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A tethered cylinder may be considered an extension of the widely studied problem of
a hydro-elastically mounted cylinder. Here we numerically investigate the flow past a
positively buoyant tethered cylinder for a range of mass ratios and tether length ratios
at a Reynolds number Re= 200. The results are found to be qualitatively similar to
related experimental work performed at significantly higher Reynolds numbers. Two
important findings are related in this paper. First, we find that the action of the
tethered cylinder oscillating at an angle to the flow induces a mean lift coefficient.
Second, a critical mass ratio (m∗

crit) is found below which large-amplitude oscillations
are noted, similar to that previously reported for the case of a hydro-elastically
mounted cylinder. For short tether lengths, m∗

crit is significantly greater than that
found for a hydro-elastically mounted cylinder. As the tether length increases, the
m∗

crit decreases and asymptotes to that of a hydro-elastically mounted cylinder as the
tether length approaches infinity.

1. Introduction
Vortex-induced vibration of cylinders is a field that has received considerable study

over many years, due largely to its application in mechanical and civil engineering.
Several examples highlighting the practical importance of vortex-induced vibration
include bridge design, the flow past heat exchanger tubes and the flow past sub-sea
riser tubes, used primarily in the oil industry. This interest has motivated numerous
fundamental studies. As a result, several comprehensive reviews exist on the topic:
for example Sarpkaya (1979), Griffin & Ramberg (1982), Bearman (1984), Parkinson
(1989) and Williamson & Govardhan (2004); and the books by Blevins (1990) and
Naudascher & Rockwell (1994). In the present study, we focus our attention on
the flow past a positively buoyant, tethered cylinder immersed in a uniform flow
field with the axis of the cylinder constrained to remain horizontal. The cylinder is
constrained to oscillate along the path of an arc of normalized radius L∗ = L/D,
where L is the tether length and D is the cylinder diameter (see figure 1). The study of
a tethered cylinder extends the scope of vortex-induced vibrations beyond what has
been traditionally considered, as it inherently allows the existence of two new features
that have received comparatively little attention to date. The first is that the cylinder
oscillation has an imposed curvature (κ) on its path, which is inversely proportional
to the tether length; the second is that the cylinder is generally oscillating at a time-
averaged mean angle, θ , to the free stream. Here θ is imposed by the mean fluid
forces acting on the cylinder and may be determined using a simple force balance.
This paper aims to investigate the effect that both these features have on the cylinder
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oscillation response, and relate the findings to existing results of flow interaction with
hydro-elastically mounted cylinders.

To the authors’ knowledge, only a few recent publications exist that report
investigations on the flow interaction with a buoyant tethered cylinder (for example
Ryan et al. (2004a), Ryan, Thompson & Hourigan (2004b) and Browne et al. (2005)).
Here, we define the tethered cylinder as shown in figure 1. Note, we will not consider
the flow past a cylinder tethered solely at one end of the span. Ryan et al. (2004a)
numerically simulated the flow interaction with a tethered cylinder, with a mass ratio
m∗(= ρ/ρw) = 0.8, where ρ is the density of the body and ρw is the density of the fluid,
and L∗ = 5, at a fixed Reynolds number (Re = ρuD/µ = 200). They identified three
modes of oscillation, each mode being dependent on the mean layover angle. They
referred to these modes as the ‘in-line’ mode, where oscillations are predominantly in
line with the free stream; the ‘transverse’ mode, where oscillations are predominantly
transverse to the free stream; and the ‘transition’ mode which occurred for mean
layover angles between the in-line and transverse modes. They found that oscillations
in the transverse mode were similar to those of a low mass-damped, hydro-elastically
mounted cylinder held free to oscillate in a direction transverse to the free stream,
for which considerable study has been undertaken.

Ryan et al.’s (2004a) study was extended by Ryan et al. (2004b), who reanalysed the
same results. Ryan et al. (2004b) observed a negative mean lift coefficient for a majority
of mean layover angles considered. The mean lift coefficient only approached zero as
θ → 0◦ or 90◦. The minimum CL recorded was approximately −0.05, corresponding
to θ � 40◦. They related the non-zero mean lift coefficient to an asymmetry in the
wake behind the cylinder. Furthermore, they related the wake asymmetry with the
mean layover angle about which the cylinder oscillates, noting that the asymmetry
(and hence the magnitude of CL) was most prominent in the transition mode.

Recently, Carberry & Sheridan (2007) experimentally investigated the flow
interaction with a tethered cylinder for mass ratios in the range m∗ = [0.54, 0.98],
for a fixed tether length (L∗ = 4.6), and Re ∈ [900, 7390]. They found a mass
ratio, (m∗ = 0.72), below which large-amplitude oscillations were observed at high
mean layover angles. When the results were plotted against the Froude number
(Fr = u/

√
gD, where u is the free-stream velocity and g is the acceleration due

to gravity), they found that the jump in amplitude occurred as Fr → 1 for all
m∗ < 0.72. This finding was qualitatively in agreement with the low-Reynolds-number
(Re =200) numerical findings of Ryan (2004), who determined a mass ratio m∗ = 0.38
below which large-amplitude oscillations were observed. Due to their experimental
setup, Carberry & Sheridan (2007) could not determine a negative mean lift, and
assumed, for their force balance calculations, that it was negligible compared with
the other mean forces acting on the cylinder. This assumption resulted in minor
qualitative variations when comparing their experimental findings with the numerical
investigations of Ryan (2004).

Within the broader field of vortex-induced vibration, a significant amount of
research has focused on hydro-elastically mounted cylinders usually restricted to
vibrate only in the direction transverse to the free stream. This arrangement
has been chosen as transverse oscillations may be up to an order of magnitude
greater in amplitude than oscillations which are in line with the free stream, as
shown by Bearman (1984). Classical research in this field has found that, as the
frequency of oscillation, f , approaches the natural frequency of the cylinder, fn,
large-amplitude oscillations occur, and further that a narrow range of oscillation
frequencies exists where the shedding frequency corresponds to the natural frequency
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Figure 1. Tethered cylinder geometry and coordinate system.

of the cylinder (referred to as the ‘lock-in’ regime). Large-amplitude oscillations are
generally observed within the lock-in regime.

Recent research in this field (notably the work by Khalak & Williamson 1999,
Govardhan & Williamson 2000 and Govardhan & Williamson 2003), has focused on
the interaction of a low mass-damped hydro-elastically mounted cylinder in a uniform
free stream. Khalak & Williamson (1999) found three oscillation ‘branches’ within
the lock-in regime: the ‘initial’, ‘upper’ and ‘lower’ branches. Notably, they found that
the ‘upper’ branch of oscillation exhibited large-amplitude oscillations. Further, they
found that the range of reduced velocities (u∗ = u/fnD) at which the ‘upper’ branch
was observed varied inversely with mass ratio. Govardhan & Williamson (2000)
determined a critical mass ratio, m∗

crit, below which the lower branch should not
be found. Instead, large-amplitude oscillations, in the upper branch, were observed,
and it was hypothesized that these large-amplitude oscillations should occur up to
and including u∗ = ∞. For Reynolds numbers in the range Re= [4000, 22000], they
determined a critical mass ratio m∗ = 0.54. Govardhan & Williamson (2003) extended
these findings by conducting a study where u∗ = ∞. In that study, they found large-
amplitude oscillations for m∗ < 0.54, in agreement with the prior study. They also
determined a critical mass ratio for a much lower Reynolds number (Re = 100), from
the numerical results obtained by Shiels, Leonard & Roshko (2001). At this lower
Reynolds number, the critical mass ratio was found to be m∗

crit � 0.25. Recent work
by Ryan, Thompson & Hourigan (2005) has extended this finding by determining
the critical mass ratio in the Reynolds number range Re = [40, 200]. Their findings
show a significant variation of m∗

crit as a function of Reynolds number, within the
low-Reynolds-number range investigated. Extending this finding to the case of a
tethered cylinder, the qualitative differences of the critical mass ratio reported by
Ryan (2004) and Carberry & Sheridan (2007) are not altogether surprising. Indeed,
when the experiments and numerics are compared, the drag, lift and mean layover
results are found to have the same form, although the actual quantitative values differ
due to the large variation in Reynolds number (see Ryan 2004 for further details).

The similarity of the results for the flow past a tethered cylinder with those found
for a low mass-damped, hydro-elastically mounted cylinder raises several interesting
questions which this paper aims to answer.
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(i) How is the jump in amplitude observed for a tethered cylinder related to the
jump observed for a freely oscillating cylinder, and why is there a variation in the
critical mass ratio at which this jump occurs between the two systems?

(ii) What is the effect of curvature on the oscillating modes observed for the
tethered cylinder? Otherwise stated, what is the effect of varying L∗?

(iii) What is the effect of the mean layover angle, and how does an oscillation
at an angle to the free stream alter the wake dynamics when compared to a freely
oscillating cylinder?

In order to analyse the results, and to compare the present results with previous
findings for a hydro-elastically mounted cylinder, we introduce the equation of motion
for a tethered cylinder:

J θ̈ =FθL, (1.1)

where J is the polar moment of inertia, Fθ is the force acting on the cylinder in the
direction of motion, and L is the tether length. In (1.1), both Fθ and θ have a mean
and time-dependent component (θ = θ + θ t , Fθ = F θ + F t

θ ).†
We can express Fθ as a function of the drag, lift and buoyancy forces acting on the

cylinder as

Fθ = FD cos(θ) − (FL + B) sin(θ), (1.2)

where FD and FL are the drag and lift forces respectively, and B is the buoyancy
force, which takes into account the force of gravity. By assuming small-amplitude
oscillations, such that sin(θ ′) � θ ′ and cos(θ ′) � 1, Fθ may be separated into its mean
and time-dependent components as

Fθ = −θ t (T + T t ) + Fosc, (1.3)

where

T = F D sin(θ ) + F L cos(θ ), (1.4)

T t = F t
D sin(θ ) + F t

L cos(θ ), (1.5)

Fosc =
(
F t

D cos(θ ) − F t
L sin(θ )

)
, (1.6)

T is the mean tension force acting through the tether and T t is the time-varying
tension force component. Combined they constitute the restoring force of the system,
as they are a multiple of θ t in (1.3). Fosc may be considered as the driving force,
consisting of the collection of time-varying force components acting in the direction
of motion which are not a multiple of θ t in (1.3).

Substituting this definition of Fθ into (1.1), the equation of motion may be rewritten
as follows:

J θ̈ + θ t (T + T t )L∗D = FoscL
∗D. (1.7)

In contrast to the case of a hydro-elastically mounted cylinder, the spring restoring
force for a tethered cylinder is dependent on both the mean and time-varying fluid
force components acting on the cylinder.

By following the work of Khalak & Williamson (1999) (and references cited therein),
we may decompose the forces acting on the cylinder into the inviscid and viscous
force components: Fosc = Fpotential + Fvort. The potential force, Fpotential, is the force
which would act on the cylinder in an ideal fluid, and we may determine this force

† In general, for a variable β , we shall define β as the mean value and βt as the time-varying
component.



Flow around a tethered body 121

component analytically. By making this substitution, the natural frequency of the
system within the fluid may be determined.

For the particular case of the tethered cylinder, the rotation of the cylinder, in
conjunction with linear displacement, leads to a nonlinear equation describing the
inviscid fluid forces acting on the system (see Newman 1977 for further details):

Fpotential = −[θ̈L∗D + 2uθ̇θ t cos θ + 2uθ̇ sin θ]mDCA, (1.8)

where mD is the mass of the fluid displaced by the cylinder, and CA is the added-mass
coefficient within the inviscid fluid. For planar motion, the added-mass coefficient is
equal to unity for a cylinder of circular cross-section. For the case of a short tether
length, where the cylinder motion has a large curvature, the added mass is no longer
unity. This case is equivalent to a cylinder immersed within a sinusoidally oscillating
flow, which has been described by Newman (1977) and Lamb (1932).

Substituting this equation into the equation of motion (1.7) and decomposing the
fluid force into the inviscid and vortex force components leads to a nonlinear equation
describing the motion of the cylinder:

(J + L∗2

D2mDCA)θ̈ + [2uθt cos θ + 2u sin θ]mDCAL∗Dθ̇ + [T + T t ]L∗Dθt = FvortL
∗D.

(1.9)

A solution to this problem exists in the limit that L∗2 → ∞, representing the case
where there is no restoring force acting on the system. In this case we approximate
the moment of inertia of the system,

J = mD2
(
L∗2

+ 1
8

)
→ mD2L∗2

, (1.10)

and we substitute ξ = θ tL∗D, where ξ is the displacement of the cylinder in the
direction of motion; and rewrite (1.9) to form

(m + mDCA)ξ̈ = Fvort. (1.11)

This is precisely the equation of motion obtained by Govardhan & Williamson (2003)
for the case of a hydro-elastically mounted cylinder with the restriction that u∗ = ∞;
albeit that the direction of motion in the case of the tethered cylinder is dependent
on the mean fluid forces acting on the cylinder. It is therefore anticipated that as
L∗ → ∞, the motion of a tethered cylinder will approach that of a freely oscillating
cylinder at u∗ = ∞. Given the similarity between the two systems, the hydro-elastically
mounted cylinder may be considered a special case of the tethered cylinder system.
The principal difference between the two systems is that the tethered cylinder, even
with a very large tether length, oscillates at an angle to the free stream, where the
angle is dependent on the mass ratio of the cylinder and the Froude number of
the flow. By contrast, the studies by Govardhan & Williamson (2003) restricted the
motion of the cylinder to be normal to the inflow direction.

In § 2 the methodology used in this investigation is described in detail. Section 3.1
describes the response of the tethered cylinder system as the mass ratio is varied. In
§ 3.2 we consider the response of the tethered cylinder system as the tether length
is varied. Finally, in § 3.2.5 we consider the variation of the critical mass ratio as a
function of tether length.

2. Problem description and methodology
The coordinate system and geometry of the problem are shown in figure 1. Note

that θ is the layover angle formed by the tether and the y-axis, and the tether length
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is measured from the tether attachment point to the centre of the cylinder. The forces
acting on the cylinder are composed of the drag, lift and buoyancy forces and the
tension in the tether. The buoyancy force is combined with the lift force to give a net
vertical force (denoted as FL + B in figure 1).

2.1. Modelling the flow field

The numerical technique employed obtains a solution of the two-dimensional,
incompressible form of the Navier–Stokes equations, expressed in primitive variable
form,

∂u
∂t

+ u · ∇u = − ∇p + ν∇2u, (2.1)

where p is the kinematic pressure, ν is the kinematic viscosity and u =(u(t, x, y),
v(t, x, y)) is the two-dimensional velocity vector. Equation (2.1) is coupled with the
incompressibility condition,

∇ · u = 0, (2.2)

to complete the set. The spatial derivatives are evaluated using a spectral-element
discretization technique. The spatial accuracy is determined at run time by choosing
the order of the tensor product of interpolating polynomials within each macro-
element. In this study ninth-order interpolant polynomials were used within each
element, after a rigorous H-P refinement analysis was performed. Results of this study
are reported in detail in Ryan (2004). For the cases reported herein, the computational
grid comprised 518 macro-elements; the inlet was 15 diameters upstream of the leading
edge of the cylinder, the outlet was 23 diameters downstream of the trailing edge of
the cylinder, and the sidewalls were 30 diameters apart. As the reference frame of the
computational grid was attached to the cylinder, these boundary conditions remained
constant throughout the computation.

Temporal derivatives were evaluated using a classical three-step splitting scheme,
achieving second-order time accuracy. The algorithm employed has been used
previously for a variety of flow problems (for example Sheard, Thompson & Hourigan
2003, Hourigan, Thompson & Tan 2001 and Pregnalato 2003) and is described in
detail in Thompson, Hourigan & Sheridan (1996) and references cited therein.

2.2. The governing equations of motion and the coupling technique

The equations of motion have been determined by relating the instantaneous
acceleration of the cylinder to the fluid forces acting on the cylinder. In Cartesian
coordinates they are written

mẍ = FD − T sin θ, (2.3)

mÿ = (FL + B) − T cos θ. (2.4)

Normalizing these equations, we may write

π

2
m∗ẍ∗ = CD

(
y∗2

L∗2

)
−

(
CL +

π

2Fr2
(1 − m∗)

)
x∗y∗

L∗2
, (2.5)

π

2
m∗ÿ∗ =

(
CL +

π

2Fr2
(1 − m∗)

)
x∗2

L∗2
− CD

x∗y∗

L∗2
. (2.6)

Here x∗ = x/D, y∗ = y/D, are the normalized displacement components and ẍ∗ =
ẍD/u2, ÿ∗ = ÿD/u2, are the normalized components of instantaneous acceleration.
From the solution of the Navier–Stokes equations, (2.1) and (2.2), at the (n+1)st time
step, we have estimates of the fluid velocities and pressure field. We then use these to
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calculate the fluid forcing coefficients, CD and CL, acting on the body at the (n + 1)st
time step. The acceleration of the body is then calculated using (2.5) and (2.6). For each
time step, the solution is successively updated using an Adams–Bashforth/Adams–
Moulton predictor–corrector technique. Details of the predictor–corrector technique
may be found in Ryan (2004).

Note that the Cartesian formulation used for the simulations is based on a point-
mass approximation. This means that the approximation given by (1.10) is assumed.
This is appropriate provided that the tether lengths chosen for investigation are L∗ � 1.
This restriction was the limiting factor in the range of L∗ chosen in this investigation.

Inspection of (2.6) reveals that the equations are controlled by selection of m∗, L∗

and Fr. As will be detailed in the next section, the Froude number was chosen as the
flow-controlling parameter in this study.

2.3. Definition of the controlling parameter

Within the broader field of vortex-induced vibration, the reduced velocity is often
used as the controlling parameter describing the flow field. The reduced velocity is
defined as

u∗ =
u

fnD
, (2.7)

where fn is the natural frequency of the system. For the case of the tethered cylinder,
the reduced velocity can only be determined analytically when considering the natural
frequency of the system within a vacuum. However, even with this simplification, the
dependence of the natural frequency (and hence the reduced velocity) on the drag and
lift forces makes the determination of the reduced velocity impossible from knowledge
of the static variables and inlet conditions alone. Therefore, we have chosen a ‘reduced’
Froude number as our controlling parameter, where

Fr′ =
u√

(gD)(1 − m∗)
=

inertial force

buoyancy force
. (2.8)

This parameter was chosen as it allows an excellent collapse of results across mass
ratios and tether lengths. For all simulations the Reynolds number, based on the inlet
velocity and cylinder diameter, was held constant (Re =200), and the reduced Froude
number was varied independently. For comparison with previous studies, the reduced
Froude number may be related to the reduced velocity (in a vacuum) through the
relation

u∗ =2π

[
π(m∗)(L∗2 + 1/8)

2
[
C2

D + (π/2Fr′2 + CL)2
]1/2

L∗

]1/2

. (2.9)

3. Results and discussion
3.1. Variation of mass ratio

Our initial investigation concerns the analysis of a tethered cylinder with a fixed
tether length (L∗ = 5.0) for various mass ratios (m∗ = [0.1, 0.8]). This tether length
was chosen to agree with previous studies (Ryan et al. 2004a , 2004b). We commence
by investigating the variation of the mean layover angle as a function of the reduced
Froude number.

3.1.1. Mean layover angle results

Figure 2 presents the layover angle results as a function of the reduced Froude
number for a range of mass ratios. The results are in qualitative agreement with the
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Figure 2. Mean layover angle as a function of reduced Froude number, L∗ = 5.0,
m∗ ∈ [0.1, 0.8]; �, m∗ = 0.1; �, m∗ = 0.2; �, m∗ = 0.3; �, m∗ = 0.4; �, m∗ = 0.5; �, m∗ =0.6; �

m∗ =0.7; � m∗ = 0.8.

experimental findings of Carberry & Sheridan (2007). For Fr′ < 0.8, all the results
collapse onto the same curve, regardless of mass ratio. Two distinct response plots
are observed for Fr′ � 0.8. For relatively large mass ratios (m∗ � 0.4), the results
collapse onto a smoothly varying curve for all Fr′ considered. For mass ratios below
0.3, a discontinuous jump is observed at Fr′ � [0.8, 1.0]. The discontinuity results in
an increase in θ of the order 20◦. Beyond Fr′ = 1.0, the results for mass ratios m∗ � 0.3
collapse well onto a smooth curve with θ increasing with increasing reduced Froude
number.

The case of m∗ = 0.4 is of particular interest; here a deviation in the mean layover
angle away from that of higher m∗ cases was noted for Fr′ > 1.2. However, no
discontinuous jump is observed and the results for m∗ =0.4 lie between the higher
and lower m∗ curves at high Fr′.

These findings raise two interesting points. First, the significant jump in θ , noted for
m∗ � 0.3, implies a discontinuous change in the dominant direction of oscillation for
these mass ratios. Prior to the discontinuous increase in θ , the dominant component of
oscillation was in line with the flow field. Beyond the jump, the dominant component
of oscillation was found to be transverse to the flow field. Second, from a simple force
balance, the mean layover angle can be related to the fluid forces acting on the body,
where the relation is given as

θ = tan−1

(
CD

CL + π/2Fr′2

)
. (3.1)

From the form of (3.1), the discontinuous change in θ is directly linked to either a
discontinuous increase in CD and/or a discontinuous decrease in CL. Therefore, from
this result we predict a discontinuous alteration in the mean forces acting on the
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Figure 3. Mean drag coefficient as a function of reduced Froude number. L∗ = 5.0,
m∗ ∈ [0.1, 0.8]. Symbol definitions are the same as for figure 2.

cylinder (for m∗ � 0.3 and Fr′ � [0.8, 1.0]), and hence a discontinuous change in the
wake state.

3.1.2. Mean drag coefficient results

Figure 3 presents the variation of CD as a function of Fr′. As anticipated, a distinct
discontinuous jump in CD is noted for m∗ � 0.3 as the reduced Froude number
increases through the range Fr′ = [0.8, 1.0]. For higher mass ratios, CD increases
continuously for low values of Fr′ before gradually decreasing once more. At high
values of Fr′ (Fr′ � 3.0), the mean drag found for m∗ � 0.4 is significantly less than
that found for m∗ � 0.3.

For high mass ratio cases (m∗ � 0.5), the drag reduces to CD � 1.2 at high Fr′

numbers. Remarkably, this value of CD is smaller than that observed at Fr′ � 0.2,
implying a change in the wake structure interaction at these high Fr′ values when
compared to low Fr′. This variation is independent of the flow Reynolds number (Re
was held constant for all simulations) and it is assumed that it is purely the motion of
the cylinder which induces this reduction in drag coefficient. As with the findings for
θ , the particular case of m∗ = 0.4 represents an interesting case. While not exhibiting a
discontinuous increase in CD , the m∗ = 0.4 case does exhibit appreciably higher drag
at relatively high values of Fr′ (Fr′ � 2).

For low mass ratios (m∗ � 0.3), the increase in CD is significant across the
discontinuous jump. The variation in CDmax was found to be inversely proportional
to the mass ratio, the highest CD found being CD = 2.12 for m∗ = 0.1. In contrast to
the high m∗ results, for m∗ � 0.3 the increase in CD was found to remain significant
up to the highest Fr′ considered, (Fr′ = 50). For each of these low m∗ cases, the drag
observed at Fr′ � 3.0 remained almost constant for all higher Fr′ values considered.

There is a subtle difference in the mean drag response for reduced Froude numbers
beyond the discontinuous jump which varies as a function of mass ratio. For the
lowest mass ratio case investigated, m∗ = 0.1, and beyond the discontinuity, the mean
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Figure 4. Mean lift coefficient as a function of reduced Froude number. L∗ = 5.0,
m∗ = [0.1, 0.8]. Symbol definitions are the same as for figure 2.

drag increases further in the range Fr′ =[0.8, 1.0], before smoothly decreasing. Within
the same range, a smaller continuous increase in CD is noted for m∗ = 0.2; however,
no further increase in CD is noted within this range for m∗ = 0.3. This finding may
imply that the mechanism causing the discontinuous increase for the case of m∗ = 0.1
may be subtly different when compared with higher mass ratio cases. As Fr′ increases
beyond Fr′ � 1.2, all mass ratio cases that experienced a discontinuous jump show a
further smooth increase in CD up to Fr′ � 3.0.

3.1.3. Mean lift coefficient results

Figure 4 shows the mean lift coefficient as a function of Fr′. A significant variation
in CL is observed associated with the jump in θ , in agreement with the conclusions in
§ 3.1.1. Negative values of CL are observed for all mass ratios considered. For mass
ratios that do not exhibit a jump in θ (m∗ � 0.4), the variation in CL away from
the zero line is quite small, the largest variation being for m∗ =0.4, where a local
minimum of CL � −0.12 exists at Fr′ � 1.2. For higher reduced Froude numbers, the
lift coefficient for m∗ � 0.5 actually increases such that positive lift is observed, with
a local maximum at Fr′ � 2.0. However, this local maximum is negligibly small when
compared with the minimum values observed, and CL → 0 for large Fr′ for all mass
ratios considered.

Mass ratios which exhibit a jump in θ (m∗ � 0.3) exhibit a significant decrease
in CL at the corresponding Fr′ where the jump in θ is observed. For these cases, a
sharp local minimum in CL is observed at Fr′ � [0.8, 1.0] (CL � −0.36 in each case).
For higher reduced Froude numbers, the mean lift coefficient smoothly increases once
more, approaching CL = 0 at high Froude numbers.

The variation in CL is perhaps more surprising than that noted for CD ; while a
finite mean lift has been noted for the case of a forcedly oscillating cylinder (Blackburn
& Henderson 1999), this has only been observed for a narrow band of oscillations
where P+S shedding was observed. Given the broad range of Fr′ over which a finite
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Figure 5. Amplitude of oscillation, A∗, as a function of reduced Froude number. L∗ = 5.0,
m∗ = [0.1, 0.8]. Symbol definitions are the same as for figure 2.

mean lift is observed for the case of a tethered cylinder, it is presumed that a different
mechanism is behind the current observations. Three major differences exist between
the tethered cylinder and the hydro-elastically mounted cylinder systems. First the
tethered cylinder system oscillates at an angle to the free stream; second the tethered
cylinder system oscillates along an arc; and third the restoring force for the tethered
cylinder system is nonlinearly coupled with the fluid forces acting on the cylinder.
Any of these factors could individually or in combination account for the negative CL

values observed in figure 4. As will be discussed further in § 3.1.6, the non-negligible
CL was found to be directly related to the angle at which the cylinder is oscillating,
coupled with the amplitude of oscillation.

The variation in both mean lift and drag indicates a significant change in the wake
flow field. In particular, for m∗ � 0.3 it is anticipated that the dramatic increase in
CD and |CL| is associated with a corresponding discontinuous increase in A∗.

3.1.4. Amplitude of oscillation results

Figure 5 shows A∗ as a function of Fr′. As predicted, a significant jump in the
amplitude is observed for m∗ � 0.3, occurring in the reduced Froude number range
Fr′ � [0.8, 1.0]. For lower reduced Froude numbers, the amplitude data collapse
reasonably well regardless of mass ratio. For m∗ > 0.4, a relatively small local
maximum in A∗ is observed in the range Fr′ � [1.0, 2.0]. The range of Fr′ at which
non-negligible oscillations are sustained varies inversely with the cylinder mass ratio.
This may be compared with the results of Govardhan & Williamson (2000) who
reported similar behaviour when considering the case of the hydro-elastically mounted
cylinder.

By contrast, the oscillation amplitude observed for m∗ � 0.3 remained significant
up to the highest Fr′ considered (Fr′

max = 50). We found significant amplitudes for
m∗ =0.4 over a range of reduced Froude numbers. However, at high Fr′ the oscillation
amplitude for m∗ = 0.4 approaches A∗ = 0.1.
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Figure 6. Oscillation amplitude, A∗ as a function of frequency ratio. L∗ = 5.0, m∗ = [0.1, 0.8].
Symbol definitions are the same as for figure 2.

3.1.5. Comparison with the hydro-elastically mounted cylinder

So far, the results have indicated the presence of two interesting phenomena.
The first is that the mean lift coefficient is negative for a significant part of the
parameter space. The second is that a mass ratio exists below which a jump in A∗ is
observed; this jump occurs within a narrow range of Fr′. For mass ratios that exhibit
this discontinuous increase, large-amplitude oscillations are observed for all Fr′ � 0.8
investigated.

It is of interest to examine whether the dramatic increase in amplitude is due to the
same phenomena underlying the ‘critical mass ratio’ observed for the hydro-elastically
mounted cylinder. Qualitatively the two phenomena appear to be the same, and we
shall refer to the mass ratio at which the jump occurs as the critical mass ratio (m∗

crit).
Figure 6 shows the amplitude as a function of a frequency ratio (f/fosc = (u∗/f ∗)St),
where f is the shedding frequency for a stationary cylinder at the same Reynolds
number, and fosc is the principal oscillation frequency. Our results are qualitatively
similar to those found by Govardhan & Williamson (2000) for a low mass-damped
hydro-elastically mounted cylinder. It should be noted that beyond the low-amplitude
oscillations (where the frequency ratio f/fosc � 1), the mean layover angle θ > 45◦ and
the cylinder is oscillating predominantly transverse to the free stream, so the tethered
cylinder system should behave similarly to the hydro-elastically mounted cylinder.

For all mass ratios considered, a linear increase in A∗ is noted as a function of
frequency ratio. Within this range (corresponding to θ < 45◦), the cylinder is oscillating
predominantly in line with the flow. For m∗ � m∗

crit a discontinuous increase in A∗

is noted (while the frequency ratio remains essentially constant), and for m∗ > m∗
crit

a dramatic reduction in A∗ is noted, and the frequency ratio increases. The linear
increase in amplitude noted in all cases is reminiscent of the ‘initial’ branch observed
for the hydro-elastically mounted cylinder; the peak value of oscillation is reminiscent
of the ‘upper branch’; and (for m∗ >m∗

crit) the low-amplitude results are reminiscent
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of the ‘lower’ branch. Based on this qualitative assessment, it is probable that similar
mechanisms are at work in both the tethered and hydro-elastically mounted cylinder
systems. We therefore conclude that the phenomena are essentially the same in both
cases, although the addition of a tether alters the critical mass ratio at which a jump
is observed. Prior work by Ryan (2004), and Ryan (2004b) has indicated that the
critical mass ratio for a hydro-elastically mounted cylinder at Re = 200 is m∗

crit � 0.1.
If what we have observed in § 3.1.4 is evidence of the same mechanism, then the
tethered cylinder has a significantly higher critical mass ratio for the same Reynolds
number. Indeed, Ryan (2004) found the critical mass ratio for the tethered cylinder
with L∗ = 5.0 and Re= 200 to be m∗

crit = 0.36. We will consider the effect of tether
length on the critical mass ratio in § 3.2.5.

In the next section, we turn our attention to another phenomenon apparent when
comparing the tethered cylinder to the hydro-elastically mounted cylinder, namely
the presence of a non-zero mean lift. Section 3.1.6 considers the flow structures in the
wake of a tethered cylinder over one cycle of oscillation. The conclusion from this
analysis is that the variation in mean lift is due to the combination of the cylinder
oscillation and the mean layover angle. This result is confirmed in § 3.2, where we
investigate the effect of tether length (effectively changing the radius of curvature of
motion). Here, we find that the mean lift is relatively independent of the tether length.
Hence, we conclude that it is the layover angle, and not the radius of curvature, which
is responsible for the finite mean lift.

3.1.6. The vortex-shedding process in the wake of a tethered cylinder

As noted in § 3.1.3, a non-zero mean lift coefficient is observed for a majority of the
cases investigated. It should be reiterated that, for both low and very high Froude
numbers, the mean lift approaches zero. The finite mean lift is clearly influenced by
the angle at which the moving cylinder oscillates with respect to the surrounding fluid.
While the wake structures and the cylinder form a coupled system, this section will
describe the flow from the perspective of the influence of the cylinder motion on the
formation and propagation of flow structures in the wake. It should be remembered
that the wake structures continually influence the forces acting on the cylinder and
its subsequent motion in a feedback loop.

This section will concentrate on the case of a cylinder oscillating with a high
amplitude. Specifically, the vortex-shedding cycle will be investigated for the case of
m∗ =0.1 and Fr =0.8. The case of low amplitude oscillations has previously been
considered by Ryan, Thompson & Hourigan (2004b).

Figure 7 shows a snapshot of the vortex structures in the tethered cylinder wake.
The cylinder is at the top of its cycle, defined as the most anticlockwise position, and
is momentarily stationary. Two related features of the shedding wake distinguish this
case from either the flow past a fixed cylinder or past a freely oscillating cylinder.
First, the wake is clearly shedding at an angle to the inflow. In itself, this is indicative
of the mean negative lift acting on the tethered cylinder. Second, the fluid structures
are shed in discrete vortex pairs. These structures induce a jet of fluid to travel in the
positive y-direction (relative to the vortex pair) inducing both the mean negative lift
and the angle at which the wake is shed. The motion of the cylinder is responsible
for inducing the vortex pairing.

Figure 8(a) to 8(d) show a sequence of close-up snapshots of vorticity in the wake
at quarter-cycle intervals. Figure 8(a) shows the shedding structures, taken for the
case of the cylinder moving midway between the bottom position and the top position
of the oscillation cycle. The cylinder is instantaneously moving both upstream and
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Figure 7. Vorticity field ωz for m∗ = 0.1, L∗ = 5.0 and Fr = 0.8, for the cylinder at the top of
the oscillation cycle. Contours are evenly spaced over the range (blue) −5.0 � ωz � 5.0 (red);
with 	ωz = 0.5.

in the positive y-direction. At this position in the oscillation cycle, both a negative
and a positive vortex structure are forming behind the cylinder. The instantaneous
streamlines indicate that the motion of the cylinder is inducing an upstream and
positive y-component of velocity in the fluid directly behind the cylinder. This acts to
move the positive vortex core upstream and in the positive y-direction, and increases
the intensity of the negative vortex core.

Figure 8(b) shows the instantaneous vortex structures a quarter of a cycle later.
Here, the cylinder is at the top of its cycle (i.e. the most anticlockwise position)
and is stationary. The negative vortex core has commenced convecting downstream.
The motion of the cylinder prior to this snapshot has drawn the positive vortex
core upstream and in the positive y-direction, such that it is now directly behind the
cylinder. Importantly, when compared to the case of a stationary cylinder, the positive
vortex is closer to the newly shed negative vortex core. The negative vortex core is
stretched around the positive vortex core, and from the instantaneous streamlines, a
jet of fluid has formed between the two vortex cores. The jet is travelling both in the
upstream and positive y-direction.

In figure 8(c), the cylinder is midway between the top and bottom of the oscillation
cycle, and is moving in a downstream and negative y-direction. The positive vortex
core has shed from the cylinder, and is positioned downstream and above the rear
cylinder surface. While the positive vortex core has shed, it remains close to the
cylinder surface. As may be seen from the instantaneous streamlines, the position of
the positive vortex core inhibits the growth of the developing negative vortex core,
which is located at the cylinder surface. The jet between the shed positive and negative
vortices is now directed principally in the positive y-direction. In this snapshot, the
shed negative vortex core is still considerably elongated in the cross-stream direction.

In figure 8(d), the cylinder is at the bottom of its oscillation cycle and is
instantaneously stationary. The positive vortex core has convected further downstream
allowing the developing negative vortex core to grow slightly. However, from the
instantaneous streamlines, the growth of the developing negative core is still inhibited
by the position of the positive vortex core. At this point, the shed positive vortex core
has been stretched in the cross-stream direction and is becoming more diffuse. By
contrast, the shed negative vortex core maintains its intensity over a small area, and
is becoming less elongated. It appears that the jet acting in the positive y-direction,
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Figure 8. Vorticity field ωz for m∗ = 0.1, L∗ = 5.0 and Fr = 0.8: (a) for the cylinder moving
from the bottom of the oscillation cycle to the top of the oscillation cycle; (b) for the cylinder
at the top of the oscillation cycle; (c) for the cylinder moving between the top of the oscillation
cycle and the bottom of the oscillation cycle; (d) for the cylinder at the bottom of the oscillation
cycle. Contours are evenly spaced over the range (blue) −5.0 � ωz � 5.0 (red); with 	ωz = 0.5.
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combined with the free-stream velocity maintains the intensity of the negative vortex
core.

Returning briefly to figure 8(a), it may be seen that the combined action of the jet
and the free-stream velocity continue to maintain a small intense negative vortex core
as the vortex pair convect downstream.

In summary, the motion of the cylinder as it moves from the bottom to the top
of the oscillation cycle acts to induce the positive vortex core to move upstream
and in the positive y-direction. The subsequent position of the positive vortex core
induces a jet between itself and the newly shed negative vortex core. The position of
the positive vortex core also inhibits the growth of the developing negative vortex
core. This results in a delay of the shedding of the negative vortex cores and allows
vortex pairing in the wake. A jet forms between each shed vortex pair, which induces
a momentum shift from the inflow direction to the crossflow direction, inducing a
negative mean lift. A momentum balance of the narrow intense jet (directed upward)
and the broader less-intense jet (directed downward) supports this supposition. From
this analysis, the following hypothesis may be formed:

‘The negative mean lift is due to the inclined angle to the free stream at which the
cylinder oscillates.’

As discussed in the Introduction, very few studies have analysed the motion of a
cylinder confined to oscillate at an angle other than 90◦ or 0◦ to the flow field. Of these,
only the numerical work of Kocabiyik (2003) has identified a finite mean lift force.
Kocabiyik (2003) restricted the motion of the cylinder such that upstream oscillations
coincided with a negative y-oscillation and downstream oscillations coincided with a
positive y-oscillation (i.e. the angle of oscillation of the cylinder was essentially 90◦

from that described in the present study). She found a positive mean lift occurred for
a wide range of oscillation amplitudes.

3.2. The effect of varying the tether length

In this section, we investigate the effect of varying the normalized tether length
parameter (L∗ =L/D). For a majority of the results reported in this section, the
parameter space has been restricted to consider only m∗ = 0.2; however, in § 3.2.5 this
restriction is removed and we determine the critical mass ratio, m∗

crit (as defined in
§ 3.1.5 for a tethered cylinder) as a function of tether length.

The value of m∗ = 0.2 was chosen, because, for the case of L∗ = 5, the large-
amplitude oscillation branch was noted for Fr � 0.8 for this mass ratio. This branch
of tethered cylinder response exhibits large oscillation amplitudes of up to 0.5D, and
it is therefore interesting to examine if this mode exists for both larger and smaller
tether lengths.

Tether length ratios in the range L∗ =[1, 10] were investigated. As the tether length
is measured from the centre of the cylinder, L∗ < 0.5 would represent a cylinder which
is pivoted internally. The limiting case of L∗ for very small tethers is L∗ → 0, where
L∗ = 0 represents a cylinder which may undergo pure rotational oscillations about its
centre.

As the tether length increases, the amount of curvature for a given oscillation
amplitude decreases. For example, for L∗ = 15, and A∗ = 0.5, the angular amplitude,
θ ′ is only 1.9◦. This may be compared with the same amplitude, A∗, for tether length,
L∗ = 5 (θ ′ � 5◦) and for a tether length L∗ = 1 (θ ′ � 26.6◦).

For large tether lengths the tethered cylinder closely approximates a freely oscillating
cylinder restricted to oscillate at an angle to the flow field, where the angle of
oscillation is defined by (3.1). For large tether lengths, the curvature of the cylinder
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Figure 9. Mean layover angle as a function of reduced Froude number for m∗ = 0.2 and
L∗ ∈ [1, 10]. �, L∗ =1.0. �, L∗ = 2.0; ∇, L∗ = 3.0; �, L∗ =4.0; �, L∗ =5.0; �, L∗ = 7.5; �,
L∗ =10.0.

path, represented by the angular amplitude, θ ′, varies with the amplitude of oscillation
in the direction of motion, A∗, as

θ ′ = tan−1

(
A∗

L∗

)
. (3.2)

The study of large tether lengths provides a link between research on a tethered
cylinder and prior studies on freely oscillating cylinders with low mass and damping
(see for example Khalak & Williamson 1999 and Govardhan & Williamson 2000).
Of particular interest is the effect of the tether length on the critical mass ratio, m∗

crit,
when compared with that found for a freely oscillating cylinder at the same Reynolds
number (see Ryan et al. 2004b), and whether the imposed oscillation angle has any
significant effect on the cylinder response.

3.2.1. Mean layover angle results

Figure 9 shows the mean layover angle as a function of reduced Froude number for
L∗ = [1, 10]. An excellent collapse of data is observed. The results show an inflection
at θ � 45◦ at Fr′ � 1. Below Fr′ � 1 the rate of change of θ is considerably greater than
for Fr′ > 1. If we consider (3.1) (rewritten below), relating the mean layover angle to
the mean hydrodynamic force components, this collapse of data is perhaps not too
surprising:

θ = tan−1

(
CD

CL + π/2Fr′2

)
(3.3)

The right-hand side of (3.3) is virtually independent of tether length, although it is
anticipated that there is some variation in CD and CL with tether length. Therefore,
(3.3) implies that the mean layover angle must also be virtually independent of tether
length.
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Figure 10. Mean drag coefficient as a function of reduced Froude number for m∗ = 0.2 and
L∗ ∈ [1, 10]. (a) L∗ = 1.0 and 2.0, (b) L∗ ∈ [3.0, 10.0]. Symbol definitions are the same as for
figure 9.

While not apparent from the results in this figure, all tether length cases exhibit
a jump in the mean layover angle for this mass ratio (m∗ =0.2). However, for the
case of L∗ = 1.0, this discontinuous increase is comparatively small. Interestingly, the
reduced Froude number where the jump is observed increases proportionately with
tether length.

3.2.2. Mean drag coefficient results

Figure 10 shows the mean drag coefficient as a function of reduced Froude number
for L∗ =[1, 10] and m∗ = 0.2. On the left-hand side are tether lengths L∗ = 1.0 and
2.0; on the right-hand side are tether lengths L∗ ∈ [3.0, 10.0]. For a majority of tether
lengths investigated, a jump in θ was observed as the reduced Froude number was
increased beyond a critical value.

Considering figure 10, as the reduced Froude number is increased, the drag
coefficient is observed to undergo a discontinuous increase for all tether lengths
considered. For tether lengths in the range L∗ ∈ [2.0, 10.0], a discontinuous jump is
observed at a critical Froude number. The value of the critical Froude number is
observed to increase slightly with tether length. Further, the maximum drag coefficient
observed decreases with increasing tether length. For L∗ = 1.0, the response of the
mean drag coefficient is found to be markedly different. While a small jump in
CD is observed, it is markedly reduced when compared with larger tether lengths.
Further, a small, discontinuous decrease in CD is observed at Fr′ � 0.9. Following this
discontinuity, CD increases smoothly with increasing Fr′.

Considering the mean drag results for all the tether lengths considered in figure 10,
it is observed that a significant variation in the maximum value of the mean drag
coefficient exists as a function of tether length. As the mean drag was shown to vary
with oscillation amplitude in § 3.1.4, it is interesting to determine the maximum mean
drag as a function of tether length, as this may reflect the maximum amplitude of
oscillation expected.

We determined the maximum mean drag coefficient for a wide range of tether
lengths (L∗ =[0.8, 10]); the results of this study are shown in figure 11. For the
range L∗ = [2, 10], the maximum mean drag is observed to decrease with L∗. We may



Flow around a tethered body 135

L*

CD(max)

0 2 4 6 8 10
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Figure 11. Maximum value of mean drag coefficient across all reduced Froude numbers
considered, as a function of normalized tether length for m∗ = 0.2. �, L∗ � 1.0, � L∗ > 1.0; for
L∗ � 1.0, the maximum mean drag coefficient was found to grow with increasing tether length.
For higher tether lengths, the maximum mean drag was found to decrease with increasing
tether length.

approximate this decrease with the equation

CD(max) = 1.6071e−0.127L∗
+ 1.15. (3.4)

In this equation, the constant 1.15 is the mean drag coefficient calculated for a freely
oscillating cylinder with m∗ =0.2 at Re= 200, for an infinite reduced velocity and no
damping (see Ryan et al. 2004b). Equation (3.4) reveals that the maximum mean drag
coefficient decreases with tether length, such that, for the case of L∗ → ∞, the mean
drag response approaches the case of a freely oscillating cylinder with no damping
and u∗ = ∞. For tether lengths L∗ < 2 the maximum mean drag coefficient begins to
decrease. Assuming that the variation in the maximum mean drag coefficient is due
to the oscillation of the cylinder, it should be expected that as L∗ → 0 the mean drag
approaches that observed for a fixed cylinder (CD � 1.36 for a fixed cylinder with
Re = 200).

3.2.3. Mean lift coefficient

Figure 12 shows the mean lift coefficient as a function of Fr′ for L∗ =[1, 10] and
m∗ =0.2. As was previously shown in § 3.1.3, for L∗ = 5 a negative mean lift coefficient
is noted for a majority of reduced Froude numbers investigated. As expected, this
overall trend is noted for the entire range of tether lengths considered here.

For all tether lengths investigated, there was a value of Fr′ at which a local minimum
in CL was observed. The value of Fr′ at which this local minimum is observed varies
slightly with tether length; however, it is always found in the range Fr′ = [0.8, 1].
Interestingly, a very small positive mean lift coefficient was found for the case of
L∗ = 1 and 2 for Fr′ � 2. This implies that for these two cases there is a difference
in the shedding process in this range of Fr′ when compared to longer tether length
cases with the same inflow conditions. While not shown in figure 12, this positive lift
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Figure 12. Mean lift coefficient as a function of the reduced Froude number, Fr′, for m∗ = 0.2
and L∗ =[1, 10]. (a) L∗ =1.0 and 2.0, (b) L∗ ∈ [3.0, 10.0]. Symbol definitions are the same as
for figure 9.

coefficient was observed up to Fr′ � 10.0. Ryan (2004) reported that the recording of
a positive mean lift occurs in conjunction with a highly asymmetrical wake, for both
cases of L∗ = 1.0 and 2.0, as θ → 90◦. From observation, this small positive mean lift
is due to a minor asymmetry of the wake for these tether lengths and mean layover
angles. For higher values of Fr′, corresponding to θ → 90◦, the mean lift approaches
zero for all tether lengths considered.

In § 3.1.6, it was hypothesized that the negative mean lift coefficient could be due to
a combination of the oscillation amplitude, and the angle between the flow direction
and the cylinder motion. An alternative hypothesis is that it could be due to the
imposed curvature on the motion of the cylinder by the tether. The observation
that the local minimum in CL occurs at θ � 50◦, regardless of tether length in the
range L∗ = [2.0, 5.0], lends weight to the first hypothesis. The small variation in the
minimum value of CL, as a function of L∗ in the range L∗ =[2.0, 5.0], indicates a
correspondingly small variation in the amplitude of oscillation in this range of L∗.
This variation in amplitude is discussed in the next section.

3.2.4. Amplitude of oscillation results

Figure 13 shows the amplitude of oscillation, A∗, as a function of the reduced
Froude number, Fr′, for tether lengths in the range L∗ = [1.0, 10.0] and m∗ =0.2. For
all tether lengths investigated, a rapid increase in A∗ was noted as Fr′ was increased
beyond Fr′ � 1. The dramatic increase in A∗ as a function of Fr′ corresponds to the
rapid increase noted for L∗ = 5 and m∗ <m∗

crit described in § 3.1.4 and § 3.1.5.
In § 3.1.5, for m∗ � m∗

crit and L∗ = 5.0, the increase in A∗ as a function of Fr′ was
described as discontinuous. From figure 13, the increase in A∗, as a function of
Fr′, is clearly discontinuous for L∗ = [3.0, 7.5]. However, for L∗ = 1.0 and 2.0, the
amplitude increases rapidly but smoothly as a function of Fr′. For L∗ = 10.0, there is
a discontinuous jump at Fr′ � 1.1; however, this jump is considerably smaller when
compared to other tether length results. As will be shown in § 3.2.5, for L∗ = 10.0, m∗

crit

is very close to and possibly marginally smaller than for the case of m∗ = 0.2 shown
here. Should m∗

crit be less than 0.2 for L∗ = 10.0, then the amplitude should increase
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Figure 13. Amplitude of oscillation, in the direction of motion, as a function of the reduced
Froude number, Fr′, for m∗ = 0.2 and L∗ = [1, 10]. (a) L∗ = 1.0 and 2.0, (b) L∗ ∈ [3.0, 10.0].
Symbol definitions are the same as for figure 9.

smoothly, in a fashion similar to the case of m∗ = 0.4 and L∗ = 5.0 shown previously
in § 3.1.4.

For Fr′ > [0.8, 1.0], the amplitude of oscillation quickly reaches a steady value
invariant of further increases in Fr′, up to and including the highest Fr′ investigated
(here Fr′

max = 50). This amplitude corresponds to the highest amplitude observed for
the range of Fr′ investigated. Of interest is that this maximum value of A∗ varies
only slightly with tether length. A high maximum amplitude is observed even at small
tether lengths as low as L∗ =1.0.

Figure 14 shows the maximum amplitude of oscillation as a function of L∗ across all
Fr′ considered in this investigation. For L∗ � 3.0, the amplitude decreases slowly with
increasing tether length. The maximum amplitude observed across all tether lengths
investigated occurs at L∗ � 3.0. Comparing figure 11 with figure 14, a similarity in
the response of CD(max) as a function of L∗, and A∗

max as a function of L∗, is observed.
This supports the hypothesis that the mean drag coefficient may be related directly
to the amplitude of oscillation, as discussed previously in § 3.2.2.

3.2.5. The critical mass ratio as a function of tether length

The final part of the results section considers the variation of the critical mass
ratio with tether length. It was noted in § 3.1.2 that the critical mass ratio at which a
discontinuous jump in A∗, CD and θ was observed was approximately m∗ =0.36. This
value is considerably higher than that found for the hydro-elastically mounted cylinder
at the same Reynolds number (see Ryan et al. 2004b), and it is therefore reasonable
to assume that m∗

crit varies as a function of L∗. Further supporting evidence may be
found when considering the equation of motion as L∗ → ∞. In this case, the equation
of motion reverts to the same form as that found by Govardhan & Williamson (2003)
for the case of a hydro-elastically mounted cylinder; albeit that the current equation
allows the cylinder to oscillate at a mean layover angle to the flow, where the angle
is specified by the mean hydrodynamic forces acting on the cylinder.

This raises the question of why should a hydrodynamically mounted cylinder
oscillating at a mean layover angle (other than transverse) to the free stream have the
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Figure 14. Maximum amplitude of oscillation, in the direction of motion, as a function of
L∗, for m∗ = 0.2.

same m∗
crit when compared to previous studies, which have only considered cylinders

mounted such that they are restricted to move transverse to the free stream?
Based on the results already presented in this paper, a partial answer to this question

can be made. Referring back to figure 9, we see that the jump in θ occurs at roughly
the same θ in each case, regardless of tether length. For the special case of a buoyant
tethered cylinder, this corresponds to the jump in θ occurring at approximately the
same reduced Froude number. This is simply due to the fact that the reduced Froude
number controls the mean hydrodynamic forces acting on the cylinder, and hence
controls the mean layover angle. From this perspective, for m∗ <m∗

crit it is reasonable
to expect the jump to occur at roughly the same Fr′ irrespective of tether length (as
observed in this study).

Considering the amplitude results for m∗ <m∗
crit in all the cases reported thus

far, we observe that once the critical Fr′ is exceeded, the amplitude of oscillation
remains relatively constant up to the largest Fr′ considered (corresponding to θ → 900).
Therefore, from our findings, we may conservatively predict that when comparing
several mass ratios at a given tether length and at θ → 900, any jump in A∗ as a
function of m∗ would also be observed for any layover angle beyond the critical value
of Fr′. This result is clear when considering either figure 5 or 13.

In this section we consider the variation in system response as we vary m∗ for
various tether lengths; however, given the previous discussion we will restrict our
attention to the case where θ → 900, i.e. the fully laid over case. This reduces the mean
lift to zero, and therefore most closely approximates the case of a hydro-elastically
mounted cylinder mounted to oscillate transverse to the free stream. The previous
results also provide sufficient evidence to believe that the critical mass ratio observed
as θ → 900 is the same as that observed at lower θ values. To obtain these large
layover angles, the reduced Froude number was fixed for all the following simulations
such that Fr′ =50.
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Figure 15. (a) Amplitude of oscillation, (b) phase lag between the oscillation and forcing
signal, and (c) frequency ratio of a tethered cylinder oscillating at Fr′ = 50; for m∗ = [0.02, 0.72]
and L∗ = 5.

We commence by once again considering the case of L∗ =5.0. Figure 15 shows
the response of the system over the range of mass ratios m∗ = [0.02, 0.7]. Three
response modes are observed, which we will tentatively refer to as the ‘upper’, ‘lower’,
and ‘small-amplitude’ modes of oscillation. These modes have been named as there
are several similarities in the response when compared to the low mass-damped
hydro-elastically mounted cylinder.

Figure 15(a) shows the oscillation amplitude as a function of m∗. We observe that
for m∗ < m∗

crit (hollow circles) a large-amplitude oscillation is observed. This amplitude
decays gradually with increasing mass ratio. As m∗ → m∗

crit, the rate of decay in A∗

increases significantly until at m∗ = m∗
crit, a discontinuous decrease in A∗ is observed

as the system changes from the ‘upper’ mode to the ‘lower’ mode of oscillation.
In the range m∗ = [0.38, 0.46], corresponding to the ‘lower’ mode of shedding (filled
circles), the amplitude remains reasonably high. However, the data clearly show a
linear decline in amplitude with increasing m∗. A dramatic reduction in A∗ is observed
at m∗ � 0.47 as the system changes from the ‘lower’ branch to the ‘small-amplitude’
branch of oscillation. For mass ratios beyond this second discontinuous decrease in
A∗, only very small amplitudes are observed. Within this mode, the amplitude of
oscillation is remarkably constant irrespective of any further increases in m∗.

Figure 15(b) considers the phase lag between the oscillation force in the direction
of motion, defined by equation (1.6), and the cylinder oscillation itself. It is this force
component which drives the oscillations observed and includes both the vortex and
potential force components. Following the work of Khalak & Williamson (1999), we
obtain the phase lag between these two signals by taking the Hilbert transform of
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both signals, which provides the instantaneous phase for each signal. By then taking
the averaged difference between these phase lags for each signal, we were able to
obtain the average phase lag between the forcing and oscillation signals.

We observe that the only variation in the phase lag occurs within the upper mode.
When considering the results of Govardhan & Williamson (2003) for the case of
the hydro-elastically mounted cylinder, a change in the total phase is noted at the
transition from the upper to the lower branch of oscillation. More recent studies
of the hydro-elastically mounted cylinder, at significantly lower Reynolds numbers
(comparable to the current study), by Leontini et al. (2006) indicate that a steady
variation of the total phase may be observed within a branch of shedding which is
qualitatively similar to the results in figure 15(b). For m∗ in the range 0.16 to 0.38,
the results indicate that the phase is greater than 1800; that is, the motion leads the
input force. Assuming that both the force signal and the oscillation signal are simple
sinusoids with the same fundamental frequency, this would indicate that energy is
being transferred from the cylinder to the fluid. An energy transfer such as this is
unsustainable over a single period of oscillation.

This somewhat odd result is clarified if we consider the time histories of both
the force and the oscillation of the cylinder (see figure 16). Each panel shows the
oscillation signal (solid line) and the oscillation force signal (dashed line) over 4 cycles
of oscillation. Figure 16(a) shows the results for m∗ =0.02. Here, both the oscillation
trace and the force trace clearly show the same dominant frequency and are in phase.
Increasing the mass ratio to m∗ = 0.16 (figure 16b), which shows the largest phase
lag in figure 15, we observe a significant change. Here the forcing signal has two
dominant frequency components; however, the oscillation still shows a profile similar
to the lower mass ratio case, and is clearly dominated by one frequency component.
This variation in the frequencies dominating the force and the oscillation signals
accounts for the discrepancy observed with the phase lag. In this study, the phase lag
is defined as the lag of the motion signal behind the force signal. Here, the frequency
of the motion trace is used when determining the frequency at which the phase lag
should be calculated. As the force trace has more than one frequency for m∗ = 0.16,
it is possible that the phase lag may be greater than 1800. This indicates that the
energy to drive the motion is derived from higher-frequency force components.

As the mass ratio is increased further, the forcing signal gradually becomes more
dominated by a single frequency, until, once the system is oscillating in the ‘lower’
mode, the same frequency is observed for both the oscillation and the forcing signals,
and the two signals are clearly out of phase (figure 16c).

Referring back to figure 15(c), we observe that there is a significant variation in the
frequency of oscillation when the system changes from one mode to another. In this
figure, the frequency of oscillation has been normalized by the shedding frequency of
a fixed cylinder. It is clear for both the ‘upper’ and the ‘lower’ modes of oscillation
that the frequency of oscillation drives the shedding frequency, and therefore the
shedding is said to be ‘synchronized’ with the oscillation frequency. Given the time
traces in figure 16, the fact that fosc/f passes through unity in the ‘upper’ branch
probably explains why two frequency components are observed in the forcing signal.
For example, for m∗ = 0.16, fosc/f � 1, which may induce a beating effect with the
natural shedding frequency from a fixed cylinder. This beating effect is lessened as the
mass ratio is increased and the oscillation frequency moves away from the shedding
frequency of a fixed cylinder.

A significant transition in the oscillation frequency is observed as the cylinder
oscillations move from the ‘upper’ to the ‘lower’ mode. In the ‘lower’ mode, the
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Figure 16. Time trace of (solid line) oscillation, and (dashed line) fluid forcing acting on
the tethered cylinder. (a) m∗ = 0.02, (b) m∗ = 0.16, and (c) m∗ =0.38. In each case L∗ = 5 and
Fr′ = 50.

cylinder oscillations are clearly driving the shedding, and the results are reminiscent of
the ‘lower’ branch for the hydro-elastically mounted cylinder described by Govardhan
& Williamson (2003). Also of note is the ‘low-amplitude’ mode; here the frequency
of oscillation approaches the shedding frequency for a fixed cylinder, but up to the
highest m∗ considered, the value of fosc/f never reaches unity.

Having carefully described the modes observed for L∗ = 5.0, we are now in a
position to consider the effect of varying the tether length on the cylinder motion. In
particular, we wish to determine the critical mass ratio as a function of tether length,
that is, the mass ratio at which we observe a transition from the ‘upper’ to the ‘lower’
modes of oscillation.

Figure 17 shows the amplitude of oscillation results for a range of mass ratios
for tether lengths L∗ = 5.0, 10, 20 and 50. For each case, the transition from the
‘upper’ mode to the ‘lower’ mode is clearly evident. Two points are clear from this
figure. The first is that the critical mass ratio at which a transition from the ‘upper’
to the ‘lower’ mode of oscillation decreases with increasing tether length. Second,
the average amplitude of oscillation in the ‘lower’ mode of oscillation is observed to
increase slightly with decreasing tether length. It is apparent that for the limiting case
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Figure 17. Amplitude of oscillation as a function of mass ratio for various tether length
ratios; in each case Fr′ = 50.
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Figure 18. Mean layover angle as a function of reduced velocity for m∗ = 0.2 and
L∗ = [1, 10].

of m∗ → 0, an amplitude of oscillation of A∗ � 0.5 is observed independent of tether
length.

The same study has been performed over a range of tether lengths (L∗ = [2, 50])
and the findings are shown in figure 18. Here the variation in critical mass ratio as
a function of tether length is apparent. A fit of the data has been made, and it was
found for Re =200 that

m∗
crit =0.062 +

π

2L∗ . (3.5)
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This fit implies that as L∗ → ∞, the critical mass ratio will approach 0.062 for Re = 200.
It is assumed that this value should approximate the critical mass ratio for the case of
a freely oscillating cylinder with no restoring force at Re = 200. Prior work by Ryan,
Thompson & Hourigan (2004b) has been performed on the hydro-elastically mounted
cylinder at low Reynolds numbers and has indicated that for Re= 190 to 200 the
critical mass ratio is approximately m∗

crit = 0.6 to 0.95. This agrees remarkably well
with the present findings, especially when it is considered that the critical mass ratio
was found to vary significantly over this Reynolds number range (Re = [190, 200])
for the hydro-elastically mounted cylinder study. The agreement is more remarkable
when considering the uncertainty in the extrapolation (equation (3.5)) for infinitely
long tether lengths.

4. Conclusion
Several important results on the motion of a tethered cylinder in a uniform flow

have been presented in this paper. In this section, we wish to direct the reader’s
attention to some of the implications of these findings with respect to the original
aims raised within the Introduction.

First, we can make some general comments regarding the effect of varying both
mass ratio and tether length ratio on the response of the tethered cylinder system. For
low Froude numbers, the results collapse onto a line regardless of mass ratio. Beyond
a critical range of reduced Froude number (Fr′

crit > [0.8, 1.0]), a jump is observed for
systems with sufficiently low mass ratio. The remainder of this discussion considers
Fr′ >Fr′

crit.
In general, increasing the mass ratio of the system reduces the amplitude of

oscillation. This reduction is not smooth. There is a critical mass ratio at which a
discontinuous decrease in the amplitude of oscillation is observed, and for slightly
higher mass ratios beyond m∗

crit, a further discontinuous decrease in amplitude is
observed. For m∗ > m∗

crit the amplitude of oscillation collapses fairly well independent
of reduced Froude number, and at high Froude numbers, the amplitude of
oscillation decays to small values. For sufficiently small mass ratios, m∗ < m∗

crit,
the increase in amplitude observed at Fr′ � Fr ′

crit is accompanied by an increase in
mean hydrodynamic force coefficients. Hence, for sufficiently small mass ratios, a
discontinuous jump in the mean layover angle is associated with the increase in
oscillation amplitude. Varying the tether length has little effect on the response of the
system provided that m∗ < m∗

crit for all tether lengths considered. However, m∗
crit is

observed to monotonically decrease with increasing tether length.
It is postulated that the definition of m∗

crit developed here is analogous to that of
a hydro-elastically mounted cylinder. The critical mass ratio varies as a function of
tether length. This is due to nonlinear terms in the equation of motion for finite
tether lengths. For large tether lengths, the nonlinear terms are very small and the
critical mass ratio for the tethered cylinder approaches the value observed for a
hydro-elastically mounted cylinder at the same Reynolds number.

Oscillation of the cylinder system induces a negative mean lift due to a vortex
pairing structure in the cylinder wake. For similar mean layover angles, this structure
is observed independent of tether length.
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