contour plots, the reduced velocity can also influence the lock-in and TLO regions.
The lock-in region becomes significantly smaller for mode II (U∗ = 10) compared to
mode I (U∗ = 6), and vanishes completely for mode III (U∗ = 15). TLO, however,
was only observed for fR = 3 at very low velocity ratios (αR 6 0.5) in mode I and
mode III.

In general, mode I was found to be quite robust, requiring high velocity ratios for
the suppression of vibrations. The control was highly effective in mode III, with a
highly reduced response obtained over the entire parameter space studied (except for
the fR= fnw case). For the fR= fnw case, the sphere exhibited an ‘enhanced resonance’,
where vibrations increased to much higher values compared to the non-rotating case.
Overall, higher velocity ratios of αR > 1 were effective in suppressing the vibrations.
Suppression of vibration was observed even in the non-lock-on region at high fR and
αR values.

4.3. Effect of reduced velocity
In this section, the effect of another important flow parameter, the reduced velocity,
U∗, is discussed. In order to systematically investigate the effect of U∗, both the

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

08
 O

ct
 2

01
8 

at
 2

2:
43

:1
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
66

7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.667


722 A. Sareen, J. Zhao, J. Sheridan, K. Hourigan and M. C. Thompson

2.0

1.5

(a) (b)

(c)

1.0

0.5

0 1 2 3 4 5

2.0

1.5

1.0

0.5

2.0

1.5

1.0

0.5

0 1 2 3 4 5

0 1 2 3
fR

fRfR

åR

åR

4 5

0
0.1
0.2
0.3
0.4
0.5

0
0.2

0.8
1.0

0.6
0.4

0

0.4

0.8

1.2

1.6

RLO RLO

RLO

TLO
Lock-in Lock-in

FIGURE 14. (Colour online) Plots showing the contours of A∗rms as a function of αR and
fR in mode I (a), mode II (b) and mode III (c). Different regions highlighted with dashed
lines.

other forcing parameters (αR and fR) were kept constant and U∗ was varied in small
increments from 0 to 20. The results are presented for αR= 1 at several representative
fR values.

Figure 15 shows the response quantities for fR = 0.3 (a) and fR = 0.9 (b) at a
fixed velocity ratio of αR = 1. In the plots depicting the phases, the phase difference
between the imposed rotary oscillation and the sphere displacement, φrot, is also
shown along as φtotal. It is found that φrot, i.e. the phase difference between the
imposed rotary oscillation and the sphere displacement is an important parameter
affecting the response of the sphere to the imposed rotation during lock-on conditions.
Readers should note here that φrot is only useful in lock-on regions, where the sphere
displacement is locked to the forcing frequency. As evident from panel (a), for U∗
varying from ∼4.5 to ∼12, the vibrations are locked to the natural frequency. There
is an increase in the displacement amplitude with a corresponding increase in the
transverse force coefficient. The displacement is in phase with the total transverse
force (or φtotal= 0). The time trace of the sphere displacement shows a highly periodic
response in this region (see figure 16a). This indicates the occurrence of lock-in over
this range. However, for higher values of U∗ > 12, φrot drops to almost zero. In this
region, the vibrations are locked to fR and the frequency at fnw becomes weaker in
power. There is no significant increase in the amplitude response up to U∗ = 20.
This region cannot be termed lock-in. The time trace shows amplitude and frequency
modulation in this range (see figure 16c). In this region, the two frequencies compete
with each other; such a region is termed the ‘lock-in + RIV’ region in the text.

For fR = 0.9, the response clearly has two regions with different characteristic
behaviours. For 0 6 U∗ . 8, the vibrations are locked to fR instead of fnw, and there
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FIGURE 15. (Colour online) The response of an elastically mounted sphere with imposed
rotary oscillations is presented as a function of reduced velocity for a fixed frequency
ratio of fR = 0.3 (a) and fR = 0.9 (b) at αR = 1. See figure 4 for a detailed description
of the figures. The blue-filled circular symbols in the phase plots represent the phase
difference between the rotary oscillations and the displacement. The ‘Lock-in + RIV’
region highlighted for fR = 0.9 indicates the U∗ values for which the two frequencies
compete with each other.
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FIGURE 16. (Colour online) Time traces of the sphere displacement for fR = 0.3 (a,c)
and fR = 0.9 (b,d) for a velocity ratio of αR = 1. (a,c) Time traces for U∗ = 8 and 15,
respectively. (b,d) Time traces for U∗ = 6 and U∗ = 10, respectively.

is a linear decrease in φrot from ∼130◦ to 0◦. This is clearly not lock-in. It will be
shown later in the text that such a region corresponds to the rotary-induced vibrations
(RIV). Nevertheless, the time trace shows highly periodic vibrations in this range. For
8 < U∗ < 14, on the other hand, the behaviour is similar to lock-in. The vibrations
are locked to fnw, there is a jump in Cy (rms), and φtotal remains close to 0◦. However,
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FIGURE 17. (Colour online) The response of an elastically mounted sphere with imposed
rotary oscillations is presented as a function of reduced velocity for a fixed frequency ratio
of fR= 1.0 (a) and fR= 1.1 (b) at a value of αR= 1. Refer to figure 4 for further details.

the time trace of the displacement signal shows beating in this range due to fr being
very close to fnw. When U∗ is increased beyond U∗ > 15, the vibrations lock to fR

again. In this range, both φtotal and φrot approach 0◦. In this region, extending from
8<U∗ < 20, it can be conjectured that the two frequencies compete with each other
and there is no clear lock-in or lock-on region.

Therefore, depending on the U∗ value, the vibrations may lock to fnw or fR. If
vibrations lock to fnw in the synchronisation region, lock-in or resonance is observed;
however, if they lock to fR, the response is reflected in φrot. Monotonically decreasing
φrot values coincide with monotonically increasing A∗rms (that lead to RIV response)
and constant φrot values coincide with constant amplitudes. This behaviour will be
further clarified in later discussions. φrot was plotted here to highlight its correlation
with the amplitude response in the lock-on regions. During lock-in, however, φrot does
not signify anything as the displacement and rotary oscillation do not exhibit the same
frequency: φrot is fixed at 90◦ in lock-in regions.

4.3.1. Rotary-induced vibrations
Figure 17 shows the response for fR = 1 (a) and fR = 1.1 (b). Overall, it is evident

that neither frequency ratio exhibits the typical bell-shaped response known for a non-
rotating sphere VIV over this U∗ range. Unlike the non-rotating case, φtotal remains
at 0◦ for the entire range of U∗ tested. Also, the vibrations are locked to the forcing
frequency. Clearly, this is not a lock-in phenomenon.
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FIGURE 18. (Colour online) Time traces of the sphere displacement for fR = 1 (a,c) and
fR = 1.1 (b,d) for reduced velocities of U∗ = 4 and U∗ = 12.

For fR = 1, initially the vibration amplitude increases almost linearly in the range
0 < U∗ < 10. In this range, φrot is not fixed at ∼90◦, as was previously found for
lock-in, but decreases monotonically from ∼170◦ to lower values. The vibrations are
highly periodic as clear from figure 18(a), and the frequency contour plot shows a
clean single frequency response at f ∗ = 1. Interestingly, a ‘kink’ can be observed in
the frequency response when φrot crosses zero at U∗ = 10. Beyond this point in U∗,
there are large modulations in the sphere displacement signal (at a low frequency) as
evident from the time trace shown in figure 18(c). Also, φrot and A∗rms remain almost
constant.

For fR = 1.1, initially the vibrations are not very periodic in the range 0< U∗ < 6
(see figure 18b) but as the reduced velocity is increased further (U∗ > 6), the
vibrations become periodic (see figure 18d). For U∗ > 6, the frequency plot shows
a clean frequency at f ∗ = fR = 1.1. Also, φrot decreases monotonically from ∼260◦
to 90◦, and correspondingly, the vibration amplitude increases monotonically (almost
linearly) with the increase in reduced velocity for the entire range of U∗ tested in
the current study.

The vibration response observed in the above cases show some similarities to the
‘wake-induced vibration (WIV)’ reported by Assi, Bearman & Meneghini (2010), or
called ‘wake-induced galloping’ by Bokaian & Geoola (1984) and Brika & Laneville
(1999) for an elastically mounted cylinder placed downstream of a fixed cylinder. The
latter studies reported that for a fixed structural damping, the downstream cylinder can
exhibit vortex resonance, WIV, combined vortex resonance and WIV, or separately
vortex resonance and WIV depending on the cylinders’ separation. Assi et al. (2010)
suggested that wake-induced vibration (WIV) requires a frequency input such as
upstream vortex shedding to occur. They also highlighted that the upstream vortices
interfering with the downstream cylinder induce fluctuations in the fluid force. A
favourable phase lag between the fluid force and the displacement ensures a positive
energy transfer from the flow to the structure that sustains the oscillations. One may
infer here that the wake of the fixed cylinder placed upstream provides an oscillating
forcing to the elastically mounted cylinder placed downstream. In the current study,
however, the forcing is imposed on the sphere itself in contrast to the less controlled
forcing of their study. The vibrations are not generated by a wake upstream but rather
by rotary oscillations imposed on the sphere. Thus, it makes sense to describe such
vibrations as ‘rotary-induced vibrations (RIV)’. Similar vibrations have also been
observed recently for an elastically mounted cylinder with imposed rotary oscillation
by Wong et al. (2018). They reported vibration increasing monotonically with U∗ for
fR = 1 and αR = 1.
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FIGURE 19. (Colour online) The response characteristics of an elastically mounted sphere
with imposed rotary oscillations is presented as a function of reduced velocity for a fixed
frequency ratio of fR= 3 (a) and fR= 4 (b) at a αR value of αR= 1. Refer to figure 4 for
further details.

Nevertheless, it should be mentioned here that the vibrations observed in the current
study are very different to the galloping response known for isolated non-circular bluff
bodies, that is, a low frequency phenomenon observed at very high flow velocities
(Blevins 1990; Zhao et al. 2014b). In contrast, in the current study, vibrations
exhibiting RIV were always locked to the forcing frequency. It was also evident
that monotonic increasing amplitudes were associated with the monotonic decreasing
φrot values (from ∼180◦ to lower values). It can be conjectured here based on this
evidence that RIV will only occur in the U∗ range where lock-on is observed. The
case of monotonically decreasing φrot values from ∼180 to lower values leads to
monotonically increasing amplitude. In cases where φrot remains constant, there is
no appreciable increase in the vibration amplitude. In § 4.1, it was shown that the
lock-on range varies with U∗, becoming narrower with increasing U∗. This leaves a
very narrow window of fR values where lock-on, and hence RIV, can be observed for
the entire range of U∗ tested in the current study.

In § 4.1, the results showed suppression of vibrations for very high frequency
( fR > 3) and velocity ratios (αR > 1), even in non-lock-on regions. The question
arises as to whether a specific set of parameters leads to RIV or VIV, or both? To
investigate this, high frequency ratios of fR = 3 and fR = 4 were also investigated.
Figure 19 shows the response characteristics for fR = 3 (a) and fR = 4 (b). A wide
lock-in region is evident for both the frequencies extending from ∼4.5 to ∼11, with
a corresponding jump in the Cy (rms). As previously, φtotal is fixed at 0◦ in the lock-in
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FIGURE 20. (Colour online) Time traces of the sphere displacement for U∗ = 6 (a) and
U∗ = 18 (b) for fR = 3.

region, and the time trace of the displacement signal is highly periodic, as shown in
figure 20 (a). When U∗ is increased beyond the lock-in region, the frequency contour
plot shows a wide spectrum of frequencies. The frequency does not lock on to fR,
and nor is there a clean single frequency response at f ∗ = 1, as observed for lock-in.
Interestingly, φtotal approached 90◦ in this region. The time trace of the displacement
signal shows a non-periodic signal in this range (see figure 20b).

5. Wake measurements
The VIV of a sphere is induced by streamwise vorticity, in contrast to its

two-dimensional counterpart, the cylinder, whose dynamics is mainly induced by
spanwise vorticity. PIV measurements in a plane normal to the flow can reveal
important insights into the temporal evolution of the streamwise vorticity as the
vortex loops pass through a cross-plane. Hence, the current study employs PIV
measurements in the cross-plane at a distance of 1.5D from the sphere’s downstream
surface, similar to that employed by Govardhan & Williamson (2005) and Sareen
et al. (2018b). Figure 21 shows the vorticity contour plots, phase-averaged over more
than 100 cycles, at four different phases of the oscillation cycle, separated by a quarter
period, for a sphere without any imposed rotary oscillation. The plots are shown for
a reduced velocity of U∗ = 6 (mode I). As evident from figure 21, the streamwise
vorticity consists of a dominant counter-rotating vortex pair consistent with the legs of
vortex loops forming on both the sides of the sphere wake (Sakamoto & Haniu 1990,
Govardhan & Williamson 2005 and Sareen et al. 2018b). As the sphere traverses
from one side to the other, the vorticity changes sign, corresponding to hairpin loops
being shed downstream into the wake from opposite sides.

To understand how the wake structures differ in the lock-on region compared to the
lock-in region, some representative cases were chosen in mode I to give an overview
of the underlying associated wake dynamics. PIV measurements were also performed
for a fixed velocity ratio of αR = 1 at U∗ = 6 in mode I for four different fR values.
Considering the limitation of the present experimental set-up, measurements were
not performed for very high U∗ values, where very large vibration amplitudes are
observed. Moreover, studying the wake in mode I should be sufficient to highlight
some of the main features of the lock-on phenomenon. The chosen fR values are as
follows: fR = 1, where all the dominant frequencies are equal, leading to amplitudes
higher than for the non-rotating sphere; fR= 0.9 corresponding to a lock-on frequency
just under fR = 1; fR = 1.1 corresponding to lock-on frequency just past fR = 1; and
fR = 3, corresponding to the lock-in region, where the amplitudes recover after the
lock-on region.

Figure 22 shows the streamwise vorticity plots for four different phases, separated
by a quarter period of the oscillation cycle, for fR = 0.9 at a velocity ratio of αR = 1
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FIGURE 21. (Colour online) Streamwise vorticity plots showing the dominant counter-
rotating vortex pair in mode I (U∗ = 6) without any imposed rotation. Each of these
plots are separated by a quarter period, and were measured at a distance of x/D = 1.5
from the sphere. The dashed lines show the maximum displacement of the sphere and
the sphere location. Blue contours show clockwise vorticity, red anti-clockwise vorticity.
The normalised vorticities vary in eight steps in the range ω∗ = ωD/U ∈ [−3, 3], where
ω is the vorticity.

in mode I. The position of the sphere (placed upstream) and the maximum extent of
the sphere vibration have been marked in dashed lines. As evident from the plots, the
wake consists of a counter-rotating vortex pair similar to the wake of a sphere without
any imposed rotation. However, there is a slight change in the timing of the vortex
formation. This finding is consistent with the fact that as the vibrations lock to the
forcing frequency, there is a slight change in φtotal as shown in figure 4.

When the streamwise vorticity for another lock-in frequency of fR= 1.1 is examined
as shown in figure 23, a drastic change in the vortex formation timing is clearly
evident. The plots are exactly 180◦ out of phase with the plots shown in figure 21
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FIGURE 22. (Colour online) Streamwise vorticity plots showing the dominant counter-
rotating vortex pair in mode I (U∗ = 6) for the frequency ratio of fR = 0.9 under lock-on.
Refer to figure 21 for further details.

for a non-rotating sphere. This is congruent with the data reported in figure 4, where
one can clearly see that φtotal jumps from ∼0◦ to 180◦ as fR increases from fR = 1 to
fR = 1.1 in the lock-on range. To provide a better perspective on the wake structures,
spatio-temporal reconstructions of the sphere wake were generated for the fR = 1.1
case and compared to the fR = 0 case, as shown in figure 24(b) and figure 24(a).
The spatio-temporal reconstruction was generated from 24 cross-stream vorticity
fields, each phase-averaged for more than 100 cycles. A convection velocity of U
(free-stream velocity) was assumed to build the 3-D image. As evident in this case,
the wake consists of an alternating two-sided chain of vortex loops, similar to the
wake of an oscillating sphere with no imposed rotation reported by Govardhan &
Williamson (2005) and Sareen et al. (2018b). Of course, this reconstruction should
not be viewed as a typical image of the wake, since it is only representative of the
average wake behaviour as it passes through a fixed downstream plane.
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FIGURE 23. (Colour online) Streamwise vorticity plots showing the dominant counter-
rotating vortex pair in mode I (U∗= 6) for fR= 1.1 during the lock-on phenomenon. Refer
to figure 21 for further details.

On the other hand, the streamwise vorticity plot for fR = 1, as shown in figure 25,
is similar to that for a sphere without any imposed rotation; there is seen to be
a similar timing of vortex (loop) shedding. Again, this is consistent with the data
reported in figure 4. One can conclude here that there is a change in the timing of
vortex formation as the vortex shedding locks to fR with no appreciable change in the
vortex structures. The streamwise vorticity field consists of a counter-rotating vortex
pair which flips sign as the sphere traverses from one side to the other, as for the
wake of a sphere with no imposed rotation. Another interesting case to examine is
that of higher frequency ratios ( fR > 2), where the vibrations lock in to fnw again
and the amplitude response recovers. Figure 26 shows streamwise vorticity plots for
fR= 3 for the same parameters discussed earlier for other cases. The timing of vortex
formation is similar to that for the non-rotating case. However, there is an evident
reduction in the streamwise vorticity in this case. As also shown in figure 4, the
vibration amplitude and the total transverse force coefficient are smaller than for the
non-rotating case. Therefore, it can be concluded here that although the vibration
frequency reverts to locking in to fnw instead of fr in this case, a reduction in the
vibration amplitude could still be observed due to the reduction in the streamwise
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FIGURE 24. (Colour online) Three-dimensional spatio-temporal reconstruction of the
sphere wake based on phase-averaged streamwise vorticity (crossing the transverse plane at
a distance 1.5D from the sphere rear surface) for (a) fR= 0 and (b) fR= 1.1 and αR= 1 in
the lock-in regime. The wake is shown for mode I (U∗= 6), corresponding to a Reynolds
number of ∼8000. Blue indicates anti-clockwise vorticity, and red clockwise vorticity
(both in the x-y plane). The figure clearly shows that the dominant wake structures remain
the same for both the cases; however, there is a clear change in the timing of vortex
shedding for fR = 1.1 compared to fR = 0.

vorticity, in turn leading to a lower total transverse force acting on the sphere. The
effect of high fR is more pronounced in mode II and mode III, where the vibrations
were highly suppressed, as shown in figures 9 and 10.

6. Conclusions
A comprehensive series of experiments and wake measurements were performed

to examine the effect of imposed rotary oscillation on the FIV of a sphere that is
elastically mounted in the cross-flow direction. The response was investigated for
a wide range of forcing parameters, non-dimensional forcing frequency, fR, in the
range 06 fR 6 5, forcing amplitude, αR, in the range 06 αR 6 2, and reduced velocity
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FIGURE 25. (Colour online) Streamwise vorticity plots showing the dominant counter-
rotating vortex pair in mode I (U∗= 6) for a frequency ratio of fR= 1.0 under resonance.
Refer to figure 21 for further details.

U∗ between 0 6 U∗ 6 20. It was found that when the forcing frequency fr was in
close proximity to the natural frequency fnw, the vibrations locked on to fr instead
of fnw,l inhibiting the resonance response. The vibrations were greatly suppressed in
the lock-on region, except for the case when fR = fnw, where an ‘enhanced resonance’
response was observed leading to very large amplitudes, even greater than those
observed for the non-rotating sphere in some cases. In the lock-on region, a sudden
jump in the total phase was observed from 0◦ to 180◦. The displacement signal was
highly modulated in the non-lock-on regions. Near the lock-on boundaries, a wide
spectrum of frequencies was observed. Interestingly, suppression was also observed
in the non-lock-on regions for very high fR and αR values. Mode I was found to
be quite resistant to control, requiring very high velocity ratios for the suppression
of vibrations. On the other hand, control (suppression) was most effective for mode
III. Overall, relatively high velocity ratios (quantified in this paper) were required
to suppress the vibrations. The width of the RLO region increased with an increase
in αR for all three modes. When the reduced velocity was increased progressively,
several types of responses with different characteristic behaviours were observed.
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FIGURE 26. (Colour online) Streamwise vorticity plots showing the dominant counter-
rotating vortex pair in mode I (U∗ = 6) for fR = 3. Refer to figure 21 for further details.

For some cases, the vibration amplitudes increased monotonically with an increase
in U∗. Such vibrations have been termed ‘rotary-induced vibrations’. The phase
difference between the rotary oscillations and the sphere displacement φrot was found
to be crucial in determining the response. Monotonically decreasing φrot values were
always associated with the monotonically increasing responses. Wake measurements
performed in the cross-plane revealed structures similar to those for an oscillating
sphere without imposed rotation; however, there was a change in the timing of vortex
formation. For a high frequency ratio of fR = 3, there was a clear reduction in the
streamwise vorticity consistent with a reduced amplitude response.
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