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Stability of a pair of co-rotating vortices with axial flow
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The three-dimensional linear temporal stability properties of a flow composed of two corotating
g-vortices (also called Batchelor vortices) are predicted by numerical stability analysis. As for the
corresponding counter-rotating case, when the axial flow parameter is increased, different instability
modes are observed and identified as a combination of resonant Kelvin modes of azimuthal
wavenumbers m and m+2 within each vortex. In particular, we show that the sinuous mode, which
is the dominant instability mode without axial flow, is stabilized in the presence of a moderate axial
flow. Different types of mode with a large amplitude in the critical layer are also identified. For
small separation distances (above the merging threshold), unstable eigenmodes, corresponding to
axial wavenumbers that cannot be easily identified with simple resonant interactions of Kelvin
modes, are also observed. Their growth rate is a substantial fraction of the growth rates of low-order
resonant modes. The effects of the Reynolds number and vortex separation distance on the growth
rate parameter map are considered. Finally, we analyze the similarities and differences between the
stability characteristics of co- and counter-rotating vortex pairs. © 2008 American Institute of

Physics. [DOI: 10.1063/1.2967935]

I. INTRODUCTION

Large commercial aircrafts are known to create multiple
trailing-vortex systems. These vortices can induce large turn-
ing moments on an aircraft following, which can be particu-
larly dangerous during takeoff and landing. Given that the
vortex strength scales with aircraft size, the imminent intro-
duction of several new and much larger passenger aircrafts
means that this problem is worsening over time and must be
explicitly taken into account in air-traffic scheduling. From a
purely scientific point of view, the component vortices take
part in a complex dynamical evolution including merging,
and the end result is generally a pair of counter-rotating vor-
tices in the far wake. The two corotating vortices generated
by the tip of the wing and the outer flap constitute the pro-
totype vortex system, which provides one motivation for the
analysis presented here, although the focus of this study is
mainly theoretical. The goal is to provide the three-
dimensional instability characteristics when the two vortices
are identical corotating g-vortices (or Batchelor vorticesl)
including axial flow in their cores.

The two-dimensional (2D) large Reynolds number dy-
namics of corotating vortex pairs is now well understood.
When the vortices are far apart, their dynamics is well de-
scribed by the point vortex approach;2 the two vortices re-
main in equilibrium with each other, and their cores are el-
liptically deformed owing to the strain field induced by the
other vortex.” When they are positioned closer to each other,
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equilibrium is no longer possible and the two vortices merge
to form a single vortex (e.g., Ref. 4). When the Reynolds
number is large, the 2D dynamics is affected by the devel-
opment of three-dimensional instabilities. Meunier and
Leweke’ observed experimentally that a sinuous deformation
of each vortex core develops and modifies the merging pro-
cess. This instability is due to the elliptic character of the
streamlines and has been observed in several other systems
(see Ref. 6 for a review and references therein). A model has
been developed for a vortex pair without axial flow by Le
Dizes and Laporte.7 It was demonstrated that the sinuous
deformation corresponds to the resonant combination of two
stationary Kelvin modes of azimuthal wavenumbers m=1
and m=-1. Subsequently, the effect of axial flow on counter-
rotating vortices was analyzed by Lacaze et al.®® Lacaze et
al.’ considered a pair of counter-rotating Batchelor vortices.
They demonstrated that other instability modes with different
azimuthal and temporal characteristics were excited when
axial flow was added. They were able to show that each
instability mode corresponds to a resonant combination of
two Kelvin modes of azimuthal wavenumbers m and m+2.

This work naturally follows on from that investigation of
the stability of a pair of equistrength counter-rotating
vortices;9 however, it extends that analysis in a number of
ways. First, the choice of corotating vortices means that the
individual vortices undergo rotation about their centroid
rather than the pure self-induced translation of the counter-
rotating case. The addition of the associated centrifugal/
Coriolis terms to the equations of motion complicates the
theoretical stability analysis considerably, which is yet to be
completed. The present paper investigates the problem using
numerical stability analysis and explicitly studies the effect
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of these terms on the stability characteristics. Second, while
the theoretical analysis focuses on the resonance between
particular pairs of Kelvin modes, at moderate strain rates,
most of the wavenumber—axial flow parameter space leads to
positive growth; this aspect was not explored. In particular,
as pointed out by Lacaze et al.,” the theoretical analysis does
not take into account the deviations from ellipticity of the
vortices or the presence of the hyperbolic point between the
two vortices, which is automatically accounted for by the
numerical stability analysis. Surprisingly, the background
growth rate can be almost as high as the growth rate corre-
sponding to identifiable resonant interactions. Third, modes
with substantial amplitude in the critical layer are identified.

Il. FORMULATION

A. Base flow

The formulation mainly follows the numerical part of
Ref. 9, except that here, we consider corotating vortices in-
stead of counter-rotating vortices. We take as the base flow
the z-independent flow obtained from the 2D interaction of
two corotating Batchelor vortices. Each Batchelor vortex
taken alone is a solution of the Navier—Stokes equations. Its
axial velocity and axial vorticity can be written in cylindrical
coordinates as

2
Uz — gizoe—(r/a)z’ (1)

r 2
w,= _ze—(r/a) ,

mwa

where the circulation I', the axial velocity strength &, and the
initial core radius a, are constants. The radius a(z) evolves
owing to viscous diffusion according to

a(t) =\4vt + a%, (2)

where v is the kinematic viscosity.

The sum of two corotating Batchelor vortices is not a
solution. As explained by Le Dizes and Verga,3 in the 2D
dynamics, there is first a rapid relaxation process during
which each vortex equilibrates with the other. In the frame
rotating at the angular speed of the vortex pair, a quasisteady
solution is reached, which subsequently slowly evolves due
to viscous diffusion. As long as the system is far from the
merging threshold (a/b<0.23), the two vortices remain
separated by a constant distance b and rotate around each
other at a constant angular speed Q)=I"/(mh?). Each vortex
also feels the strain field induced by the presence of the other
one. Its streamlines are deformed elliptically at leading order
and this makes each vortex sensitive to the elliptic instability.
The 2D simulation is necessary to obtain a correct estimate
of the strain field within each vortex. In particular, as noted
by Le Dizes and Verga,3 the strain rate at the vortex center is
twice as large as that obtained from summing the contribu-
tions from the two separate Gaussian vortices. What is re-
markable is that after the relaxation process (and before
merging), the vortex system is mainly characterized by a
single parameter a/b, where the vortex radius a evolves ac-
cording to Eq. (2), as predicted for a single vortex.
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The presence of axial flow does not modify these results
because the axial flow and axial vorticity dynamics decouple.
Moreover, as the axial flow satisfies the same advection-
diffusion equation, it remains proportional to the axial vor-
ticity during the whole 2D evolution. In practice, we perform
the 2D simulation without axial flow and then add, after the
completion of the relaxation process, an axial velocity com-
ponent such that U,(x,y)=(aWy/2)w.(x,y).

After the relaxation period, the radius of each vortex has
slightly evolved. It is this new value of a that is taken as the
characteristic length scale for the stability analysis. The base
flow is then characterized by three parameters, a/b, W, and
the Reynolds number Re=I"/v, although the base flow is
mainly independent of this last parameter.

We shall consider a continuous range of W, between 0
and 0.6 for three couples of parameters, (Re=14 000, a/b
=0.14), (Re=14 000, a/b=0.18), and (Re=31400, a/b
=0.168), and provide some selected results for a few other
combinations. For these values of W,,, the Batchelor vortex
can be considered as stable. Weakly unstable center modes
exist, but their growth rates are so small (see Ref. 10) that
they never become dominant over the elliptic instability
mode.

B. Perturbation analysis

The stability of the base flow obtained from the 2D
simulation is examined by considering the problem in the
frame rotating with the vortices and for which the base flow
is quasistationary. In this rotating frame, the Navier—Stokes
equations including all the Coriolis terms are linearized
around the base flow. In addition, the weak diffusion of the
base flow is suppressed by freezing the base flow. As the
base flow is assumed to be homogeneous in the axial direc-
tion and because the perturbation equations are linear and
independent of z for the axial derivatives, the axial depen-
dence can be represented as a Fourier series. Linearity allows
the stability of each wavelength, A\=27/k, to be determined
separately. In practice, for a given axial wavelength, the per-
turbation equations are integrated in time with a random field
as an initial condition. The characteristics of the most un-
stable mode are obtained by integrating for a sufficiently
long time. For each set of base flow parameters and each
wavenumber k, we obtain the growth rate, the rotation fre-
quency, and the spatial structure of the most unstable mode.

C. Numerical codes

Two different numerical codes have been used. The first
one was used for a similar study of counter-rotating vortices
by Lacaze et al’ Tt is based on a high-order spectral-element
technique, which has been described by Thompson et al"
and applied to various related problems (e.g., Refs. 12 and
13). The same code parameters and simulation domain as in
Ref. 9 are used here.

The second code has been developed for the present
study and a nonlinear analysis to follow. It is a pseudospec-
tral code, periodic in the three spatial Cartesian directions.
Such a code is classical' and has already been used for
similar studies.'>'® Because the code is fully spectral, it is
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FIG. 1. Comparison of the growth rate computed with the two codes for
Re=14 000 and a/b=0.14. Circles and crosses are data obtained with the
fully spectral code and with the spectral-element code, respectively. Theo-
retical predictions are in solid line [formula (6.1a) from Le Dizes and
Laporte (Ref. 7)] and in dashed line [same formula with a viscous damping
term computed by the global approach (see text)].

very fast but is in principle limited to flows with zero total
circulation.'” A trick has then to be used to simulate corotat-
ing vortex pairs for which the circulation is 2T": a solid body
rotation ()ye, has to be subtracted from the base flow so that
the global circulation at the boundary of the domain is
zero.'® Time integration is performed using an Adams—
Bashforth temporal scheme. For determining the 2D base
flow, the size L of the square domain has been chosen to be
sufficiently large to reduce the influence of image vortices.
Typically, we have taken L/b between 5 and 6. A smaller
domain with L'/b=2.5, centered on the vortex pair, has
been taken for the simulation of the perturbation equations.
This is possible because the perturbations are localized in the
center of each vortex and decrease very fast to zero away
from the vortices. Thus, there is no difficulty in considering
the perturbations periodic on a smaller domain.

The two numerical codes have been compared and vali-
dated for a configuration without axial flow. In Fig. 1 is
plotted the growth rate of the perturbations obtained by the
two different codes, together with the theoretical formula.'®
As can be seen, the two codes provide the same results for
the first three modes. The relative error between the two
codes is generally only a few percent. This difference was
traced to a slight sensitivity in the growth rate predictions to
the time allowed for quasiequilibrium to be reached before
freezing the base flow, which was slightly different for the
two cases. On the other hand, the large underestimation in
the growth rate by the theoretical formula is due to an incor-
rect estimate of the damping rate associated with viscous
effects. In the theory, the damping rate is based on a local
approach. If a global estimate is computed using the method
of Lacaze ef al.,” the viscous damping is found to be signifi-
cantly smaller' and a much better estimate is obtained. The
adjusted theoretical predictions are also shown in this figure
by the dashed lines. Note that even this estimate loses accu-
racy for the higher wavelength mode.
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FIG. 2. Contours of instability growth rate in the (W,,ka) plane for
a/b=0.14 and Re=14 000. A number has been provided to each important
unstable mode and is used hereafter to refer to each of them.

lll. RESULTS
A. Mode map

Using the procedure explained above, we have first ex-
plored a large part of the parameter space for a fixed Rey-
nolds number Re=14 000 and a/b=0.14, with resolution
steps for W, and k of 0.002 and 0.1, respectively. The growth
rate contours of the most unstable modes are displayed in
Fig. 2. Only the growth rates (normalized by the turn-over
time of the vortex pair) in excess of 0.5 have been indicated
in this figure. It demonstrates the existence of several islands
of instability. Each island corresponds to a specific instability
mode. These modes are localized in the core of each vortex
and have the same spatial structure in each vortex. Their
spatial structure is shown in Fig. 3. The characteristics of
each mode are also provided in Table L.

The first point to note is that the instability map shown
in Fig. 2 is very similar to the map obtained for equal
strength counter-rotating vortices (see Fig. 11 in Ref. 9). The
first three modes, labeled 1-3, which have maximum growth
rates for no axial flow but persist for small W, are the well-
known sinuous modes of the elliptic instability.5 They corre-
spond to the resonant combination of two Kelvin modes of
azimuthal wavenumbers m=1 and m=-1. Here, the func-
tional dependence of the Kelvin modes is written as
exp(imfO+ikz—iwt), where m and k are the azimuthal and
axial wavenumbers and o is the frequency. Moreover, we
assume that k is positive. For W;=0, the sinuous modes are
stationary (w=0) and have been called “principal modes™ as
they are formed from two Kelvin modes with the same
(broad) radial structure. The radial structure of the Kelvin
mode can be identified by a label specifying the number of
zeros of the radial velocity component of the mode in the
vortex core.’ Principal modes are denoted by (m;,m,,n),
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(e) mode 5: (0,-2.2)

(a) mode 1: (—1,1,1) (b) mode 2: (—1,1,2) (c) mode 3: (—1,1,3)

() mode 6: (0,-2,3) (g) mode 7: (—1,-3.1) (h) mode &: (—1,-1,2) (i) mode 9:

(k) mode 11: (0,—2,[1,27) (1) mode 12: (0,-2,(3.2')

where m, and m, are the azimuthal mode numbers of the two
resonant Kelvin modes and 7 is their common (radial) label.
It is possible to identify other resonant modes as combina-
tions of Kelvin modes with different radial dependences, in
which case the mode is denoted by (m;,m,,[n;,n,]). Ex-
amples of these mixed modes can be found in Ref. 9.
Modes 1-3 in Fig. 2 are the principal modes (-1,1,1),
(-1,1,2), and (-1,1,3), respectively. Their spatial structures
shown in Figs. 3(a)-3(c) have one, two, and three radial
oscillations, as indicated by their radial mode numbers.
Comparatively to the counter-rotating case, the principal Co-
riolis effect is to modify the resonance condition, thus shift-
ing the unstable modes toward smaller k, which results in
bigger growth rates. For W;,=0, the numerical growth rate
for these modes is in good agreement with the theory (see

TABLE I. Parameters of the modes identified in Figs. 2, 6, and 7(a).

(d) mode 4: (0,-2,1)

(m) mode 13: (—1,-3,]1.2)

Phys. Fluids 20, 094101 (2008)

FIG. 3. Axial vorticity perturbation
fields resulting from the elliptical in-
stability for Re=14000 and a/b
=0.14. Each plot is associated with a
number corresponding to one point
identified in Fig. 2. Contours are linear
and symmetric around 0. The dashed
line is a circle of radius a centered on
the vortex center.

—4.1) (j) mode 10:

Fig. 1). As the axial flow is progressively increased, these
modes are progressively stabilized, as also predicted for
counter-rotating vortex conﬁgurations.9 As explained by
Lacaze et al.,9 this phenomenon has two different causes.
First, as soon as an axial flow is present, the symmetry be-
tween the m=1 modes and the m=—1 modes is broken. The
resonance between the two helical modes becomes less effi-
cient because their radial structures are no longer perfectly in
phase. Moreover, the symmetry breaking creates a small de-
tuning in the resonant frequency with respect to the fre-
quency that maximizes the local instability in the vortex cen-
ter. Thus, the strength of the local elliptic instability in the
vortex center is also less important. The second cause is the
damping of the Kelvin mode m=-1. The damping of this
mode is due to the appearance of a viscous critical layer in its

Re=14 000, a/b=0.14

Re=14 000, a/b=0.18

Re=31400, a/b=0.168

Mode m n Wy 2ma/\ 27%b*0/T  27%b*c/T W, 2ma/N 27’0/l 2m°h*c/T Wy 2ma/N 27%b*w/T  27%b*c/T
1 -1,1 1 0 2.00 0 4.04 0 1.76 0 5.21 0 1.8 0 5.08
2 -1,1 2 0 3.52 0 2.64 0 3.12 0 4.99 0 3.2 0 4.83
3 -1,1 30 4.88 0 0.611 0 4.48 0 4.73 0 4.6 0 4.45
4 0,-2 1 056 176 -28.8 2.85 058  1.68 -15.7 4.81 0.58 1.65 -20.7 4.84
5 0,-2 2 028 296 -39.1 2.71 0.3 2.88 -20.1 3.74 0.28 2.88 -26.0 4.11
6 0,-2 3 018 432 —42.3 0.868 0.19 4.11 -27.0 3.39
7 -1,-3 1 052 312 -84.7 2.88 054  3.04 -46.4 3.81 0.55 3 -53.95 421
8 -1,-3 2 036 416 -91.16 0.30 0.37 4.0 -59.8 2.85
9 -2,-4 1 052 440 —-141 1.23 0.53 421 -93.6 3.49

10 -1,1 1,2 0.14 256 -7.53 1.63 0.1 2.32 -0.59 4.50 0.1 24 -0.78 3.42
11 0,-2 1,2 054 240 -26.3 1.30 056 224 -152 3.06 0.6 22 -15.97 3.0

12 0,-2 32 028 3.68 -37.0 1.21 0305 347 -21.9 3.24
13 -1,-3 12 052 3.60 -79.1 1.20 0.56 34 —48.4 2.84
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(a) . (b)
©)

FIG. 4. Azimuthal decomposition of the instability mode 5: axial vorticity
in a section perpendicular to the vortex axis. (a) Axisymmetric component
(m=0), (b) m==2 component, and (c) superimposition of the m=0 and
m= =2 components. The circle (solid line) in (a) and (b) indicates the
position of the turning point r, (see text).

radial structure.”™*' When the damping rate of the mode is
greater than the growth rate associated with the resonance,
the instability mode disappears.

The other instability modes that are destabilized for
larger values of W, are no longer stationary sinuous modes.
The mode labeled 5 corresponds to the principal mode
(=2,0,2), which has also been observed in the numerical
simulation of counter-rotating vortices. This mode is the
most unstable for W;=~0.3 and ka =3 here. The label of the
mode can be obtained by looking at the azimuthal decompo-
sition of the instability mode in one of the vortices, as shown
in Fig. 4 for mode 5. Figures 4(a) and 4(b) show the m=0
and the m= *2 contribution to this instability mode, while
Fig. 4(c) is the superimposition of these two contributions
alone. We clearly see that the eigenmode shown in Fig. 3(e)
is well reproduced, confirming that mode 5 is mainly a com-
bination of the azimuthal wavenumbers m=0 and m= *2.
The time evolution and the three-dimensional structure of the
mode, which are shown in Figs. 5(a) and 5(b), respectively,
provide further information on the characteristics of the
Kelvin modes involved in the construction of mode 5. We
observe that the helical structure is right-hand oriented and
rotates anticlockwise. This indicates that the axial and azi-
muthal wavenumbers are of opposite sign, and the frequency
and azimuthal wavenumber are of the same sign, thus our
choice of positive k, m=-2, and w<0 (as indicated in
Table I).

The label n of the Kelvin mode involved in the reso-
nance can be obtained by looking at the radial variation in
each azimuthal component. Le Dizes and Lacaze™ showed
that the label corresponds to the number of radial oscillations
between the origin and a turning point r;, which delimits the
region where the mode is localized. As explained by Le
Dizes and Lacaze,” the radial location r, can be computed
from the vortex profile and the characteristics of the mode.

Phys. Fluids 20, 094101 (2008)
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FIG. 5. (a) Temporal evolution of the axial vorticity of the instability mode
5 during half a period. Times correspond to 0, 7/8, 2T/8, and 47/8, respec-
tively. (b) Three-dimensional visualization showing a vorticity isosurface
indicating the deformation induced by mode 5. Here, the maximum vorticity
of the instability mode is 0.4 times the maximum vorticity of the base flow.

The turning point r, has been indicated for the m=0 and
m=-2 components of mode 5 in Figs. 4(a) and 4(b), respec-
tively.

Using a similar azimuthal decomposition and by com-
paring the figures with the theoretical plot of Lacaze et al.
the principal modes (-2,0,1), (-2,0,3), (-3,-1,1),
(-3,-1,2), and (-4,-2,1) can be identified with modes 4,
6, 7, 8, and 9 of Fig. 2 (see Fig. 3). Note that an m= *2
structure is clearly visible on modes 4 and 6, m= =3 struc-
ture on modes 7 and 8, and m= %4 on mode 9. As expected,
the maximum growth rate of the principal modes decreases
as their axial wavenumber increases. Other instability modes
are also visible in Fig. 2. They are not principal modes,
which means that they involve Kelvin modes with different
radial labels. A few of them are illustrated in Fig. 3. By
looking at the number of oscillations of the main azimuthal
components, labels have been tentatively given for each of
these modes.

B. Effects of the Reynolds number and vortex
separation distance variations

Similar contour plots to Fig. 2 are displayed in Figs. 6
and 7(a) for a/b increasing from 0.14 to 0.18 (closer vorti-
ces) and a larger Reynolds number (Re increasing from
14 000 to 31 400), respectively. A corresponding set of insta-
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FIG. 6. Same as in Fig. 2 for a/b=0.18 and Re=14 000.

bility modes as shown in Fig. 2 can also be identified in these
figures. Their characteristics are given in Table I. When a/b
is increased, the peaks associated with the main modes move
slightly owing to the variation in the mean rotation 2(a/b)?
of the pair that modifies the conditions of resonance. In par-
ticular, the resonant mode positions are shifted to occur at
slightly higher axial flow velocities and smaller wavenum-
bers. For example, for mode 4, an approximately 30% in-
crease in a/b from 0.14 to 0.18 results in a shift in (ka, W;)
coordinates from (1.76, 0.56) to (1.68, 0.58). The relative
shift is not uniform across all modes, however; the 30%
change in a/b typically leads to an approximately 10%
change in ka but only a few percent change in W,. The
position of the peaks is by contrast almost unaffected by
variations in the Reynolds number. This is also clearly seen
in Fig. 8(b), where growth rate variations are displayed for a
fixed W;,=0.29 and for various Reynolds numbers.

An important feature of Figs. 6 and 7(a) is the global
increase in the growth rate when either a/b or Re increases.
For the range of parameters of these figures, almost the
whole parameter space considered is now unstable. However,
there are differences between increasing Reynolds number
and increasing a/b. When the Reynolds number is increased,
the growth rate peaks remain distinct: more modes become
unstable, but they can still be identified. Note, in particular,
that mode 8, displayed in Fig. 3(h) and which corresponds to
the principal mode (—1,-3,2), is now unstable, whereas it
was almost stable for the parameters of Fig. 2. When a/b
increases, the tendency is different. The peaks of the modes
for large ka tend to disappear: the growth rate increases al-
most uniformly as ka increases. The trend is demonstrated in
Fig. 8(a) for a fixed value of W,=0.29 for a/b=0.18. In
addition, Fig. 9 shows the behavior for the zero axial veloc-
ity case. The growth rate ultimately decreases for large ka,
but what is important is that there is no dominant mode

Phys. Fluids 20, 094101 (2008)
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FIG. 7. Same as in for Fig. 2 for a/b=0.168 and Re=31 400: (a) corotating
vortices; (b) counter-rotating vortices.

selection in that case. Again, this is clearly indicated in Fig.
6, which shows that specific modes are virtually indistin-
guishable from the background noise for ka=3.5 for a/b
=0.18. The modes for ka=3.5 are apparently mixed and
most of them have a spiral-like structure, as illustrated in
Figs. 10(a)-10(c).

The spiral structure is probably associated with a critical
layer in one of the resonant modes.’ This critical layer is
known to be responsible for the stabilization of some modes,
such as the mode (=1,1,1) for increasing W,,. However, for
increasing a/b, this stabilizing effect becomes less impor-
tant. Moreover, the instability band also becomes wider and
the frequency detuning between modes becomes less impor-
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FIG. 8. Instability growth rate vs axial wavenumber for W,=0.29. (a) Vortex
separation distance dependence for Re=14 000. (b) Reynolds number de-
pendence for a/b=0.14.

tant when a/b grows. Thus, we expect that more and more
modes would become unstable in larger and larger overlap-
ping instability regions. The consequence is that the growth
rate possesses a large growth envelope with no sharp peaks.

C. Comparison of the stability
of co- and counter-rotating vortex pairs

Le Dizes and Laporte7 compared the dominant instabil-
ity modes for co- and counter-rotating vortices for the case
without axial flow. In general, the growth rates of instabili-
ties for counter-rotating vortices are lower than those for
co-rotating vortices and the corresponding wavenumbers of
the modes lie between those of the other case. Figure 11
shows growth rate curves for the case without axial flow for
a/b=0.168 at Re=31 400, which highlights both effects.
These predictions are consistent with the analytical and nu-
merical predictions of Le Dizes and Laporte.7 For the case
with axial flow, for which an analytical theory is yet to be
developed, Figs. 7(a) and 7(b) display the instability maps
for the co- and counter-rotating cases for Re=31 400 and
a/b=0.168. This allows an explicit, albeit numerical, deter-
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FIG. 9. Growth rate as a function of wavenumber for the corotating case
with no axial flow for Re=14 000 and a/b=0.18.

mination of the effect of the added Coriolis force on the
stability of corotating vortex pairs. As previously mentioned,
this difference from the counter-rotating case appears be-
cause of the mutually induced rotation of the each vortex
about their centroid, meaning that they appear quasistation-
ary in a rotating frame.

There are both similarities and differences between the
stability maps. The first point is that a similar set of identi-
fiable modes corresponding to the same Kelvin mode inter-
actions appears on each map in roughly the same locations.
However, the actual positions of the modes for the corotating
vortex map are shifted to approximately 20% higher axial
velocities. Another key difference is the background growth
rate between identifiable modes. This is very much larger in

(a) S1 (b) S2

.

(c) 83

FIG. 10. Instability modes with a critical layer (see Fig. 6).
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FIG. 11. Comparison of growth rates for equal strength co- and counter-
rotating vortices with zero axial velocity for a/b=0.168 and Re=31 400.

the corotating case, which is also clear from Fig. 9 at zero
axial flow, which explicitly shows the slow falloff of the
growth rate for high wavenumbers. Indeed, as discussed in
Sec. II, as a/b is increased to 0.18, the background growth
rate virtually swamps the growth rate of local resonant
Kelvin mode interactions for higher wavenumbers and may
even dominate corotating vortex evolution for close vortex
cores at particular axial core velocities. This effect occurs at
separations well under the merging limit* for corotating vor-
tices of a/b=0.23.

IV. CONCLUSIONS

In this work, we have analyzed the linear stability of a
corotating vortex pair with axial flow. We have demonstrated
that new elliptic instability modes are destabilized by axial
flow. For small Reynolds numbers and small a/b, we have
shown that the instability diagram resembles the theoretical
prediction for counter-rotating vortices,’ although there are
some explicit differences between these cases. When axial
flow is progressively increased, the principal modes (combi-
nation of Kelvin modes of the same radial branch label) of
azimuthal wavenumbers (—1,1) are stabilized and replaced
by other principal modes, (-2,0), (-3,-1), and (—4,-2). For
large Reynolds numbers or large a/b, other instability modes
have been observed and associated with a combination of
Kelvin modes with different labels. These other modes are
less unstable than the principal modes, whose characteristics
are almost invariant, but they make the vortex pair unstable

Phys. Fluids 20, 094101 (2008)

in a large wavenumber band whatever the axial flow. Clearly,
it would be interesting to determine the nonlinear evolution
of the instability modes and its influence on the merging
process.

ACKNOWLEDGMENTS

We would like to thank Thomas Leweke and Kerry
Hourigan for discussions and support. We are also grateful to
Laurent Lacaze for having computed the theoretical viscous
damping used to plot the dashed line in Fig. 1.

"Herein, we use this common terminology, although the solution initially
obtained by Batchelor (Ref. 23) was the leading order approximation de-
scribing the spatial development of far wake trailing line vortices.

’p.G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge,
England, 1992).

3S. Le Dizes and A. Verga, “Viscous interactions of two co-rotating vorti-
ces before merging,” J. Fluid Mech. 467, 389 (2002).

“p, Meunier, S. Le Dizes, and T. Leweke, “Physics of vortex merging,” C.
R. Phys. 6, 431 (2005).

P. Meunier and T. Leweke, “Elliptic instability of a co-rotating vortex
pair,” J. Fluid Mech. 533, 125 (2005).

°R. R. Kerswell, “Elliptical instability,” Annu. Rev. Fluid Mech. 34, 83
(2002).

’S. Le Dizes and F. Laporte, “Theoretical predictions for the elliptical in-
stability in a two-vortex flow,” J. Fluid Mech. 471, 169 (2002).

8. Lacaze, A.-L. Birbaud, and S. Le Dizes, “Elliptic instability in a Rank-
ine vortex with axial flow,” Phys. Fluids 17, 017101 (2005).

°L. Lacaze, K. Ryan, and S. Le Dizes, “Elliptic instability in a strained
Batchelor vortex,” J. Fluid Mech. 577, 341 (2007).

D, Fabre and L. Jacquin, “Viscous instabilities in trailing vortices at large
swirl numbers,” J. Fluid Mech. 500, 239 (2004).

M. C. Thompson, K. Hourigan, and J. Sheridan, “Three-dimensional in-
stabilities in the wake of a circular cylinder,” Exp. Therm. Fluid Sci. 12,
190 (1996).

M. C. Thompson, T. Leweke, and M. Provansal, “Kinematics and dynam-
ics of sphere wake transition,” J. Fluids Struct. 15, 575 (2001).

BK. Ryan, M. C. Thompson, and K. Hourigan, “Three-dimensional transi-
tion in the wake of elongated bluff bodies,” J. Fluid Mech. 538, 1 (2005).

' A. Vincent and M. Meneguzzi, “The spatial structure and statistical prop-
erties of homogeneous turbulence,” J. Fluid Mech. 225, 1 (1991).

5p, Billant, P. Brancher, and J.-M. Chomaz, “Three-dimensional stability of
a vortex pair,” Phys. Fluids 11, 2069 (1999).

1p, Otheguy, J.-M. Chomaz, and P. Billant, “Elliptic and zigzag instabilities
on co-rotating vertical vortices in a stratified fluid,” J. Fluid Mech. 553,
253 (2006).

D, s. Pradeep and F. Hussain, “Effects of boundary condition in numerical
simulations of vortex dynamics,” J. Fluid Mech. 516, 115 (2004).

8Note that there is a misprint in formula (6.1a) of Le Dizés and Laporte
(Ref. 7): b*/a; should be b*/aj.

YL. Lacaze, personal communication (2006).

0. 1e Dizes, “Viscous critical-layer analysis of vortex normal modes,”
Stud. Appl. Math. 112, 315 (2004).

ID. Fabre, D. Sipp, and L. Jacquin, “The Kelvin waves and the singular
modes of the Lamb—Oseen vortex,” J. Fluid Mech. 551, 235 (2006).

’S. Le Dizes and L. Lacaze, “An asymptotic description of vortex Kelvin
modes,” J. Fluid Mech. 542, 69 (2005).

3G, K. Batchelor, “Axial flow in trailing line vortices,” J. Fluid Mech. 20,
645 (1964).

Downloaded 01 Oct 2008 to 130.194.10.86. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp


http://dx.doi.org/10.1017/S0022112002001532
http://dx.doi.org/10.1016/j.crhy.2005.06.003
http://dx.doi.org/10.1016/j.crhy.2005.06.003
http://dx.doi.org/10.1017/S0022112005004325
http://dx.doi.org/10.1146/annurev.fluid.34.081701.171829
http://dx.doi.org/10.1017/S0022112002002185
http://dx.doi.org/10.1063/1.1814987
http://dx.doi.org/10.1017/S0022112007004879
http://dx.doi.org/10.1017/S0022112003007353
http://dx.doi.org/10.1016/0894-1777(95)00098-4
http://dx.doi.org/10.1017/S0022112005005082
http://dx.doi.org/10.1017/S0022112091001957
http://dx.doi.org/10.1063/1.870069
http://dx.doi.org/10.1017/S0022112006008901
http://dx.doi.org/10.1017/S002211200400076X
http://dx.doi.org/10.1111/j.0022-2526.2004.01514.x
http://dx.doi.org/10.1017/S0022112005008463
http://dx.doi.org/10.1017/S0022112005005185
http://dx.doi.org/10.1017/S0022112064001446

