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A Batchelor vortex represents the asymptotic solution of a trailing vortex in an aircraft
wake. In this study, an unequal-strength, counter-rotating Batchelor vortex pair is
employed as a model of the wake emanating from one side of an aircraft wing; this
model is a direct extension of several prior investigations that have considered unequal-
strength Lamb–Oseen vortices as representations of the aircraft wake problem. Both
solution of the linearized Navier–Stokes equations and direct numerical simulations
are employed to study the linear and nonlinear development of a vortex pair with
a circulation ratio of Λ = −0.5. In contrast to prior investigations considering a
Lamb–Oseen vortex pair, we note strong growth of the Kelvin mode [−2, 0] coupled
with an almost equal growth rate of the Crow instability. Three stages of nonlinear
instability development are defined. In the initial stage, the Kelvin mode amplitude
becomes sufficiently large that oscillations within the core of the weaker vortex are
easily observable and significantly affect the profile of the weaker vortex. In the
secondary stage, filaments of secondary vorticity emanate from the weaker vortex and
are convected around the stronger vortex. In the tertiary stage, a transition in the
dominant instability wavelength is observed from the short-wavelength Kelvin mode to
the longer-wavelength Crow instability. Much of the instability growth is observed on
the weaker vortex of the pair, although small perturbations in the stronger vortex are
observed in the tertiary nonlinear growth phase.
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1. Introduction
The production of coherent vortices is an inescapable feature of nearly all practical

fluid flows. Understanding the mechanisms governing the development and dissipation
of vortex cores has application at nearly all scales of flow, from the development of
micro-scale turbulence to the dissipation of synoptic-scale flow structures. Given the
wide breadth of application, it is no surprise that this field has generated significant
interest for many years – see e.g. the review by Kerswell (2002).

A stable vortex is made susceptible to the growth of both elliptic (Kelvin mode)
instabilities and sinuous (Crow) instabilities through the addition of an external strain
field. The presence of a neighbouring vortex, parallel to the vortex of interest, induces
such a strain field, allowing for the growth of cooperative instabilities to develop on
each vortex core. In the absence of an external strain field, perturbations rotate around
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the base vortex, with no growth or decay in amplitude (Kelvin 1880). The external
strain field can act to halt the rotation of the perturbation field, while simultaneously
amplifying the perturbation.

The Crow instability manifests as a sinuous instability whose axial wavelength is
typically far larger than the initial separation distance of the vortex cores. It was first
analytically described for a counter-rotating vortex pair of equal circulation magnitude
by Crow (1970). Crow demonstrated, using a vortex filament model, that the linear
growth of the mode manifested as a symmetric oscillation that grows on each vortex
at a 45◦ inclination to an imaginary line drawn between each unperturbed vortex.
Crow’s (1970) analysis was subsequently extended by Widnall, Bliss & Tsai (1974),
who corrected an asymptotic simplification in Crow’s study, allowing the model to be
extended to correctly predict instabilities at higher wavenumbers. The vortex filament
model has been extended to consider a co-rotating vortex pair by Jimenez (1975) and
Bristol et al. (2004), who independently demonstrated that the instability could not
develop for such a case. Crouch (1997) and Fabre, Jacquin & Loof (2002) have further
extended the model to consider the effect of multiple vortex filaments, reminiscent of
the wake of an aircraft.

For a counter-rotating vortex pair of equal circulation magnitude, the late-stage
development of the Crow instability leads to the initially parallel vortex cores
connecting periodically along their axis, and the system transforms into a series of
vortex rings – see e.g. Scorer & Davenport (1970) and Garten et al. (2001). The
processes underpinning the late-stage development have only recently been quantified
by Leweke & Williamson (2011). By contrast, for counter-rotating vortex pairs of
unequal circulation magnitude, large-wavelength Crow perturbations emanating from
the weaker vortex wrap around the stronger vortex during nonlinear development (see
Marshall, Brancher & Giovannini 2001; Ortega, Bristol & Savaş 2003; Bristol et al.
2004).

By contrast to the Crow instability, an elliptic instability can exhibit a positive
growth for both co- and counter-rotating vortex pairs – see e.g. the experimental
findings of Leweke & Williamson (1998) and Meunier & Leweke (2005). The axial
wavelength of an elliptic instability is typically of the same order as the vortex core
radius. Given this scaling, the instability is dependent on the local features of the
unperturbed vortex profile, and hence a filament analysis similar to that proposed by
Crow (1970) is insufficient for the description of the mode. Tsai & Widnall (1976)
conducted a first-order analysis for a Rankine vortex immersed within an infinitesimal
strain field; independently, Moore & Saffman (1975) provided an analytical framework
for a generic vortex profile. Subsequent investigations have considered the growth
of elliptic instabilities for a variety of vortex profiles, including the Burgers and
Lamb–Oseen profiles (Eloy & Le Dizès 1999), the addition of an axial velocity
to the Rankine vortex profile (Lacaze, Birbaud & Le Dizès 2005) and a Batchelor
vortex (Lacaze, Ryan & Le Dizès 2007). The analytical framework describing the
development of short-wave, elliptic instabilities has been summarized by Kerswell
(2002).

These investigations have shown that the elliptic instability is amplified due to
the coupling of a pair of Kelvin modes, which, while neutrally stable for an
isolated vortex, resonate with an externally imposed strain field. The Kelvin mode
pair are restricted to having the same axial wavenumber in addition to their
azimuthal wavenumbers being restricted, such that, if one Kelvin mode has azimuthal
wavenumber mi, the second Kelvin mode must have an azimuthal wavenumber
mii = mi ± 2. (We refer to mode couplings in the generic form [mi,mii, n] throughout.
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Note that n refers to the branch number of the mode coupling – see e.g. Saffman
(1992) for further details.) The elliptic instability process is tuned to a select
normalized axial wavenumber κ = ka (where k is the axial wavenumber and a
describes the vortex core radius). Away from this axial wavenumber, the process is
detuned, leading to a reduction in the growth rate. Eloy & Le Dizès (1999) provided
an analytical framework to describe this detuning process.

Eloy & Le Dizès (1999) point out that the detuning process has important
implications for the nonlinear development of elliptic instabilities. Coupled with the
viscous diffusion, which increases the vortex radius as a function of time, the critical
normalized axial wavenumber changes as a function of time. Over time, the growth
rate will reduce at a given wavenumber, reducing the growth rate as the instability
alters the structure of the base vortex pair.

Numerous studies have investigated the stability of vortex pairs to the combined
effects of both Crow and elliptic mode perturbations. Leweke & Williamson (1998),
in their investigation of an equal-strength counter-rotating Lamb–Oseen vortex pair,
identified the development of both an elliptic mode (consisting of a coupling of Kelvin
modes with azimuthal wavenumber [−1, 1]) and the large-wavelength Crow instability.
They noted that the presence of both modes significantly enhanced the dissipative
effect that may be provided by either mode in isolation. Importantly, they observed
the development of a series of transverse, counter-rotating ‘secondary vortex’ pairs
during the nonlinear growth phase of the instability. These secondary vortices transfer
energy from one vortex to its neighbour, enhancing mixing and promoting dissipation
of both vortices. Through dye visualizations, Leweke & Williamson (1998) observed
two secondary vortex tubes originating per Kelvin mode [−1, 1] wavelength. Direct
numerical simulation (DNS) conducted by Laporte & Corjon (2000) verified these
findings. Recently, Schaeffer & Le Dizès (2010) detailed the nonlinear dynamics for a
mode [−1, 1] for a Lamb–Oseen vortex.

A counter-rotating vortex pair of equal circulation magnitude represents a unique
situation, where both vortices travel with a constant velocity perpendicular to an
imaginary line drawn between the two vortices. As is well understood (see e.g. Le
Dizès & Laporte 2002), in general, a vortex pair will rotate about a fixed point. In this
situation, both vortices will observe a rotating strain field. For both Crow and Kelvin
modes, this global rotation rate alters the κ for optimal tuned growth, the mode shape
and the growth rate of the perturbation. This effect was investigated by Le Dizès &
Laporte (2002) and So, Ryan & Sheard (2011) for a Lamb–Oseen vortex pair for the
case of elliptic instabilities and by Bristol et al. (2004) for Crow instabilities.

More recent investigations have considered a Batchelor vortex in an externally
induced strain field. The Batchelor vortex is the asymptotic solution to the linearized
Navier–Stokes equation for a trailing line vortex profile far downstream of an
aircraft (Batchelor 1964), and is therefore a closer approximation to an experimental
aircraft wake than the Lamb–Oseen vortex profile. In particular, the Batchelor vortex
incorporates an axial velocity component, which has the potential to lead to instability
growth on an isolated vortex, without the need for an externally imposed strain field.
Both inviscid modes and viscous modes (whose growth rate diminishes as Re→∞)
have been shown to occur. Several authors have shown that it is the relative strength
of the axial velocity to azimuthal velocity that determines the stability of an isolated
Batchelor vortex (see e.g. Ash & Khorrami 1995). An isolated Batchelor vortex with
low axial velocity magnitude has been shown to be stable in the inviscid framework.
A recent study by Heaton (2007) has shown that instabilities develop even for small



Stability of a Batchelor vortex pair 377

axial velocities, but their growth rate is considerably smaller than that found for the
elliptical modes under investigation.

Lacaze et al. (2007) have shown that a counter-rotating, equal-strength Batchelor
vortex pair (with small axial velocity) leads to the growth of more complex short-wave
mode shapes in preference to the Kelvin mode [−1, 1]. These modes may also be
described in terms of alternative Kelvin mode couplings. In particular, mode [−2, 0]
and mode [−3,−1] have been shown to grow in the presence of an axial velocity,
the preferred instability mode being dependent on the ratio of axial velocity to the
swirl velocity. DNS conducted by Ryan & Sheard (2007) considered the development
of the [−2, 0] mode on a Batchelor vortex pair of equal circulation strength. For
a sufficiently high axial velocity component, this mode has approximately the same
linear growth rate as the [−1, 1] mode for a Lamb–Oseen vortex pair (Lacaze
et al. 2007; Roy et al. 2008). By contrast to prior findings for a Lamb–Oseen
vortex pair, the nonlinear dissipation of the Batchelor vortex pair was muted, with
negligible improvements in dissipation rates beyond two-dimensional dissipation. The
investigation failed to identify the formation of secondary vortices during the nonlinear
phase of growth; Ryan & Sheard (2007) suggested that the perturbation mode shape
was not conducive to the formation of secondary vortices. Recent work by Roy
et al. (2011) compared the growth of short-wave instabilities on co- and counter-
rotating vortex pairs of equal circulation strength. They demonstrated, through dye
visualization, the growth of both mode [−2, 0, 1] and (for the counter-rotating vortex
pair) the Crow instability. Their experiment confirmed prior analytical and simulated
results for Batchelor vortex pairs.

Given the significant differences noted for an equal-strength Batchelor vortex pair
(when compared with a Lamb–Oseen vortex pair), it is highly improbable that prior
studies on the evolution of unequal-strength Lamb–Oseen vortex pairs would have
findings directly comparable to an unequal-circulation-strength Batchelor vortex pair.
This study extends previous investigations by considering a Batchelor vortex pair with
low axial velocity and circulation strength ratio Λ = −0.5; it is reasoned that the
fundamental physics describing the evolution of this vortex pair is representative of a
wide range of unequal-strength circulation ratios.

This paper is organized as follows. Section 2 provides details of the model being
considered. The numerical techniques employed are defined in § 4, while a description
of the numerical domain under consideration is described in § 5. The two-dimensional
relaxation of the vortex pair is described in § 6.1, before linear stability analysis
findings (§ 6.2) and DNS findings (§§ 6.3–6.6) are described.

2. Objective
This study considers a relatively simple system comprising two Batchelor vortices

of unequal circulation strength. The vortices are separated by a distance b and have a
characteristic radius a. In general, a Batchelor vortex is defined completely as

ωxy = Γ

πa2
e− (r/a)

2
, (2.1)

W = W∗a0 |Γ |
2πa2

e− (r/a)
2
, (2.2)

where ωxy is the axial vorticity field, W the axial velocity field, Γ the circulation,
r the radial distance away from the vortex core, and W∗ the axial velocity coefficient.
Note that a0 represents the initial characteristic core radius; as the vortex evolves, the
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characteristic radius increases due to diffusion, and (to first approximation) may be
determined at any time t from

a=
√

a2
0 + 4νt, (2.3)

where ν is the fluid kinematic viscosity.
Three key parameters have previously been shown to control the growth rate in

an equal-strength Batchelor vortex pair (Lacaze et al. 2007), namely the Reynolds
number, defined as Re = Γ/ν, the external strain rate, εext , and the axial velocity
coefficient, W∗. The external strain rate describes the strain acting on a vortex purely
by the presence of its neighbour. It is proportional to both the separation distance
of the vortices and the circulation of the adjacent vortex, and may be written in
non-dimensional form (see e.g. Lacaze et al. 2007) as

εext = Sext

Ω0
=
(a

b

)2Γadj

Γi
, (2.4)

Sext = Γadj

2πb2
, (2.5)

Ω0 = Γi

2πa2
, (2.6)

where Sext is the dimensional form of the external strain rate, Ω0 is the rotation
induced by the vortex at its centre, Γadj is the circulation of the adjacent vortex, and Γi

is the circulation of the vortex of interest. As described by Le Dizès & Laporte (2002),
the strain rate actually measured at the vortex core is dependent on both εext and the
profile of the vortex core in question. The growth rate of the elliptic instability may
be shown to be proportional to this internal strain rate, εint . For vortices of Gaussian
profile, Le Dizès & Laporte (2002) have shown that εint may be related to εext as

εint =
[

1.5+ 0.038
(

0.16− Γi + Γadj

2Γadj

(a

b

)2
)−9/5

]
εext . (2.7)

An additional controlling parameter considered in this study is the circulation ratio,
Λ = Γ1/Γ2 (note that, for any given variable φ, φ1 refers to the weaker vortex and
φ2 to the stronger vortex throughout). As discussed in § 1, a value of Λ away from
Λ = −1 will induce a global rotation of the vortex pair, which will alter the growth
of the instability modes away from that predicted for Λ = −1. In addition, we have
assumed that the peak axial velocity passing through the two vortices is equal. Given
that both vortices have the same maximum axial velocity, an unequal circulation ratio
implies an unequal axial velocity coefficient through the definition

W∗2
W∗1
= |Λ|. (2.8)

From consideration of figure 9 in Lacaze et al. (2007), we anticipate that it is possible,
if not likely, that an unequal-strength Batchelor vortex pair will exhibit different modes
of instability growth on each vortex core across a wide range of Λ values for moderate
axial velocity magnitudes. That is, the Kelvin mode coupling, which is most unstable
on one vortex, will differ from that on the neighbouring vortex, simply due to the
variation in axial velocity coefficient.

For this study Re = 2800 and a separation distance a0/b = 0.25 was chosen (note
that this implies that both vortices initially have the same characteristic radius a0). We
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consider a value of Λ = −0.5 and a maximum axial velocity coefficient of W∗1 = 0.3
(as such, W∗2 = 0.15). These values have been chosen because, when considering the
analytical work described in Lacaze et al. (2007), they provide the best opportunity
to observe significant perturbation growth across both vortices. In addition, we note
that an isolated Batchelor vortex with these values of W∗ would be stable to three-
dimensional perturbations (see Lacaze et al. 2007, and references therein).

Considering the work of Lacaze et al. (2007) we predict a priori that a Kelvin mode
[−2, 0, 1] will dominate the weaker vortex, while a Kelvin mode [−1, 1, 1] will be
observed on the stronger vortex. A Crow instability should develop on both vortices.
Given the substantially lower value of εi anticipated in the stronger vortex, much of
the perturbation growth is anticipated on the weaker vortex.

3. Approach
Two methods were employed to simulate the vortex system. The first technique

predicts which linear modes will become most unstable through solution of the
linearized Navier–Stokes equations. Using this technique, numerical modelling is
performed in two stages. Initially, the time-dependent two-dimensional flow field is
predicted through the solution of the two-dimensional Navier–Stokes equations. This
allows the vortex system to ‘relax’ to a solution of the Navier–Stokes equations. The
system is then frozen, and the linearized Navier–Stokes equations are then solved in
a rotating reference frame to determine the stability of the two-dimensional system
to three-dimensional disturbances. This technique is identical to that previously used
by So et al. (2011) to consider the growth of instabilities of an unequal-strength
Lamb–Oseen vortex pair.

The second technique employed DNS to validate the stability analysis findings, and
to investigate the nonlinear growth of the instabilities. The DNS investigation was
initialized by superimposing two Batchelor vortices separated by a distance b. The
relaxation of the vortex pair was simulated in three-dimensional space. As has been
shown by both Sipp, Jacquin & Cossu (2000) and Le Dizès & Verga (2002) (and
verified in both §§ 6.1 and 6.3.1), relaxation of the vortex pair occurs over a very
short period of time, which is significantly less than the time scale over which linear
perturbations grow.

4. Numerical techniques employed
Our simulations solve the three-dimensional incompressible Navier–Stokes equations

in primitive variable form:

∂u
∂t
+ (u ·∇)u=−∇P+ ν∇2u, (4.1)

∇ ·u= 0, (4.2)

where u is the velocity vector and P is the kinematic pressure. The linear stability
analysis technique solves the linearized form of (4.1) and (4.2) (as described by
Sheard, Fitzgerald & Ryan 2009), whereas the DNS technique solves (4.1) and (4.2)
directly.

For both the DNS and linear stability analysis investigations, a spectral-element
method was employed to spatially discretize the relevant form of (4.1) and (4.2) in
the plane normal to the axes of the vortex pair. High-order Gauss–Legendre–Lobatto
polynomials were used as interpolants within each macro-element, and spatial accuracy
was determined by choosing the order of the tensor product of these polynomials. This
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technique, described in detail by Karniadakis & Sherwin (2005), has the significant
advantage of near spectral convergence, while allowing controllable mesh density as
per finite element methods.

Time integration was performed using a third-order accurate operator splitting
scheme based on backwards differencing (Karniadakis, Israeli & Orszag 1991). The
algorithm has been described in a number of previous investigations, notably Sheard
et al. (2009) for DNS simulations and So et al. (2011) for linear stability analysis.

4.1. The direct numerical simulation technique
The DNS technique employs a Fourier/spectral-element method to spatially resolve
the domain in the third dimension. Here, the flow field at each point on the two-
dimensional grid is described by a Fourier expansion in the axial direction. In the
formulation employed, the Fourier modes are only coupled during the advection sub-
step; the pressure and diffusion sub-steps are computed in a decoupled fashion. This
leads to a significant advantage for parallel simulations over fully three-dimensional
spectral-element simulations. This approach has been employed previously for a wide
variety of simulations – see e.g. Karniadakis & Triantafyllou (1992), Thompson,
Hourigan & Sheridan (1996) and Blackburn & Sherwin (2004) among many others.
The global spectral approach has the advantage of pseudo-spectral convergence, but the
boundary conditions in the axial direction are restricted to be periodic.

4.2. The linear stability analysis technique
Linear stability analysis determines the stability of a two-dimensional base flow field
to perturbations of a predetermined axial wavenumber. The linear stability analysis
technique solves the linearized form of (4.1) and (4.2); this linearized form differs
from the full three-dimensional Navier–Stokes equations only in the advection term,
and thus an almost identical algorithm can be employed as described for the DNS
technique. Importantly, the technique assumes a time-independent base flow field.
However, for a finite Reynolds number, an unequal-strength vortex pair will evolve
due to dissipative effects. To overcome this problem, the base flow field is frozen
at the conclusion of the relaxation period (see § 6.1). Owing to the rotation of the
vortex pair, freezing the base flow field requires the perturbation field to be evolved
within a rotating reference frame that matches the base flow field. This rotation of the
perturbation field ensures that the Coriolis forces induced by the rotation of the base
vortex pair are accounted for. Thus, in the rotating reference frame, the base flow field
is modelled as steady-state after the conclusion of the relaxation phase.

For T-periodic base flow fields (of which a steady-state base flow field is a special
example), the perturbation field evolves over one period subject to an operator A as

u′t+T = A(u′t), (4.3)

where u′t represents any one of the perturbation velocity components or perturbation
pressure field calculated at time t. The eigenvalues to this problem may be written as

µ= exp(σT), (4.4)

where σ corresponds to the growth rate of the instability.
Owing to the size of the systems under investigation, A is not constructed explicitly.

Instead, the base flow and perturbation field are integrated in time and leading
eigenvalues are determined using an implicitly restarted Arnoldi method. This scheme
has been validated against an independent implementation by Blackburn & Sheard
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(2010), while the work of Sheard et al. (2009) validated the scheme against DNS
results and experimental findings.

4.3. Potential limitations of the direct numerical simulation technique
The Fourier decomposition of the Navier–Stokes equations in the axial direction
restricts the model to only consider periodic boundary conditions in the axial extent;
this may lead to results that differ from those observed experimentally. Previous
investigations have shown that the critical wavelength of Crow instabilities scales with
the separation distance of the two vortices κCrow = kb, while the shorter-wavelength
Kelvin modes scale with the vortex core radii κKelvin = ka.

The increase in the vortex core radius over time, equation (2.3), will increase
κKelvin, leading in a decrease in the growth rate predicted from the DNS simulation
away from that predicted from linear investigations (Eloy & Le Dizès 1999). This
effect may be minimized by increasing the Reynolds number of the simulation (hence
decreasing the viscous growth of the vortex radii) and increasing the number of Kelvin
mode instability wavelengths contained within the axial extent of the domain. In the
present study, eight Kelvin mode instability wavelengths and three Crow instability
wavelengths were contained within the domain.

5. Computational details
A circular domain of radial extent 100a0 was employed in the x–y plane for all

simulations described herein. The vortex pair was modelled in the centre of the
domain within a highly resolved portion of the mesh. The highly resolved region had
an extent 23a0 × 23a0, and comprised square macro-elements. The extent of the highly
resolved region was determined through several trial simulations. Reducing the size of
the highly resolved region led to advection of vortex filaments outside of this region
during late stages of nonlinear growth in DNS simulations.

The number of macro-elements required for the simulation was determined through
an h-type resolution study, whereby the effect of macro-element size was considered.
In the refined region, macro-elements of width 1x = 0.5a0 through to 1x = 1.2a0

were considered. For each mesh, the Lagrangian polynomial interpolant order chosen
was p = 9. The internal strain rate, εint , and the peak vorticity measured at the core
of each vortex were calculated at the conclusion of the relaxation phase for each
mesh. Variations of less than 1 % were observed between 1x = 0.5 and 1x = 0.8 for
all variables considered. Subsequently, the central refined region consisted of square
elements each of width 1x = 0.8a0. Away from the resolved region, the mesh density
decreased with increasing radius. The domain extent chosen was found to be sufficient,
such that the non-slip wall boundary conditions imposed at the perimeter of the
domain did not influence the development of the vortex pair. Overall, the mesh was
composed of 589 quadrilateral conforming elements.

In addition to the h-type resolution, mesh independence was established by
performing a p-type resolution study whereby the order of the Lagrangian polynomial
interpolants within each element was successively increased until the solution was
mesh-independent. Both the development of the two-dimensional base field and the
perturbation growth rate of the two leading modes (investigated at ka = 2.5) were
modelled as a function of p. The perturbation growth rate was compared, as the
perturbation field typically yields spatially smaller-scale structures than the base flow
field – and thus gives a more accurate indication of the mesh resolution required. As
with the h-type resolution study, the internal strain rate, εint , and the peak vorticity
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measured at the core of each vortex were calculated at the conclusion of the relaxation
phase. Variations of less than 1 % were observed between p = 12 and p = 15 for all
variables considered. An eleventh-order (p = 12) Lagrangian polynomial interpolant
was used for the tensor-product expansion basis for all subsequent calculations.

The DNS investigations considered an axial extent of 27.25 × a0. This allowed for
three wavelengths of the large-wavelength Crow instability and eight wavelengths of
the Kelvin mode to be captured within the domain. Section 6.2 details the critical
wavelengths of both these modes as predicted from the linear stability analysis, which
directed the axial domain extent of the DNS investigation.

In all, 80 Fourier modes were calculated in the axial direction, allowing for eight
Fourier modes to resolve each Kelvin mode and 27 Fourier modes to describe each
Crow mode. During the DNS investigation, the highest Fourier mode was monitored
to ensure that any aliasing was limited. At the transition to nonlinear growth (where
any effect of aliasing was noted to be highest), the kinetic energy within the highest
Fourier mode was measured at ' 4 × 10−6. This was O(10−6) times the energy
measured for the Kelvin mode, O(10−7) times the energy measured for the Crow
mode, and O(10−9) times the energy of the fundamental m= 0 mode.

6. Results
6.1. Two-dimensional relaxation of the base flow field

The two-dimensional base flow is initialized simply by superimposing two Batchelor
profile vortices a distance b apart. As is well documented, two superimposed Batchelor
profile vortices are not a solution to the Euler equations and as a result undergo a
rapid adaptation period. The adaptation phase was shown to be dominated by inviscid
forces by Le Dizès & Verga (2002) for co-rotating vortices and by Sipp et al. (2000)
for counter-rotating vortices, and involves each vortex in the vortex pair evolving from
a circular profile to an elliptical one. The evolution involves the oscillation in the
profile of each vortex and may be monitored by considering εint measured within each
vortex core. As the vortex pair adapt to the Euler solution, oscillations in εint decay.
The critical time after which the base field is said to have adapted is determined
through monitoring the oscillations of εint as a function of time. Both Sipp et al.
(2000) and Le Dizès & Verga (2002) found that the time scale for adaptation was
directly dependent on the circulation of the vortex. As they only considered equal-
strength vortices, only one time scale was appropriate. However, in our case, two time
scales may be defined, as each vortex has a different circulation.

Figure 1 shows εint measured within each vortex core as a function of normalized
time. Following Le Dizès & Verga (2002), time has been normalized using the
definition

t∗nv =
t|Γi|
2πa2

0

, (6.1)

where the subscript nv indicates that this is a non-viscous normalization in time
and Γi is the circulation of the vortex in question. The negative, weaker vortex
is seen to exhibit significantly higher-amplitude oscillations when compared to the
stronger, positive vortex. This is expected owing to the significantly higher local strain
experienced by the weaker vortex. Both vortices appear to conclude the adaptation
process by t∗nv ' 30. When considering (6.1), this is seen to imply that it takes
significantly longer for the weaker vortex to adapt. Given the significantly higher strain
to which the weaker vortex must adapt, this is not surprising.
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FIGURE 1. Internal strain-rate magnitude (εint ) as a function of normalized time t∗nv ,
measured at the core of each vortex; —, stronger vortex; – –, weaker vortex.

Γ Re εint εext W∗ a

Γ1 −46.03 1282.0 −0.539 −0.273 0.311 1.09
Γ2 96.32 2682.7 0.136 0.062 0.154 1.09

TABLE 1. Parameter values at the conclusion of the relaxation period (t∗nv = 30 based on
the weak vortex); Γ1 refers to the weaker vortex and Γ2 refers to the stronger vortex.

Viscous diffusion of the vortices results in increasing overlap of the vortices
as a function of time. The effect is driven purely by viscous diffusion, and
may be modelled to first approximation by superimposing two circular vortices a
distance b apart and allowing for viscous diffusion in the absence of relaxation.
Over long periods of time, the Reynolds number, based on the circulation of the
vortex in question, was found to reduce exponentially. However, over the short
time periods investigated in this study (including the entirety of the DNS results
discussed later), the variation in Reynolds number is well approximated as a linear
reduction with time. Table 1 details Re, εint , εext and W∗ for each vortex at the
conclusion of the relaxation process (t∗nv = 30 based on the weak vortex); in addition,
a/b = 0.361 at this time. We note that εint ' 2εext , as predicted for this system
using (2.7).

The axial vorticity and strain-magnitude fields of the adapted flow field are shown
in figure 2, corresponding to t∗nv = 30. This is the flow field used as the base flow in
the stability analysis study. The strain field is found to be significantly higher within
the weaker vortex than the stronger one. This would imply that, for an excited global
mode, instability growth should be stronger in the weaker vortex.

6.2. Linear stability analysis

Figure 3(a) shows the normalized growth rates obtained from the linear stability
analysis, as a function of wavenumber. Following the work of Le Dizès & Laporte
(2002), the wavenumber is normalized by the vortex core radius (here chosen as the
core radius of the strong vortex); and the growth rate has been normalized using the



384 K. Ryan, C. J. Butler and G. J. Sheard

(b)(a)

FIGURE 2. (a) Vorticity field and (b) strain field at the conclusion of the adaptation phase
(t∗nv = 30). Contour lines show the vortex core radii (a) strained from their original radius of
a0; dashed lines indicate negative vorticity. Shaded contours indicate the strength of the field
in question; in panel (a) darker shading indicates negative vorticity, lighter shading indicates
positive vorticity; in panel (b) darker shading indicates a stronger magnitude of strain.

global turnover time, where

tG = 4π2b2
0

|Γ1|(1+Λ), (6.2)

is the time taken for the vortex pair to make one revolution about each other. Note that
we use the initial separation distance b0 in (6.2). This leads to two non-dimensional
parameters to describe the growth of perturbations,

σ ∗ = σ × tG, (6.3)

t∗ = t

tG
, (6.4)

referred to as the normalized growth rate and normalized time, respectively.
Five modes have been identified as growing on the vortex system. Of these, three

dominate – having significant growth rates. These are the long-wavelength Crow
instability, and the shorter-wavelength Kelvin modes [−1, 1, 1] and [−2, 0, 1]. This
is in agreement with the predictions of Lacaze et al. (2007) and contrasts with the
modes that grow on Lamb–Oseen vortex pairs (where only the Crow instability and
the Kelvin mode [−1, 1] exhibit positive growth).

The Crow instability has a peak σ ∗ = 8.67 at a critical wavenumber of κc = ka =
0.75, in excellent agreement with the analytical predictions of Bristol et al. (2004).
Using their model, we find a peak σ ∗ = 8.9 at a critical wavenumber of κc = 0.62.
The mode shape is shown in figure 3(b), and is similar in profile to that described
previously by many authors – for example, Crow (1970) and Widnall et al. (1974)
for equal-strength vortices and So et al. (2011) for unequal-strength vortices. The
perturbation field was found to evolve predominantly in the vicinity of the weaker
vortex in preference to the stronger vortex.

Of the short-wavelength (Kelvin) instabilities, mode [−2, 0, 1] is found to dominate
over the majority of the wavelengths considered. A peak growth rate of σ ∗ = 8.5 at a
critical wavenumber of κc ' 2.4 was observed. While this peak growth rate is slightly
lower than that of the Crow instability, the separation in critical wavenumbers should
allow both instabilities to be clearly identifiable experimentally. The mode shape for
mode [−2, 0, 1] is shown in figure 3(c); a classical mode [−2, 0, 1] shape is observed
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FIGURE 3. (a) Growth rate for each of the modes identified in the linear stability analysis,
as a function of normalized wavenumber ka. Modes have been identified as: —, large-
wavelength Crow instability; − · −, Kelvin mode [−1, 1, 1]; - - -, Kelvin mode [−2, 0, 1];
– ·· –, Kelvin mode [−2, 0, 2]; — — —, Kelvin mode [−3,−1, 1]. (b–d) Perturbation axial
vorticity fields for: (b) the Crow instability, (c) Kelvin mode [−2, 0, 1], and (d) Kelvin
mode [−1, 1, 1]. In each case, shaded contours are of the perturbation field; lightly shaded
regions indicate a positive perturbation, darker shaded regions indicate a negative perturbation.
Contour lines illustrate the base flow field as per figure 2.

on both vortices – compare with the profiles described by Lacaze et al. (2007) and
Roy et al. (2008). As with the Crow instability, the perturbation field is dominant on
the weaker vortex. Indeed, the amplitude of the perturbation mode shape acting on the
stronger vortex is only '6 % of that acting on the weaker vortex.

Over a very narrow range of ka, the Kelvin mode [−1, 1, 1] is observed to be
the dominant perturbation mode. A peak growth rate of σ ∗ = 7.01 is observed,
at κc = 1.64. While the mode [−1, 1, 1] is the mode with highest growth for
ka = [1.2, 1.5], the mode [−2, 0, 1] also exhibits a significant growth rate in this
range.

We therefore anticipate that both modes would be observed to compete
experimentally at this wavenumber. However, the substantially higher growth rate of
mode [−2, 0, 1] (in the vicinity of ka = [2.0, 3.0]) should mean that this mode shape
would dominate the overall perturbation into the nonlinear growth regime. Therefore,
the mode competition would be difficult to isolate and identify, and should have
little impact on the overall mode shape that the vortices exhibit. The mode shape for
[−1, 1, 1] is shown in figure 3(d). Once again, the perturbation field is dominant on
the weaker vortex.

Comparing our findings with the results of Lacaze et al. (2007), we find that the
value of κc varies considerably from that found for an equal-strength counter-rotating
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FIGURE 4. Vortex filament model predictions for the growth of the large-wavelength Crow
instability. (a) The ratio of perturbation amplitude (AR) acting on the strong vortex to the
perturbation amplitude acting on the weak vortex, as a function of Λ. The circle indicates the
amplitude ratio obtained from the linear stability calculations at Λ = −0.5. (b) The principal
angle of the perturbation for the strong vortex (solid line) and the weak vortex (dashed line)
as a function of Λ. The circles indicate the principal angles observed from the linear stability
calculations at Λ = −0.5: the open circle corresponds to the strong vortex; the filled circle
corresponds to the weak vortex.

Batchelor vortex pair. For mode [−2, 0, 1], our finding of κc is 60 % higher than
that found for a counter-rotating pair at W∗ = 0.3 (Lacaze et al. 2007). By contrast,
for mode [−1, 1, 1], our finding of κc is 61 % less than that observed for a counter-
rotating pair at W∗ = 0.15. We note that Lacaze et al. (2007) did not report a growth
of mode [−1, 1, 1] at W∗ = 0.3, nor a growth of mode [−2, 0, 1] at W∗ = 0.15.

Both Le Dizès & Laporte (2002) and Roy et al. (2008) compared the variation in κc

for co- and counter-rotating equal-strength Lamb–Oseen vortex pairs. In general, they
found that the co-rotating vortex pair exhibited a lower κc for all instability modes
identified. This is ascribed to the global rotation rate inducing an additional Coriolis
force on the system. In addition, Roy et al. (2008) considered the variation in κc for a
co-rotating, equal-strength Batchelor vortex pair. Curiously, they found that κc for both
modes [−1, 1, 1] and [−2, 0, 1] reduced when compared with the findings of Lacaze
et al. (2007) for a counter-rotating Batchelor vortex pair.

While our vortex pair profile is substantially different from either investigation, the
increase in κc for mode [−2, 0, 1] reported here is surprising, and is worthy of future
investigation.

Additionally, the rotation of the vortex pair was noted by Roy et al. (2008) to
expand the range of ka over which significant growth of a mode was observed to
occur, when compared to an equal-strength, counter-rotating pair. Figure 3(a) concurs
with this finding.

Two other modes were identified (mode [−2, 0, 2] and mode [−3,−1, 1]), both
of which were predicted analytically by Lacaze et al. (2007). Neither mode had a
significant growth rate, and it is not anticipated that they would have significant impact
experimentally.

6.2.1. Development of the Crow instability on unequal-strength vortex pairs
A vortex filament model was employed to consider the Crow instability growing

on an unequal-strength counter-rotating vortex pair. This extended the results from
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the linear stability analysis from the case of Λ = −0.5 to the range Λ = [−1,−0.1].
The technique was precisely the same as that described by Bristol et al. (2004). The
self-induction of each vortex core was calculated through solution of the dispersion
equations provided by Saffman (1992).

The vortex filament model assumes that perturbations take the form of sinuous
oscillations along the axis of each vortex. The model may be reduced to an eigenvalue
problem, where the eigenvalues represent the global growth rate, and the eigenvectors
represent the mode shape components. In particular, by taking the amplitude of the
eigenvectors for each vortex, a ratio of ‘perturbation strength’ can be determined,
measuring the relative strength of the perturbation on each vortex core. In addition, the
plane of oscillation of the mode shape may be determined for each vortex, leading to
the definition of a principal angle (θP). Here, the principal angle describes the angle
that the mode shape makes with an imaginary line joining the vortex cores. Previous
investigations have identified |θP| ' 45◦ for Λ=−1.

The growth rates observed from the vortex filament model agree precisely with that
reported by Bristol et al. (2004), with the growth rate increasing by '28 % as Λ
increases from −1 to −0.1. However, the ratio of perturbation amplitude acting on the
stronger vortex with respect to the weaker vortex varies appreciably over this range
(figure 4a). At Λ = −0.5, the stronger vortex is predicted to have a mode amplitude
only 20 % that of the weaker vortex. The linear stability analysis study predicts a
slightly higher ratio of 29 % at Λ = −0.5. The results shown in figure 4(a) would
imply that the Crow instability will have relatively little impact on the development of
the strong vortex for |Λ| . 0.8. This questions the efficacy of the Crow instability to
enhance the dissipation of a generic vortex pair; the significant dissipation noted for
Λ=−1 is an almost unique example where both vortices have substantial perturbation
growth. This is despite the increase in the global growth rate of the mode as Λ→ 0.

In addition, the principal angle (θP) varies significantly for the stronger vortex as a
function of Λ. Indeed, at Λ = −0.5, the vortex filament theory predicts θP ' 79◦ for
the stronger vortex, in agreement with the linear stability analysis model (as shown
in figure 4b). As will be shown, this angle plays an important role in the nonlinear
development phase.

As shown by Bristol et al. (2004), the rotation rate of the vortex pair plays a
significant role in the perturbation growth of the Crow instability. Indeed, in the
absence of rotation, the filament model predicts the growth of instabilities for both
co- and counter-rotating vortex pairs. Following the analysis of Widnall et al. (1974)
and Bristol et al. (2004), we now consider the equations governing a decoupled
vortex filament pair, where the growth of instabilities on one vortex is not considered
when determining the growth of instabilities on the neighbouring vortex. Using this
approach, we can define

Ar =Λsin(2θP2)

sin(2θP1)
, (6.5)

where θP1 is the principal angle for the weaker vortex and θP2 is the principal angle for
the stronger vortex. We note that, should |θP1| = |θP2| = 45◦, AR would reduce linearly
with Λ. Comparing this with the findings in figure 4(a), the variation in either θP1 and
or θP2 is to be anticipated.

For the decoupled system described, the principal angle for each vortex may be
written as

cos(2θP1)=Ω +Λ$, (6.6)
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cos(2θP2)= 1
Λ
(Ω +$) , (6.7)

Ω =Λ+ 1, (6.8)

where Ω is the normalized rotation rate of the vortex pair and $ is the self-induced
angular velocity of a perturbation induced about the unperturbed axis of the vortex
in question – see Saffman (1992) and Bristol et al. (2004) for further details. For
the Crow instability, $ is a positive value, representing a retrograde rotation of the
perturbations about the vortex. It is clear from (6.8) that the rotation rate of the vortex
pair (Ω) plays a significant role in determining the principal angle of oscillation. In
addition, we note that, given the retrograde nature of the Crow instability, a decoupled
analysis predicts that no principal angle θP2 satisfies (6.6) for Λ= [−0.5, 0], and hence
we would anticipate no growth on the stronger vortex for this range of Λ. Thus,
the growth found on the stronger vortex in this range, for both the linear stability
analysis study and the vortex filament study, must be induced by a direct coupling of
instabilities growing on the weaker vortex.

We note that, for peak growth, θP = ±45◦. For the stronger vortex, owing to the
retrograde motion of the perturbation, this is not possible except for the unique case
of Λ = −1. Considering (6.7), we anticipate that θP > ±45◦, for all cases except for
Λ=−1, in agreement with the findings of the coupled filament model (figure 4b).

For the weaker vortex, θP = ±45◦ may occur for all values of Λ = [−1, 0], and we
surmise that it is for this reason that the coupled filament analysis technique shows
that θP1 remains near 45◦ for all values of Λ, resulting in peak instability growth on
the weaker vortex.

6.3. Direct numerical simulation results
6.3.1. Two-dimensional evolution of the vortex pair

The initial profile of the vortex pair for the DNS simulations has been described in
§ 2. Relaxation of the vortex pair was determined in full three-dimensional space, and
was noted to agree precisely with that found in § 6.1. Relaxation of the vortex pair was
deemed to be complete at t∗nv = 30, corresponding to t∗ = 0.47. At this time, the vortex
pair exhibited the same characteristics as previously described in § 6.1 and presented in
table 1. Relaxation was concluded prior to perturbation growth being recorded in any
higher modes.

6.3.2. Perturbation growth on the vortex pair
Figure 5 shows the development of the instability as a function of time. Here,

we visualize the flow field by employing the λ2 field, defined as the second
eigenvalue solution to the tensor S2 + Ω 2 (Jeong & Hussain 1995). Here, S is the
symmetric component of the velocity gradient tensor (∇u), and Ω is its antisymmetric
component. A vortex core is defined to exist where λ2 < 0, and the extremity of
the vortex core is described by the contour λ2 = 0. Figure 5(a) shows a snapshot at
t∗ = 1.56, corresponding to a time soon after the transition from linear to nonlinear
growth of the perturbation field. The helical structure of the instability mode growing
on the weaker vortex is typical of mode [−2, 0]. No perturbations are visible on the
stronger vortex. Figure 5(b–d) shows snapshots during the nonlinear development of
the perturbation. From t∗ = 1.81, vortex filaments are observed to emanate from the
weaker vortex; at later times these wrap around the stronger vortex core (t∗ & 2.07).
At t∗ = 2.34 (the final time shown in figure 5), the weak vortex has broken up into
a series of discrete vortex filaments, each wrapped around the stronger vortex. The
looping structures cause periodic stretching of the stronger vortex, generating periodic
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(a) (b)

(c) (d )

FIGURE 5. Snapshots showing iso-surface contours of the λ2 field during nonlinear
development of the instability (taken from DNS): (a) t∗ = 1.56; (b) t∗ = 1.81; (c) t∗ = 2.07;
and (d) t∗ = 2.34. In each case, the iso-surface contour level chosen is λ2 =−0.1.
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FIGURE 6. The square root of the total kinetic energy by mode as a function of t∗. (a) Plot of
E1/2 for mode 3 corresponding to the Crow instability (solid line) and mode 8 corresponding
to the Kelvin mode [−2, 0, 1] instability (dashed line). The gradient of these lines provides
the growth rate of the instability modes, and measurements are indicated through the linear
growth phase. (b) The reduction in E1/2 for the fundamental mode; the transition to nonlinear
growth is apparent at the point where the gradient changes discontinuously.

undulations of the stronger vortex profile (t∗ = 2.34), with a period commensurate with
the Crow instability wavelength. However, the perturbations are relatively small and
the stronger vortex retains its coherence until the conclusion of the simulation.

Following the work of Laporte & Corjon (2000), the square root of the kinetic
energy (E1/2), measured for each Fourier mode, was used to directly predict the growth
rate of perturbations. Figure 6(a) shows E1/2 for mode m= 3 (representing the growth
of the Crow instability) and mode m = 8 (representing the growth of the Kelvin
mode [−2, 0, 1]). These were the modes identified as displaying most energy using the
stability analysis technique. Correspondingly, they were the modes that exhibited the
highest energy during the linear phase of growth in the DNS investigation.

Linear growth of the short-wavelength mode commences at t∗ ' 0.55, with a growth
rate of σ ∗ = 8.46 being observed – in close agreement with the linear stability analysis
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(σ ∗ = 8.5). Linear growth concludes at t∗ ' 1.5 where nonlinear terms begin to
dominate, reducing the growth rate in agreement with theory presented by Eloy &
Le Dizès (1999).

The Crow instability commences linear growth at a later time, t∗ ' 0.65. Its linear
growth rate is smaller than the Kelvin mode with σ ∗ = 7.43 (in close agreement with
the linear stability analysis where σ ∗ = 8.67). Linear growth of the Crow instability
concludes at t∗ ' 2.00. We note that the growth rate of the Crow instability becomes
nonlinear at a later stage than the Kelvin mode. This may be directly linked to
the larger wavelength of the Crow instability. Small-scale structures, evolving in the
nonlinear growth phase, have less impact on the large-wavelength Crow instability
when compared to the comparatively short-wavelength Kelvin mode.

The growth rates predicted from the DNS, during the linear growth regime, were
found to be very close to those predicted by linear stability analysis, verifying the
applicability of the linear stability analysis technique employed. During the linear
growth phase, the decrease in growth rate of the Kelvin mode, observed in the DNS
calculations, is due to vortex core radii growth as a function of time, as described in
§ 4.3.

Figure 6(b) shows E1/2 for the zeroth (two-dimensional) mode; E1/2
k=0 is noted to

decay as a function of time during the linear phase of growth. An abrupt decrease in
E1/2

k=0 is observed as the Crow instability transitions from linear to nonlinear growth, as
energy is transferred away from the Ek=0 mode to higher modes. At the conclusion of
the simulation (t∗ = 3.00), E1/2

k=0 is '10 % less than what would be anticipated through
the action of dissipative forces alone. From observation of figure 5, we note that much
of this energy transfer happens within the weaker vortex.

6.3.3. Perturbation mode shapes: direct numerical simulation results
Perturbation fields at each critical wavenumber were obtained by extracting the

Fourier mode from the calculated DNS flow field corresponding to the instability mode
of interest. This allows the resultant instability mode shapes to be compared directly
with the results from the linear stability study.

Two wavenumbers are considered here, corresponding to ka = 1.5 (where mode
[−1, 1, 1] and mode [−2, 0, 1] were predicted to compete) and ka = 2.5 (where mode
[−2, 0, 1] was predicted to dominate). While not shown here, the relatively simpler
mode shape corresponding to the Crow instability was found to agree precisely with
that predicted by the linear stability analysis technique.

Figure 7(a) shows an arbitrarily chosen x–y slice of the perturbation field for
ka = 1.5 at t∗ = 1.2. The twisting nature of mode [−2, 0, 1] means that the mode
shape varies significantly along the axis of the vortex. The axial position of the x–y
slice has been chosen to agree closely with the mode shapes shown in figure 3. The
mode shape acting on the weaker vortex is clearly dominated by mode [−2, 0, 1].
By contrast, on the stronger vortex, the mode shape, while strictly being defined
as a mode [−2, 0, 1] profile, bears striking similarities to mode [−1, 1, 1] shown in
figure 3(d).

During the linear growth phase, the mode shapes are well described as T2-periodic
along the axial direction. That is, the perturbation structures are identical half a
perturbation wavelength along the axis, except that the sign of the perturbation is
reversed. For this reason, we also consider the perturbation field for ka= 1.5 a quarter
of a wavelength away from that shown in figure 7(a) (shown in figure 7b). At this
cross-section, the mode shape corresponds to mode [−2, 0, 1] on both vortices.
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(a) (b)

(c) (d)

FIGURE 7. Perturbation axial vorticity fields obtained from DNS investigation. Fields are
obtained by extracting Fourier modes of interest from the total solution. The panels show
slices of these fields taken along the z axis. Slice locations have been chosen to compare
directly with the findings from the linear stability study (figure 3). (a) The perturbation field
for mode 5. (b) The same mode as (a), but the slice is taken one quarter of a wavelength
further along the z axis. (c) The perturbation field for mode 8. (d) The same mode as (c), but
the slice is taken one quarter of a wavelength further along the z axis. In each case, shaded
contours are of the perturbation field; lightly shaded regions indicate a positive perturbation,
and darker shaded regions indicate a negative perturbation. Line contours illustrate the base
flow field as per figure 2.

Figure 7(c,d) shows arbitrarily chosen x–y slices of the perturbation field for
ka = 2.5 at t∗ = 1.2. In this case, the perturbation mode shape growing on both
vortices is in agreement with that predicted for mode [−2, 0, 1]. In particular, the
mode shape shown in figure 7(c) is nearly identical to that predicted by the linear
stability analysis (figure 3c).

6.4. Nonlinear development – stage 1
Given that the weaker vortex displays significantly more deformation through the

nonlinear growth phase, we now consider the nonlinear perturbations growing on it in
isolation. Nonlinear development of the vortex pair occurs over two distinct stages.
In the first stage, the weaker vortex evolves to form axially periodic ‘clumps’
of vorticity with a wavelength commensurate with the Kelvin perturbation. The
second stage is distinguished by the development of azimuthal filaments of vorticity
emanating from the weaker vortex; these evolve to wrap around the stronger vortex.
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A number of approaches exist to define the profile of a vortex core in a three-
dimensional domain, principal among which is the λ2 field. Several prior investigations
have considered the magnitude of vorticity (|ω|) as a definition of the vortex core
profile (see e.g. Laporte & Corjon 2000; Bristol et al. 2004), while others have
considered the axial component of vorticity in isolation (Leweke & Williamson 1998).
As will be shown, we note a significant difference in the profile of the vortex core
as defined by the λ2 field when compared to the magnitude of vorticity (|ω|). This
may result in significant differences in vortex profile when comparing experimental
visualizations to DNS investigations, which have predominantly considered |ω|. In
order to investigate the cause of this discrepancy, it is advantageous to simplify the
equations that define the λ2 field, such that the dominant processes underpinning the
initial stages of nonlinear development may be clearly elucidated.

The definition of the λ2 field can be rewritten in a significantly simpler form by the
assumption that the rate of change of all velocity components in the axial direction
is less pronounced than that in the x–y plane. This assumption is valid for two
reasons: first, the base flow field has no variation in the axial direction; second, the
perturbation velocity components vary more abruptly in the x–y plane than in the axial
direction. We assume that this same approximation holds during the initial stages of
the nonlinear growth regime. Hence we may write

ωxz ' τxz ' ∂w

∂x
, (6.9)

ωyz ' τyz ' ∂w

∂y
, (6.10)

τzz ' 0. (6.11)

With these assumptions, the antisymmetric component of the velocity gradient tensor
simplifies to

Ω '



0 ωxy
∂w

∂x

−ωxy 0
∂w

∂y

−∂w

∂x
−∂w

∂y
0


, (6.12)

and the symmetric component of the velocity gradient tensor to

S '



τxx τxy
∂w

∂x

τxy τyy
∂w

∂y

∂w

∂x

∂w

∂y
0


. (6.13)

From these definitions, and in the vicinity of the weaker vortex, we may approximate
the equation defining the eigenvalues (λ) as

(−ω2
xy + τ 2

xx + τ 2
xy − λ)2 λ+ α2(−ω2

xy + τ 2
xx + τ 2

xy − λ)
+β2(−ω2

xy + τ 2
xx + τ 2

xy − λ)= 0, (6.14)
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α = ωxy
∂w

∂y
+ τxx

∂w

∂x
+ τxy

∂w

∂y
, (6.15)

β =−ωxy
∂w

∂x
+ τyy

∂w

∂y
+ τxy

∂w

∂x
. (6.16)

The development of (6.14)–(6.16) relies on the assumption that τzz ' 0. This allows
us to write that, owing to continuity, τxx ' −τyy. Inspection of (6.14) reveals that the
component defining λ2 (the second largest root of (6.14)) may be written as

λ2ε =−ω2
xy − τxxτyy + τ 2

xy =
∂v

∂x

∂u

∂y
− ∂u

∂x

∂v

∂y
. (6.17)

Here we have defined λ2ε (our simplified approximation) to differentiate this from an
exact calculation of the λ2 field. Perhaps unsurprisingly, it is the component of strain
in the x–y plane, coupled with ωxy, that acts to dominate the definition of the λ2 field.
Herein we define

τD = τ 2
xy − τxxτyy (6.18)

as the ‘dominant strain’. Should the magnitude of the dominant strain exceed that
of ω2

xy, then the local fluid environment is dominated by the strain field, and the λ2ε
field will not identify a vortex core at this location.

We note in passing that the approximation for λ2 defined by (6.17) is equally
valid for the case of a Lamb–Oseen vortex pair. However, in that case, we may also
assume that the axial component of velocity is small relative to the other components,
simplifying (6.14).

Figure 8 shows three definitions predicting the profile of the weaker vortex core for
t∗ = 1.57 (figure 8a–c) and t∗ = 1.66 (figure 8d–f ). Iso-surfaces of the λ2ε field are
shown in figures 8(a) and 8(d); iso-surfaces of the λ2 field are shown in figures 8(b)
and 8(e); and iso-surfaces of |ω| are shown in figures 8(c) and 8(f ). The values of λ2,
λ2ε and |ω| have been carefully chosen to ensure that the profiles agree in areas where
the strain rate approaches zero. In each case, the strong vortex (not shown) is to the
right-hand side of the weaker vortex. It is clear that the λ2 field identifies a vortex core
profile that is markedly different from that identified by considering |ω|. At both times,
the iso-surfaces of λ2ε correctly identify the major structures of the λ2 iso-surface.

Importantly, localized regions of tapering on the right-hand side of the vortex core
profile (identified by both λ2 and λ2ε ) are not observed when considering the |ω|
field. Indeed, these regions correspond closely to a localized thickening of the vortex
core profile, as predicted by the |ω| field. Figure 8 also identifies that the region of
highest dominant strain rate corresponds almost precisely with the location of localized
tapering, in agreement with (6.17). On the left-hand side of the vortex, the profiles
described by both λ2 and |ω| agree very closely. We note that the dominant strain rate
is negligible on the left-hand side of the vortex core. The effect of the dominant strain
is to cause the Λ2 field to develop out of phase with |ω| along the axis of the weaker
vortex.

The dominant strain rate varies along the axis of the vortex with a period
commensurate with the [−2, 0, 1] mode. Indeed, the periodic variation in λ2 is due
purely to the nonlinear development of the [−2, 0, 1] mode. We can show this by
isolating the Fourier mode corresponding to the mode [−2, 0, 1] (ka= 2.5 in this case).
Figure 9 shows cross-sections of the perturbation dominant strain rate for t∗ = 1.00
(well within the linear growth regime) and t∗ = 1.66 (well within the nonlinear growth
regime). The profiles of the two fields are essentially identical. While not shown,
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FIGURE 8. Snapshots of iso-surface contours of the weaker vortex showing the development
of the perturbation in the first stage of nonlinear growth: (a–c) the weaker vortex at t∗ = 1.58;
(d–f ) the weaker vortex captured at t∗ = 1.66; (a,d) iso-surfaces of λ2ε = −0.1; (b,e) iso-
surfaces of λ2 = −0.1; and (c,f ) iso-surfaces of |ω| = 1.75 (chosen such that regions of low
strain rate would agree across all iso-surfaces). The iso-surfaces are overlaid with contour
lines of the dominant strain, τD, with 1τD = 1. In each case, the peak dominant strain is on
the right-hand side of the iso-surface.

the perturbation ωxy field is also nearly identical in structure when comparing both
time steps. This leads us to the conclusion that the first stage of nonlinear growth
is due solely to the progression of the linear mode. No new mechanism causes the
variation in vortex core profiles observed during this phase of development. Instead,
the [−2, 0, 1] mode grows sufficiently such that it significantly alters the base flow
field.

Beyond t∗ ' 1.7 further distortion of the weak vortex is due to a different
mechanism. This new mechanism results in the formation of periodically spaced
azimuthal vortex tubes along the axis of the weak vortex core (figure 5). Similar
vortex tubes have been described by Thomas & Auerbach (1994) and Laporte &
Corjon (2000), and are referred to as secondary vortices by Leweke & Williamson
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(a)

(c)

(b)

(d)

FIGURE 9. Perturbation dominant strain fields obtained from DNS investigation. Fields are
obtained by extracting the eighth Fourier mode (corresponding to the Kelvin mode [−2, 0, 1])
from the total solution. Images show slices of these fields taken along the z axis: (a,b) at
t∗ = 1.00 (well within the linear growth phase); (c,d) at t∗ = 1.66 (well within the nonlinear
growth phase); (b) and (d) are taken one quarter of a wavelength away from (a) and (c),
respectively. In each case, shaded contours are of the perturbation field; lightly shaded regions
indicate a positive perturbation, and darker shaded regions indicate a negative perturbation.
Line contours illustrate the base flow field as per figure 2.

(1998) for the case of equal-strength Lamb–Oseen vortices. Owing to the change in
dominant driving mechanism, we refer to t∗ ' 1.7 as the transitional time.

6.5. Nonlinear development – stage 2: the generation of secondary vortices
Figure 10 shows the progression of the weaker vortex core through the second stage

of the nonlinear growth regime. Iso-surfaces of λ2 =−0.1 are shown in figure 10(a–c),
while iso-surfaces of |ω| = 1.75 are shown in figure 10(d–f ).

Considering the |ω| field, we note that there are two distinct bulges, which are
drawn azimuthally to the right-hand side of the weaker vortex core (and hence drawn
towards the stronger vortex). These azimuthal bulges are noted to occur at a frequency
commensurate with the short-wavelength instability, and are referred to herein as
secondary vortices.

The location of peak λ2, along the axis of the weak vortex, at the conclusion of the
initial stage of nonlinear growth induces two arms of λ2 to emanate from the weaker
vortex core at every position where |ω| exhibits an azimuthal bulge (and crosses the
critical streamline).
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FIGURE 10. Snapshots of iso-surface contours showing the development of the perturbation
in the second stage of nonlinear growth: (a–c) the weak vortex using iso-contours of
λ2 = −0.1; (d–f ) the weak vortex using iso-contours of |ω| = 1.75; (a,d) t∗ = 1.71;
(b,e) t∗ = 1.79; (c,f ) t∗ = 1.87. The iso-surfaces are overlaid with contour lines of the
dominant strain, τD, with 1τD = 2. In each case, the peak dominant strain is on the right-hand
side of the iso-surface.

Observation of the x–y streamlines, calculated in a reference frame fixed to the
moving vortex pair, reveals the mechanism driving the formation of the secondary
vortices. Figure 11 shows, at a range of axial locations, contours of ωxy with
streamlines overlaid. At each axial location, the streamlines form hyperbolic points
located upstream and downstream of the vortex pair. The streamline joining the two
hyperbolic points is referred to as the critical streamline. Any vorticity crossing the
critical streamline will be convected azimuthally around the neighbouring (stronger)
vortex.

This phenomenon is well known; in two-dimensional flows, it leads to vortex
stripping (see e.g. Mariotti, Legras & Dritschel 1994), significantly altering the
progression of the vortex pair. In three-dimensional flows, the vorticity crosses the
critical streamline periodically at the same axial wavelength as the Kelvin mode.
Where the Crow instability draws one vortex closer to its neighbour, the effect is
heightened, as a greater magnitude of vorticity crosses the critical streamline.

In figure 11(b), a proportion of the ωxy field, emanating from the weaker vortex,
has crossed the critical streamline. At later times, this region of vorticity continues to
be pulled away from the weaker vortex core position, around the stronger vortex.
Cross-sections taken immediately above (figure 11a) and below (figure 11c) the
azimuthal bulge have less vorticity crossing the critical streamline. We observe that
the slice shown in figure 11(b) has a local minimum in λ2; local maxima are observed
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(a) (b) (c)

FIGURE 11. Cross-sections of vortex core development at t∗ = 1.79: (a), (b) and (c)
correspond to sections AA, BB and CC, respectively, in figure 10. Shaded contours are of
ωxy; dashed lines are λ2 = −0.1; and thin continuous lines are streamlines calculated in the
reference frame attached to the rotating vortex pair.

immediately above and below this slice, leading to two arms of λ2 to be formed for
each Kelvin mode wavelength.

Our observations of the progression of the λ2 field are in close agreement with the
experimental observations of Leweke & Williamson (1998). They noted two secondary
vortex filaments occurring per short-wavelength instability for a counter-rotating, equal-
strength Lamb–Oseen vortex pair. While the Kelvin mode [−1, 1, 1] (observed on the
Lamb–Oseen vortex pair) is substantially different in profile to the [−2, 0, 1] mode
observed here, we predict that the strain field would induce similar effects on the
progression of the Lamb–Oseen vortex pair to that described in § 6.4.

6.6. Late-stage nonlinear development

Figure 12 shows the late-stage development of the vortex pair (t∗ = 1.87 to
t∗ = 2.21). Both λ2 and the magnitude of vorticity (|ω|) are employed to identify
the vortex core. The process described in § 6.5 has continued, pulling filaments from
the weaker vortex completely around the stronger vortex. At these later stages, the
Crow instability dominates the advection of the weaker vortex, leading to three distinct
locations where the weaker vortex has been sheared around the stronger vortex. The
smaller-scale Kelvin mode structures are still present, but they are only significant at
three distinct locations in the axial direction.

It is interesting to note that, at this late stage of development, the peak magnitude
of vorticity is contained within the azimuthal filaments emanating from the weaker
vortex (not within the stronger vortex); the increased strength in vorticity is due to
the conservation of momentum as the azimuthal filaments are stretched around the
stronger vortex.

In addition, we observe that the vorticity profile predicted by the |ω| field
approaches that predicted by λ2 as a function of time. Indeed, at t∗ = 2.2, only
minor variations are observed between the two definitions. This convergence of vortex
core profile definitions is due to the late-stage evolution of the weaker vortex core as
filaments of azimuthal vorticity are stretched around the stronger vortex. We note that,
within each vortex filament, the maximum vorticity component acts in the azimuthal
direction (relative to the stronger vortex), parallel to the direction of principal strain.
For this reason, λ2 ' |ω|, and the two definitions converge. This is in sharp contrast to
the early stages of nonlinear development, where the direction of maximum vorticity
was normal to the direction of principal shear (as discussed in § 6.4).
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(a)
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FIGURE 12. Snapshots of iso-surface contours showing the late-stage development of the
perturbation: the vortex pair is captured at (a,b) t∗ = 1.87, (c,d) t∗ = 2.00 and (e,f ) t∗ = 2.21;
(a,c,e) iso-contours of λ2 = −0.1; (b,d,f ) iso-contours of |ω| = 1.75. This iso-contour level
of |ω| has been chosen such that the profile of the stronger vortex appears identical to that
predicted by λ2 =−0.1.

7. Discussion
Overall, our findings question the efficacy of Crow and Kelvin instability modes to

enhance the dissipation of the vortex pair system for |Λ| 6= 1. Our choice of W∗ was
crucial in selecting which elliptic modes would dominate – a different selection would
have promoted other modes to grow in preference. However, considering the work
of both Lacaze et al. (2007) and Roy et al. (2008), modes [−1, 1, 1], and [−2, 0, 1]
dominate other modes for a considerable range of W∗ for both co- and counter-rotating
vortex pairs of equal circulation strength magnitude. We also note that the choice of
a/b (and hence εext) has a direct effect on the growth rate of any of the instabilities
discussed.

Our detailed investigation of Λ = −0.5 clearly shows that, while the weaker vortex
undergoes significant twisting and stretching, the stronger vortex exhibits virtually no
variation in its structure, in general agreement with the finding for an unequal-strength
Lamb–Oseen vortex pair (see e.g. Bristol et al. 2004). There are two causes for
this: first, the strain induced on the stronger vortex is significantly weaker, resulting
in lower-amplitude perturbation mode shapes in the vicinity of the stronger vortex;
second, the reduction in strain on the stronger vortex alters the principal angle
of the Crow instability acting on the stronger vortex. In the case of Λ = −1, the
principal angle drives the perturbed vorticity towards the critical streamline, allowing
the neighbouring vortex to further stretch the perturbed vorticity filaments in the
nonlinear phase of growth. However, as θp increases, the (weakly) perturbed vortex
elements of the strong vortex are no longer driven towards the critical streamline,
reducing instability growth in the nonlinear phase.
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The global rotation of the vortex pair induces high growth over a wider range of ka
than found for an equal-strength counter-rotating vortex pair, in agreement with prior
studies.

As predicted by Lacaze et al. (2007), it is the [−2, 0] Kelvin mode that grows
preferentially to the [−1, 1] mode observed for Lamb–Oseen vortex pairs. As the
Batchelor vortex represents the asymptotic solution for a trailing line vortex profile far
downstream of an aircraft, it is unlikely that the mode [−1, 1] would be observed in
an aircraft wake. Indeed, from the theoretical predictions presented by Lacaze et al.
(2007), this will only occur for very low values of W∗. However, regardless of which
short-wavelength instability mode dominates, it is the advection of vorticity elements
across the critical streamline that provides the most dramatic dissipation of a vortex
core. Successful use of such passive dissipation techniques relies on the linear mode
shape to actively propel vortex elements in this manner.

8. Conclusions

The combination of a linear stability analysis study with a three-dimensional direct
numerical simulation has allowed us to determine the evolution of instabilities in an
unequal-strength counter-rotating Batchelor vortex pair through both the linear and
nonlinear growth regimes.

As shown by Lacaze et al. (2007), Batchelor vortex pairs exhibit a range of Kelvin
mode shapes beyond those found for Lamb–Oseen vortex pairs. Our findings support
their conclusions: a Kelvin mode [−2, 0] is observed to grow in preference to the
Kelvin mode [−1, 1] in the linear growth phase, and this alters the progression of
the nonlinear development, especially in the initial and secondary stages of nonlinear
development. Tertiary nonlinear development is dominated by the Crow instability. The
mode shape and growth rate of the Crow instability is nearly identical to that expected
for a Lamb–Oseen vortex pair, and thus the final mode shape of the vortex pair
appears similar to prior DNS investigations of a Lamb–Oseen vortex pair.

Instability growth occurs predominantly on the weaker vortex, leading to secondary
vortex filaments wrapping around the stronger vortex. It is only in the tertiary stage of
nonlinear growth that perturbations are observed to grow on the stronger vortex.
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