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State selection in Taylor-vortex flow reached
with an accelerated inner cylinder
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The selection of the axial wavelength in axisymmetric Taylor-vortex flow was studied
by numerical experiments where the inner cylinder speed was linearly increased from
subcritical to supercritical values over a finite ramp time to values not far above Rec.
For impulsive increases of the inner cylinder speed (zero ramp time) the preferred axial
wavelength was less than the critical wavelength. As the ramp time was increased, the
preferred axial wavelength increased and approached the critical wavelength, so that
for very slow increases of the inner cylinder speed the preferred axial wavelength was
equal to the critical wavelength. A linear model was developed which revealed that
a linearly increased inner cylinder speed resulted in a delayed growth for each of the
amplitudes of the modes. When the ramp time was sufficiently large, the amplitude
of the mode with the critical wavelength was delayed the least from growing to high
amplitudes. This mode then self-interacted and saturated resulting in steady Taylor-
vortex flow. Finally, nonlinear effects and state selection are discussed from the point
of view of nonlinear dynamics.

1. Introduction
In 1965 the seminal work of Coles established the non-uniqueness of Taylor-vortex

flow at post-critical Reynolds numbers. He noted that for a given Reynolds number,
approximately 20 or more different flow states could occur depending on the initial
conditions and the way the final state was reached. The different final states were
characterized by differing axial wavelengths and azimuthal wavenumbers. Since that
time, that work has been extended (e.g. Snyder 1969; Burkhalter & Koschmieder 1973,
1974; Park, Gerald & Donnelly 1981; Andereck, Liu & Swinney 1986; Lim, Chew &
Xiao 1998; Antonijoan & Sanchez 2002; Xiao, Lim & Chew 2002). In this paper,
axisymmetric Taylor-vortex flow is the focus and the restricted case is considered
where the outer cylinder is fixed. Experimentally, under these circumstances, non-
uniqueness at the same final Reynolds number manifests itself as different numbers
of Taylor vortices in a finite fluid column depending on parameters during the
development stage. Hence, in this paper, the final state is identified with the axial
wavelength of the Taylor vortices.

The diversity of possible flow states for cylindrical Taylor–Couette flow is indicated
by the work of Andereck et al. (1986), and Andereck & Baxter (1988) who explored
experimentally the rich variety of flows, depending on the inner and outer cylinder
Reynolds numbers. They identified approximately 20 distinct flow types in the
parameter space defined by these two Reynolds numbers.

For the case where the outer cylinder is stationary, the Reynolds number can be
defined as Re = V d/ν where V is the inner cylinder speed, d is the gapsize and ν
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Figure 1. Stability diagram for Taylor-vortex flow for η = 0.727, µ= 0. Relative Taylor
number (T/Tc = (Re/Rec)

2) versus axial wavelength. ——, the neutral curve from the linear
stability of steady circular Couette flow (Chandrasekhar 1961). – – –, the stability boundary
from a weakly nonlinear analysis (Kogelman & Diprima 1970). �, Taylor-vortex flow states
observed for sudden start experiments (Burkhalter & Koschmieder 1974). �, Taylor-vortex
flow states observed for an experiment where the annulus was filled with fluid after the inner
cylinder was rotating at fixed speed. Reproduced from Burkhalter & Koschmieder (1974).

is the kinematic viscosity. The other important governing parameters are η = rin/rout,
where rin and rout are the inner and outer radii; and µ = Ωout/Ωin, where Ωin and
Ωout are the inner and outer angular rotation rates. In addition, the aspect ratio, Γ ,
is the size of the axial domain relative to the gapsize. In this paper the ideal case is
assumed, where the cylinders are assumed infinite in axial extent so that boundary
effects can be ignored. For the numerical experiments described, a large periodic axial
domain is chosen so that the computationally-allowed axial wavelengths are restricted
as little as possible. More discussion of these points, and how the simulations relate
to experimental results using different end conditions, is contained in § 6.

A well-known result of the linear stability analysis (Taylor 1923) is that there
exists a minimum critical Rec,min(=Rec(λc)), at which one axial wavelength becomes
linearly unstable. The situation is demonstrated in figure 1. The outer curve describes
the variation of critical Reynolds number Rec(λ) with axial wavelength of the
axisymmetric perturbation. For a particular Re above a minimum critical value,
there is a linearly unstable band of axial wavelengths. Infinitesimal axisymmetric
perturbations with wavelengths in this band will grow exponentially. Outside the
band, circular Couette flow is stable and infinitesimal axisymmetric perturbations
decay exponentially.

However, stable Taylor-vortex flows have been achieved experimentally (Snyder
1969) for a much smaller band of wavelengths than the band derived from linear
theory. A weakly nonlinear analysis by Kogelman & Diprima (1970) has shown that
stable Taylor-vortex flows are achievable only for wavelengths within a band roughly
1/

√
3 times the width of the band from linear theory. The inner band (also shown in

figure 1) is often called the Eckhaus stable band. The critical wavelength λc is defined
as the wavelength corresponding to the minimum critical Reynolds number and takes
the (dimensionless) value of 2.0 in figure 1.

Experiments by Burkhalter & Koschmieder (1973) have shown that when the inner
cylinder speed is increased quasi-steadily from rest, the preferred axial wavelength
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of the Taylor-vortex flow was equal to the critical wavelength, λc, and remained so
for Re>Rec. Burkhalter & Koschmieder (1974) also showed that when the inner
cylinder speed is impulsively increased from rest the preferred axial wavelength, λs ,
is smaller than the critical wavelength. This is illustrated in figure 1, where data for
impulsive increases are represented by the open circles. Stable Taylor-vortex flows
with preferred wavelengths between λs and λc can be achieved by applying different
inner cylinder acceleration rates to the same final Reynolds number (Koschmieder
1993). Thus, Taylor-vortex flows with different axial wavelengths within the Eckhaus
stable range can be achieved depending on how the experiment is performed.

Lim et al. (1998) and Xiao et al. (2002) experimentally examined the effect of
acceleration rate on the final state as the Reynolds number is linearly increased
through the critical value from an initial to a final Reynolds number. They found that
for an inner to outer cylinder radius ratio of η = 0.803, a second stationary Taylor-
vortex flow regime with a much smaller wavelength occurred in a Reynolds number
range where wavy Taylor-vortex flow was known to occur for quasi-steady increases.
This new state occurred for acceleration rates greater than 2.2 s−1. However, the
existence of this regime was very sensitive to η and did not occur for either η =0.660
or η = 0.894. Antonijoan & Sanchez (2002) used stability analysis to determine the
stability boundaries of wavy Taylor-vortex flow for the different azimuthal mode
numbers as a function of Reynolds number and axial wavelength. They showed
that for subcritical wavelengths there is a region of stability for Taylor-vortex flow
surrounded by areas where wavy Taylor-vortex flow will occur. This only occurs for η

above approximately 0.75. This provides a partial explanation for the results obtained
by Lim et al. (1998) and Xiao et al. (2002).

This background leads to two fundamental questions about Taylor-vortex flow as
posed by Koschmieder (1993). An explanation is needed as to why the wavelength of
supercritical axisymmetric vortices is independent of the Taylor number and equal to
the critical wavelength when the Taylor number is increased slowly from subcritical
values. Also, why can supercritical axisymmetric vortices be non-unique.

To clarify the behaviour of the modes with different ramp times, Taylor-vortex
flow was simulated numerically. This allowed us to study the independent growth and
subsequent nonlinear interaction of many discrete axisymmetric modes.

2. Numerical method
The incompressible Navier–Stokes equations were written in cylindrical coordinates

with radial (r), azimuthal (φ) and axial (z) components of velocity. Derivatives with
respect to φ were neglected owing to the assumption of axisymmetry. The resulting
equations required the solution for the pressure P and the three components of
velocity ur , uφ and uz as functions of r and z.

2.1. Temporal discretization: operator splitting

A second-order time-accurate operator splitting procedure (Rigopoulos 1998) was
applied to the equations which treated the contributions from the nonlinear
(convection) terms, pressure terms and linear (viscous) terms, in three fractional steps.

The first fractional time step accounts for the nonlinear term and uses an explicit,
second-order Adams–Bashforth approximation:

U l+1/3 = U l − �t
(

3
2
(U l · ∇)U l − 1

2
(U l−1 · ∇)U l−1

)
. (2.1)

Here, l denotes the time level and �t the timestep.
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The second fractional time step adjusts the velocity according to the pressure
gradient:

U l+2/3 = U l+1/3 − �t∇P l+1. (2.2)

However, in order to do this, the pressure P l+1 is solved using the Poisson equation

∇2P l+1 =
1

�t
∇ · U l+1/3 (2.3)

which is obtained by applying the incompressibility constraint on U l+2/3 and taking
the divergence of (2.2). Neumann boundary conditions were used for the pressure at
the inner and outer radii. First-order time-accurate Neumann boundary conditions
lead to second-order time-accurate velocity (Karniadakis, Israeli & Orszag 1991).
A first-order time-accurate Neumann boundary condition at the cylinder walls can
be obtained by taking the inner product of the Navier–Stokes equations with the
boundary normal vector to give

∂P

∂r

l+1

= − 1

Re
(∇ × (∇ × U l))r − (U l · ∇)ul

r . (2.4)

Periodic boundary conditions are used in the axial direction for the pressure.
The third fractional time step accounts for the viscous term contribution:

U l+1 = U l+2/3 +
1

Re
�t

((
1
2

+ θ
)

∇2U l+1 +
(

1
2

− θ
)

∇2U l
)
. (2.5)

where the implicit θ-scheme is used. This scheme reverts to the first-order backward-
Euler method for θ = 0.5 and the second-order Crank–Nicolson method for θ = 0. A
small but non-zero value of θ is typically used to suppress high-frequency oscillations
that are neutrally stable for the Crank–Nicolson scheme. The choice of θ is discussed
in § 2.3 on temporal accuracy.

Each velocity component requires the solution of a Helmholtz equation with the
Dirichlet boundary conditions:

U l+1(rin, φ, z, t) = (0, V (t), 0) (2.6)

and

U l+1(rout, φ, z, t) = (0, 0, 0). (2.7)

Periodic boundary conditions were used in the axial and azimuthal directions for the
velocity components.

2.2. Spatial discretization: spectral method

To represent the velocity components and the pressure, a complex Fourier expansion
was used in the axial direction with M Fourier planes spanning the axially periodic
domain of aspect ratio Γ . A Chebyshev approximation was used in the radial
direction with N points. A Fourier–Chebyshev derivative transform routine was used
to evaluate the derivatives that were explicit in each fractional step.

A Poisson solver was developed which solved (2.3) for the pressure. A Helmholtz
solver was developed which solved (2.5) for the radial and azimuthal components of
velocity separately. Another modified Helmholtz solver was developed which solved
(2.5) for the axial component of velocity. These solvers were based on a spectral-Tau
method. In this approach, the equations were expressed in spectral space. However,
the equations were first rewritten to have factors proportional to r and r2 in front
of the derivatives because these factors have spectral coefficients which were easily
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Figure 2. Time-accuracy of schemes with different θ .

derived analytically. The solutions to the spectral coefficients were determined after
M inversions of matrices of size (N − 2) × (N − 2). The M matrix inversions are only
done once for each solver in a preprocessing step. The spectral solution is inverse
transformed to obtain the real space solution. The algorithm is similar to the approach
taken by Haidvogel & Zang (1979) who applied it to Cartesian geometries.

2.3. Accuracy

The case η = 0.5, µ = 0, Re =74.924 = 1.10Rec, λ=1.988 was considered. The grid size
was 16 × 17. The time-accuracy was verified by using the referenced value (Marcus
1984) of growth rate σt = 0.035636 for this case. Figure 2 shows the time-accuracy
for various choices of the weighting parameter θ . The choice of θ = 0.5 demonstrates
the expected first-order time-accuracy because the slope is approximately one. Use
of the Crank–Nicolson scheme for the viscous step, i.e. θ = 0, results in second-order
time-accuracy as the slope is approximately two. However, in this case, the use of a
large �t leads to numerical error in the form of temporal oscillations (Karniadakis
et al. 1991). By choosing a suitably small value of θ , this problem can be overcome.
This is shown in figure 2 for θ = 0.0125 where the line extends into the region of large
�t . The calculated growth rate from a 32 × 33 grid differed by less than 3 parts in
10−5, indicating that a 16 × 17 grid resolves the flow spatially.

3. Results
We considered an inner cylinder Reynolds number which was linearly increased

in time from an initial subcritical Rei to a final supercritical value Ref over a ramp
time T (given in terms of inner cylinder rotations), and then kept constant at Ref .
The value of Ref was generally taken to be not far above Rec. A number of different
simulations were conducted for fixed Rei , Ref and different T . In each simulation,
initial conditions of circular Couette flow plus a random perturbation of the relative
order 10−4 was applied. A random perturbation of this order was considered
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since we felt this may be typical of the expected noise level of a physical experiment.
The random number generation sequence was kept the same for each simulation to
ensure that initial conditions were fixed.

We calculated the mode amplitudes Aλ(t) from the Fourier transform of the radial
component of velocity at the radial centre of the gap,

Aλ(t) =

√
û2

r (rc, m, t)real + û2
r (rc, m, t)imag, (3.1)

where the allowed discrete wavelengths are given by

λ= Γ/m for m =1, . . . , M/2 − 1, (3.2)

where m is the axial Fourier index.
The following choice of parameter values were made: η = 0.727, µ = 0, Rei = 70 and

Ref =116.67. Note that this value of η was chosen because Burkhalter & Koschmieder
(1973, 1974) demonstrated experimentally that stable Taylor-vortex flow existed for
Re/Rec up to 9 for both quasi-steady increases and sudden starts. In addition, the
stability analysis of Jones (1984), and Antonijoan & Sanchez (2002) showed the
axisymmetric Taylor-vortex flow exists for Re/Rec < 4.5 at the critical wavelength.
Thus, this choice of η leads to axisymmetric Taylor-vortex flow as the final state for
the choice of Ref . Koschmieder (1993) presented results of minimum critical Reynolds
number and critical wavelength versus radius ratio. Using linear interpolation, we
calculated λc = 2.003 and Rec,λc

= 82.79 for radius ratio η = 0.727. The aspect ratio
Γ =20.03 was set to be ten times larger than λc. This choice is large enough to
guarantee different possible final states depending on the ramp time without making
the cost of each simulation too expensive. While a longer aspect ratio would allow
a finer gradation of allowable wavelengths, it would not change the interpretation
of the results in terms of the linear model. The numerical parameters were set to
M = 324, N = 33 and �t = 0.1. However, for the smaller ramp times �t had to be
reduced by up to an order of magnitude for a short initial period of time in the
simulation. This was done to adequately resolve the initial stage of fast decay due to
viscous damping (Liu & Chen 1973).

Using (3.2), in the vicinity of λc we have the following allowed discrete wavelengths:
1.541, 1.669, 1.821, 2.003 and 2.225. Alternatively, these may be referred to as modes
with m =13, 12, 11, 10 and 9, respectively (corresponding to the number of Taylor
vortices within the axial domain. In figure 3, we plot Aλ(t) for different ramp times
T for these five modes. The inset graphs for T = 0 and T = 5 show a close-up of the
region where the modes interact.

Figure 4 is a close-up of Aλ(t) for sudden starts, showing an initial stage of decay
before exponential growth occurs.

Figure 5 is a plot of instantaneous growth rate versus instantaneous Reynolds
number during the Reynolds number ramp. The inset graphs show a close-up of the
intersections on the Reynolds number axis.

Figure 3 shows that λc is preferred for sufficiently long ramp times, as illustrated
for T = 100 and T = 150. For sudden starts, T =0, the preferred wavelength λ= 1.669
is less than λc. The selected wavelength changes from 1.669 to 1.821 to 2.003 for
progressively longer ramp times. The wavelengths of these three Taylor-vortex flow
states lie within the Eckhaus stable band. This trend agrees with the observed
behaviour from physical experiments reported by Koschmieder (1993).

It is evident from figure 4 that, for sudden starts, the amplitude of each mode did
not begin to grow exponentially. There was a short initial period of time of decay
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Figure 3. Aλ(t) for six different ramp times T . ·−·, λ= 2.225; ———, λc = 2.003;
– – –, λ= 1.821; · · · , λ= 1.669; −· · ·−, λ= 1.541.

before exponential growth began. This initial decay has been attributed to viscous
damping (Liu & Chen 1973). During this time, the base flow has been perturbed from
circular Couette flow and is unsteady. Once the base flow readjusts, the amplitude of
the modes begin to grow exponentially.

4. Linear model
If the initial perturbation is expressed as a weighted sum of eigenfunctions of the

linearized form of the equations, then the weighting factors assign a value for the
initial amplitude of magnitude Aλ(0) for each mode. For our numerical studies, we
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Figure 4. Aλ(t) for sudden starts. ·−·, λ= 2.225; ———, λc = 2.003; – – –, λ= 1.821;
· · ·, λ= 1.669; −· · ·−, λ= 1.541.

consider the initial mode amplitudes Aλ(0) to apply at the time after the base flow
has readjusted and the modes begin their independent stage of growth.

4.1. Constant Re

If the Aλ(0) are small, each mode will either grow or decay exponentially, depending
on whether the wavelength is inside or outside the band from linear stability theory.

As the modes grow independently of each other, for a constant Reynolds number,
we can write

Aλ(t) = Aλ(0) exp(σλt). (4.1)

Equation (4.1) is the solution to the Landau equation in its simplest form

dAλ

dt
= σλAλ. (4.2)

In figure 5, when T is increased (or the rate of increase of Re is decreased) σλ

approaches a linear relationship with Re. The growth rate can be written as linearly
proportional to Reynolds number (Drazin & Reid 1989), provided it is not too far
from the critical Reynolds number. Assigning the critical Reynolds number and
cofactor of proportionality with mode-dependency, we have

σλ = Kλ(Re − Rec,λ). (4.3)

In figure 5, the lines of σλ versus Re intersect each other. Therefore the value of
the slope, Kλ, is different for each mode. Which mode has the greatest instantaneous
growth rate depends on the value of Re. Indeed, the ordering of the growth rates of
each mode, greatest to smallest, varies with Re. Analysis of figure 5 shows that in the
linear part of the plot, Kλ increases with decreasing λ.

The values of Kλ and Rec,λ could be determined from a linear stability analysis.
Alternatively, results from a sufficiently long ramp time can be used. Table 1 shows
these values for the T = 100 case. Subsequently, (4.3) can be used to predict the values
of σλ for each mode as a function of Re.
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Figure 5. Instantaneous σλ(t) versus instantaneous Re(t) for three different ramp times.
·−·, λ=2.225; ———, λc = 2.003; – – –, λ= 1.821; · · ·, λ= 1.669; −· · ·−, λ= 1.541.

4.2. Linearly increasing Re(t)

It will be assumed that the instantaneous growth rate σλ(t) at a particular Re during
a ramp is equal to the growth rate when Re is held fixed at that particular value. The
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Mode number (m) Rec,λ Kλ

9 83.4 0.0041
10 82.8 0.0044
11 83.3 0.0047
12 84.8 0.0050
13 86.9 0.0052

Table 1. Critical Reynolds numbers (Rec,λ) and growth rate slope (Kλ)
for the T = 100 ramp case (refer to figure 5c).

results of Eagles (1971) and Neitzel (1982), who have studied the stability of unsteady
circular Couette flow, have indicated that this assumption would gradually break
down as the acceleration rate is increased to large values. Indeed, this behaviour
is clear from the insets of figure 5. In fact, comparison of figure 5(a) with 5(c)
shows that the instantaneous critical Reynolds numbers for each mode increase with
larger acceleration rates. When T = 100, the critical Reynolds number for λc is 82.8,
agreeing with the result 82.79 from Koschmieder (1993), obtained by keeping the
value of Re fixed. For T = 5, the instantaneous critical Reynolds number for each
mode is uniformly increased by about 3%.

Proceeding with our assumption then, we must solve

dAλ

dt
= σλ(t)Aλ, (4.4)

which becomes

Aλ(t) = Aλ(0) exp

(∫ t

0

σλ(t
′) dt ′

)
, (4.5)

where from (4.3)

σλ(t) = Kλ(Re(t) − Rec,λ). (4.6)

The linear ramp is defined to start from t = 0. The ramp function Re(t) can be
defined as

Re(t) =


Rei +

dRe

dt
t if t � T ,

Ref if t > T ,

(4.7)

where the ramp rate is

dRe

dt
=

Ref − Rei

T
. (4.8)

In terms of the instantaneous exponential growth rate we have

σλ(t) =

{−σo,λ + Cλt if t � T ,

σf,λ if t > T ,
(4.9)

where

σo,λ = −Kλ(Rei − Rec,λ) (4.10)

and

σf,λ = Kλ(Ref − Rec,λ). (4.11)
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Figure 6. Comparison of the time variation of the amplitude of the λc = 2.003 mode from
the numerical calculations and the linear theory (equation (4.13)). Here, T = 150. The fit is
effectively exact almost until saturation.

A consequence of using an Re ramp rate is that each mode has a particular rate of
change of growth rate Cλ, where

Cλ = Kλ

dRe

dt
. (4.12)

The solution of (4.4) after substitution of (4.9) for σλ(t) gives

Aλ(t) =

{
Aλ(0) exp

(
−σo,λt + 1

2
Cλt

2
)

for t � T ,

Aλ(0) exp
(

1
2
(σf,λ − σo,λ)T + σf,λ(t − T )

)
for t > T .

(4.13)

The logarithm of the amplitude of the modes will therefore vary quadratically in
time during the ramping stage. During the linear ramp in Reynolds number, the
instantaneous growth rate for a mode increases linearly from an initial negative value
through zero to a final positive value. Therefore, during the ramp, the logarithm of the
amplitude of the mode decays quadratically to some minimum amplitude then grows
quadratically to a higher amplitude. These features agree with the behaviour of the
modes in their independent stage of growth shown in figure 3. A stronger comparison
is provided by figure 6. This shows the predicted fit from the linear theory (equation
(4.13)) and the numerical prediction, for the dominant mode (λ= 2.003) for a ramp
time of T = 150 (also shown in figure 3f ). The fit is visually perfect almost until
saturation, verifying the applicability and validity of the linear theory.

Now, consider the total time, t∗
λ that it takes for the amplitude of each mode λ

to grow to a particular higher amplitude A∗. In particular, this could represent the
amplitude necessary for the mode(s) to begin to interact nonlinearly. From (4.13), we
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obtain

t∗
λ =




1

σf,λ

ln

(
A∗

Aλ(0)

)
+

T

2

(
1 +

σo,λ

σf,λ

)
if t∗

λ � T ,

1

Cλ

(
σo,λ +

√
σ 2

o,λ + 2Cλ ln(A∗/Aλ(0))

)
if t∗

λ <T .

(4.14)

For simplicity of the argument, let us assume the initial amplitudes of the modes are
the same so that no particular mode is favoured initially. This would be the case if
the initial perturbation were constructed as an equally weighted sum of the linear
eigenfunctions of each mode.

Consider the first expression on the right-hand side of (4.14). The first term
represents the time it takes for each mode to reach A∗ for impulsive starts, t∗

λ,impulse.
The second term represents an additional time delay, t∗

λ,ramp, for each mode due to the
ramp.

Now t∗
λ,impulse has a shortest-to-longest ordering for each mode according to the

highest-to-lowest ordering of the final exponential growth rates σf,λ for each mode.
This follows from the factor 1/σf,λ in the first term. The values of σf,λ as a function
of Ref are given by (4.11).

Also, t∗
λ,ramp has a shortest-to-longest ordering corresponding to the lowest-to-highest

ordering of the critical Reynolds number Rec,λ for each mode. This follows from the
factor

1 +
σo,λ

σf,λ

= 1 +
Rec,λ − Rei

Ref − Rec,λ

=
Ref − Rei

Ref − Rec,λ

(4.15)

in the second term, which has a smallest-to-largest ordering corresponding to the
lowest-to-highest ordering of the critical Reynolds number Rec,λ for each mode. The
values Rec,λ are given by the neutral stability curve from linear stability analysis, as
illustrated by the outer curve in figure 1. For the slow ramp case (T = 100) shown
in figure 5(c) the critical Reynolds numbers and growth rate slopes are given in
table 1. The highest-to-lowest ordering of σf,λ is not the same as the lowest-to-highest
ordering of Rec,λ.

When the ramp time is increased from the impulsive start situation (T = 0) to the
situation with very slow increases (T very large), t∗

λ,ramp becomes progressively more
significant in relation to t∗

λ,impulsive. The shortest-to-longest ordering of t∗
λ gradually

changes from the highest-to-lowest ordering of σf,λ to the lowest-to-highest ordering
of Rec,λ.

For sufficiently large ramp times the shortest-to-longest ordering of t∗
λ will always

be according to the lowest-to-highest ordering of Rec,λ. The smallest value being t∗
λc
.

These features are observed in figure 3 for T = 100 and T =150 in the portion of the
independent stage of growth before nonlinear effects occur.

As the ramp time is increased further, the mode with the critical wavelength will
grow to A∗ progressively earlier than the other modes. In this sense, the critical
wavelength is being increasingly favoured, above all other modes.

In fact, the second expression on the right-hand side of (4.14) applies for very long
ramp times. For T large, the expression can be approximated by

t∗
λ =

2T (Rec,λ − Rei)

Ref − Rei

(
1 + O

(
1

T

))
if t∗

λ < T, T � 1. (4.16)

Hence, in agreement with the former analysis, the shortest-to-longest ordering of t∗
λ

will always be according to the lowest-to-highest ordering of Rec,λ.
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t∗
λ

Mode number (m) T = 0 T = 50 T = 100 T = 150

9 9.35 41.69 67.67 92.50
10 8.19 38.85 63.26† 86.70†

11 7.65 38.80† 64.07 88.47
12 7.15† 40.62 68.94 96.59
13 7.18 44.65 77.81 110.43

Table 2. Linear amplification times (t∗
λ ) for different ramp times (expressed in units of cylinder

rotations). The linear analysis predicts that the mode selection will correspond with minimum
growth times. † Mode selection from the numerical experiments.

Table 2 shows the predicted values of t∗
λ using the parameters from table 1 for

different ramp times. According to the linear theory, for each mode, the minimum
growth time should correspond with the selected mode. The actual selected modes for
the numerical experiments are shown by the dagger symbol. For these calculations, the
initial amplitudes are measured for each of the modes from the numerical experiments
by extrapolating the amplitudes back to the initial time. The initial amplitudes are
approximately exp(−15) within ±0.5 in the logarithm. For each of the ramp times
shown, the mode selected in the numerical experiments corresponds to the mode
predicted by the linear theory. Note that there is reasonable sensitivity to the initial
amplitude for ramp times shorter than about 50 cylinder revolutions.

5. Nonlinear effects
Suppose the discrepancy due to variations in the σλ(t) versus Re(t) linear profile

for high ramp rate is disregarded (compare figures 5a and 5c). We can redefine t∗
λ as

the time it would take a pure mode perturbation with wavelength λ to grow to an
amplitude A∗

λ where nonlinear self-interaction begins. Then t∗
λ,ramp represents the delay

time for mode λ to grow to A∗
λ. The change in the ordering of t∗

λ with ramp time
influences which state will be preferred at steady state.

From figure 3, λ=1.669 is the preferred mode when T = 0. For T = 5, the delay
time for λ= 1.669 is sufficiently greater than the delay time for λ= 1.821 so the
λ= 1.821 mode has time to self-interact and approach the form of a steady-state
Taylor-vortex flow. Consequently the λ=1.66905 mode and the remaining modes
react as if they are small perturbations to that Taylor-vortex flow, and decay. Thereby
a stable Taylor-vortex flow with λ= 1.821 is achieved.

Similarly for T =100, the difference in delay time between the λ= 1.821 mode
and the λ= 2.003 mode is great enough so that the λ= 2.003 mode has time to self-
interact and approach the form of a steady-state Taylor-vortex flow. Consequently, the
λ= 1.821 mode and the remaining modes react as if they are small perturbations to
that Taylor-vortex flow, and decay. Thereby a stable Taylor-vortex flow with λ=2.003
is achieved.

As the ramp time is increased past T = 100, the delay time for the λ=2.003 mode
will decrease relative to the delay time for the other modes. Thus, the λ=2.003
mode will increasingly have more time to self-interact and approach the form of a
steady-state Taylor-vortex flow. This is a partial explanation as to why the mode with
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the critical wavelength is always preferred when the inner cylinder Reynolds number
is increased quasi-steadily from subcritical to supercritical values.

This can be summarized as follows. When the ramp time is very short, the mode
with the maximum growth rate at the final Reynolds number is selected. For long
ramp times, the second term in (4.14) must dominate, which is smallest for the critical
wavelength. Effectively, the mode with the critical wavelength has time to grow to
high amplitudes before the other modes begin to be amplified. This is true even
if the growth rate curves cross over at subcritical Reynolds numbers, so that the
critical mode is initially damped faster than some other mode. Also note that this is
independent of the initial amplitude of each mode. On the other hand, the conclusion
for impulsive starts does rely on equal initial amplitudes of the modes (which is likely
to be approximately true).

6. Effect of finite aspect ratio
The numerical model as used in this paper restricts the aspect ratio and assumes

periodicity in the axial direction. The effect of these two choices is considered in this
section.

The restriction to a finite aspect ratio means this problem is different to the
idealized case of an infinite aspect ratio. Finite aspect ratio causes the Fourier
spectrum of allowed axial wavelengths to be discrete, unlike in the infinite case where
it is continuous. However, experimental rigs, of course, have finite aspect ratios and
effectively this means that the allowed spectrum is discrete, as the number of Taylor
vortices must be an integer in the final equilibrium state, even though the size of
the Taylor-vortex cells may not be constant. On the other hand, the boundaries at
the ends of experimental Taylor–Couette rigs enforce different boundary conditions
from the idealized case examined in this article; generally either fixed, corotating
or free ends. The influence of boundary conditions can be significant. In particular,
the critical Reynolds number is affected and the mode transition boundaries can be
shifted considerably. An example of the effects can be seen in the experimental results
of Xiao et al. (2002). They used constant acceleration to move from a subcritical to a
supercritical state, as is done here, and found the final state was a strong function of
the aspect ratio. However, unlike the case presented here, they used a smaller gap size
where the transition to wavy Taylor-vortex flow occurs for Reynolds numbers only
slightly above that for Taylor-vortex transition. Aspect ratios up to 50.54 were used.
They did find the character of the final state, i.e. either wavy Taylor-vortex flow or
Taylor-vortex flow with a smaller than critical wavelength, appeared to become less
sensitive to aspect ratio as the aspect ratio was increased.

To investigate the effect of non-periodic boundary conditions, further simulations
have been performed replacing the periodicity condition with non-slip boundary
conditions at the ends of the axial domain. This is not possible with the spectral
code used for the bulk of the results in this paper, so two other independent codes
were used for this study. These were a Galerkin third-order (spatially accurate)
finite-element code used to obtain steady-state results, and a second-order (time-
accurate) spectral-element code for time-dependent simulations. Both codes have
been carefully validated for related problems (e.g. Hourigan, Graham & Thompson
1998; Thompson, Hourigan & Sheridan 1996). In addition, both codes can enforce
periodic boundary conditions in the axial direction and so a direct validation against
the results from the fully spectral code was possible. For each code, the grid sizes
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Figure 7. Greyscale plots of vorticity showing the effect on non-slip boundary conditions
on equilibrium solutions for a finite aspect ratio. The critical Reynolds number in this case
is 82.79. As this critical Reynolds number is approached, the vortices induced by the end
conditions affect more of the domain. The vorticity levels are the same for each plot.

were adjusted so that the critical Reynolds number was predicted to within better
than 0.1%.

Figure 7 shows the effect of non-slip ends obtained using the steady code as a
function of Reynolds number. The aspect ratio was Γ = 40.06 = 20λc. The critical
Reynolds number for periodic end conditions is 82.79. The greyscale contours show
the development of vortices at the ends of the axial domain at Reynolds numbers
significantly less than critical. However, the transition in the middle section of the
domain occurs at close to the ideal critical Reynolds number.

Hence, at least for the equilibrium solutions, the effect of the non-slip boundaries
does not appear to influence the critical Reynolds number at the centre of the domain
very significantly. (Admittedly, the numerical results show that very weak Taylor
vortices occur even near the centre of the domain at Reynolds numbers considerably
below critical; these are not seen on the plots in figure 7 because of the levels
chosen, however, it is only close to Rec that the magnitudes of the vorticity become
significant.) These conclusions are consistent with the earlier numerical simulations
of De Roquefort & Grillard (1978).

To further quantify the effect of the alternative boundary conditions, time-dependent
simulations at post-critical Reynolds numbers were performed to determine the
timescale for propagation of boundary effects towards the centre of the domain relative
to the timescale for growth of Taylor vortices when periodic boundary conditions
are used. Figure 8 shows the time-dependent development of the Taylor-vortex
flow starting from rest for an aspect ratio of Γ = 80.12 =40λc, and Re= 116.67
(the final Reynolds number for the spectral simulations). The effect of the end
vortices is to cause the neighbouring vortices to spin up prematurely. This effect
propagates from the ends of the domain towards the centre. In parallel with this, the
Taylor-vortex cells in the middle region of the domain are growing independently, so
that at non-dimensional time 175 (= 10.45 inner cylinder rotations) the middle half of
the domain shows simultaneous development of Taylor vortices of similar strength.
There is no applied perturbation in this simulation; the development of the vortices
is seeded by computer roundoff error. The number of vortex pairs is 45, considerably
higher than that predicted for quasi-steady increases of 40. Thus, it appears that
for sudden starts and small ramp times, the growth of Taylor vortices away from
the boundaries will be relatively unaffected by end boundary conditions. For those
vortices near the ends, whose growth rate is enhanced, it seems likely that the selected
wavelength is predominately determined by the Reynolds number rather than end
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Figure 8. Development of Taylor-vortex flow after an instantaneous increase in Reynolds
number from 70 to 116.67 as depicted by greyscale azimuthal vorticity. From top to bottom,
the cross-sections correspond to non-dimensional times: t = 0, 25, 50, 75, 100, 125, 150, 175,
250 and 500. Fixed end conditions are used. The aspect ratio was Γ = 80.12 corresponding to
40 critical wavelengths.

effects. Supporting evidence comes from a comparison of simulations using the two
types of end condition. For the case with periodic boundaries, the selected number
of vortex pairs is also 45, as it is for the non-slip boundary case. Hence, it appears
wavelength selection for Taylor-vortex flow, at least for reasonable aspect ratios, is
insensitive to end conditions.

Simulations at Re = 84.6 (about 2% above critical) also support this view. For both
types of boundary condition the final number of Taylor-vortex cells was 40 which is
the most amplified mode from linear theory (Koschmieder 1993).

6.1. Taylor-vortex development with constant acceleration rates
and different end conditions

Simulations corresponding to different ramp times were made using the spectral-
element method for both periodic and fixed end conditions to determine better the
effect of the end conditions on the evolution. As for the fully spectral simulations,
the inner cylinder rotation rate was linearly increased during the ramp time so that
the Reynolds number varied between Rei = 70 and Ref = 116.67. Once the final
Reynolds number was reached the inner cylinder rotation rate remained fixed until
the flow reached an equilibrium state. Once again, the initial flow corresponded
to stationary Couette flow plus a random perturbation of relative magnitude 10−4.
The same random number sequence was used for both cases, hence the velocity
perturbation was identical even though the base flows were not. The aspect ratio for
these simulations was Γ = 80.12, so that the axial domain was 40λc.

The number of Taylor-vortex pairs contained in the domain for different ramp
times is shown in figure 9. Interestingly, the same number of vortex pairs is observed
for the two different boundary types for both sudden starts and long ramp times
corresponding to quasi-steady increases. This is consistent with the results above. For
sudden increases, the most amplified wavelength is determined by the final Reynolds
number and the effect of the fixed ends is minimal. For the fixed ends case, there
are two strong vortices at the ends of the domain initially at Re = 70, but once
the Reynolds number is instantaneously increased to 116.67 further development of
Taylor vortices, whether assisted by the influence of the ends or through amplification
of the random perturbation in the middle section of the domain, is determined by
the amplification rates at the final Reynolds number. At the other extreme, quasi-
steady increases select a wavelength close to critical. In this case, the flow evolution
corresponding to the different boundary types is different. For fixed ends, Taylor
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Figure 9. Number of Taylor-vortex pairs for different ramp times, for both periodic (squares)
and fixed ends (circles). The aspect ratio was Γ = 80.1144, corresponding to 40 critical
wavelengths. The dotted lines are only a visual guide to the dependence.
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Figure 10. Taylor-vortex flow prior to saturation for both periodic and fixed end conditions
for T = 5. Greyscale contours of azimuthal vorticity are used to indicate the flow state.
The two lower plots show the effect of the end conditions on the developing Taylor-vortex flow.
Between the dotted lines the flow state is near identical. The top vorticity plot shows the
flow state after a long time (t = 2500) after the local wavelength has attained a near uniform
value throughout the axial domain.

vortices form more quickly at the boundaries. There is a reduced axial domain over
which amplification of the initial velocity perturbation is the mechanism resulting in
saturated Taylor vortices. For periodic end conditions only the second mechanism is
active, hence all Taylor vortices saturate at close to the same time.

The results for the intermediate ramp times are more interesting. Between T = 5 and
100, the selected mode is strongly dependent on end conditions. Fixed end conditions
lead to fewer Taylor vortices (i.e. a longer wavelength). The qualitative reason for
this is easy to understand. For intermediate ramp times, the Taylor vortices near the
ends can grow and saturate well before the vortices in the central part of the domain.
So the development and saturation of the vortices near the ends occurs at a lower
average relative Reynolds number for which the fastest growing mode has a longer
wavelength. Thus, fewer Taylor vortices are expected in the saturated state than for
the equivalent case with periodic end conditions.

This leads to the obvious question: is the linear theory developed in this paper
relevant to experimental results with other types of boundary conditions? To address
this question consider figure 10. This shows snapshots of the vorticity field for T =5
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for the two different types of end condition just prior to saturation at t = 70. (The end
of the ramp occurs at t = 50 in these units.) Recall that the initial velocity perturbation
is the same in each case (even though the base flows are different). This figure shows
that over most of the domain bounded by the dotted lines, the flow state is essentially
identical. Thus, the flow over the majority of the domain has evolved independent of
the end conditions until the vortices are close to their saturated strengths. Near the
ends this is not the case. The flow for fixed ends has longer wavelength Taylor vortices
because they developed when the average Reynolds number was lower and hence
a longer wavelength was selected. Thus, it is expected that the linear theory should
apply equally (albeit only over part of the domain) for both fixed and free ends.

For the fixed ends conditions, the flow between the dotted lines (figure 10)
reaches (effective) saturation shortly afterwards. At this stage there is a mismatch in
wavelength between the longer local wavelength at the ends and the shorter wave-
length over the middle section of the domain. To account for this, there is a long time
scale readjustment where the Taylor-vortex size becomes more uniform throughout
the domain.

7. Nonlinear model
To account for nonlinear effects we suggest the addition of the following nonlinear

terms to (4.4):

dAi

dt
= σi(t)Ai − liAi |Ai |2 −

N∑
j=1,j �=i

αijAi |Aj |2 +
∑
j,q

βjqA
∗
jA

∗
q, (7.1)

for N modes where the asterisk denotes complex conjugate. The subscripts now
denote Fourier indices. This model has been suggested by Abarbanel, Rabinovich &
Sushchik (1993) for application to Rayleigh–Bénard convection.

In (7.1), the first cubic term accounts for the self-interaction of mode i. The second
cubic term accounts for the coupling of mode i with other modes j . The effects of
the cubic terms were described in § 5. Effectively, they cause the modes to saturate
by limiting the growth rate when the amplitudes become large. On the other hand,
figure 3 shows rapid growth of some modes prior to saturation. It is speculated that
the last term accounts for this behaviour.

The quadratic-term models resonant three-wave interactions. The index q is
taken over all harmonics and is such that the resonance condition i + j = q is
satisfied. Figure 3 shows that three-wave resonance effects appear as rapid regions of
acceleration for lower amplitude modes prior to the saturation of the preferred mode.

Consider the Eckhaus mechanism of instability of a Taylor-vortex flow with
a fundamental mode k and first harmonic q = 2k. When there are side-band
perturbations with modes i and j such that i + j =2k, these perturbations resonate
with the first harmonic and mutually reinforce each other, destabilizing the Taylor-
vortex flow. However, when we consider a Taylor-vortex flow within the Eckhaus
stable band, the resonances still occur, but they are not strong enough to destabilize
the flow.

We can illustrate the effect of the quadratic terms with a simple model with no
Reynolds number ramp. Consider amplitude equations for four modes, the initial
conditions being such that AF (0) � AH (0) � A1(0) � A2(0):

d|AF |
dt

= σF |AF |, (7.2)
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d|AH |
dt

= σH |AH |, (7.3)

d|A1|
dt

= σ1|A1| + βH,2|AH | · |A2|, (7.4)

d|A2|
dt

= σ2|A2| + βH,1|AH | · |A1|, (7.5)

where |AF |, |AH |, |A1| and |A2| refer to the magnitudes of the fundamental mode,
its first harmonic, a perturbed mode 1 and a perturbed mode 2, respectively. The
perturbed modes must satisfy resonance conditions, namely i1 + i2 = iH . In (7.1), the
quadratic terms are complex conjugates, whereas in (7.4) and (7.5) it was assumed for
simplicity that the phases satisfy φ1 + φ2 = − φH and cancel out.

Initially, mode 2 grows as exp(σ2t). When the amplitude of mode 2 is large enough,
the quadratic terms will make the amplitude grow as exp((σH +σ1)t). As σH +σ1 � σ2,
at some point in time following the initial exponential growth of mode 2 we begin to
see a rapid exponential growth.

For the general case with a Reynolds number ramp, in (7.2) to (7.5) we can replace
the growth rates with linear functions as defined by (4.9). A similar argument for the
region of rapid exponential growth can be applied where the log of the amplitude in
this region now grows quadratically in time. We can assume that li , αij and βjq do
not vary with Re, although more numerical runs will be required to determine the
degree to which this is valid. However, it is a reasonable assumption considering that
the Reynolds number is assumed to be not far from the critical value.

In figure 3, for T = 50 and T =75, the preferred mode is mode 11. In these figures,
during the ramp, the log of the amplitude of mode 12 varies quadratically with time
whilst its amplitude is small, followed by a rapid acceleration prior to the saturation
of mode 11. It is suggested that this is partly due to the first harmonic (iH =22) of the
fundamental mode (iF =11) interacting simultaneously with the smaller-amplitude
modes i1 = 10 and i2 = 12, bringing about a mutual reinforcement or resonance of
these two modes (since the condition under which the resonance occurs is satisfied).
One also expects mutual reinforcements of modes i1 = 9 and i2 = 13, i1 = 8 and i2 = 14,
and so on. These resonances are a result of interactions with the first harmonic of
mode 11. These are also manifested as rapid accelerations prior to the saturation of
the fundamental mode.

In figure 3, for T = 100 and T = 150, the preferred mode is mode 10. In these
figures, the first harmonic (iH = 20) of the fundamental mode (iF = 10) interacts
simultaneously with the smaller-amplitude modes i1 = 11 and i2 = 9, bringing about a
mutual reinforcement of these two modes. With respect to the first harmonic of mode
10, resonances are also expected for i1 = 8 and i2 = 12, i1 = 7 and i2 = 13, and so on.

It is also noticed that the lower the amplitude of the unpreferred mode, the earlier
it begins to accelerate. This feature is accounted for by the quadratic term in (7.5) if
the lower amplitude mode is i2.

Although we have discussed resonances with respect to interactions with the first
harmonic of the preferred mode there are also contributions to the resonance due to
interactions with the first harmonics of the other modes.

We can envisage an N-dimensional phase space spanned by {|A1|2, |A2|2, . . . , |AN |2}.
Solving (2.6) for d|Ai |2/dt =0 gives the coordinates of all the equilibrium points.
When the coupling constants αij satisfy some set of strong coupling conditions then
we obtain N stable equilibrium points in the phase space. We can perceive the N

stable equilibrium points as a model for a discrete set of N possible Taylor-vortex
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flows within the Eckhaus stable band. The strong coupling conditions can themselves
be viewed as conditions for non-uniqueness of the N-mode system. Assuming that the
initial amplitudes of the modes are the same, the preferred state varies with ramp time.

8. Conclusions
A linear model was shown to describe the behaviour of the amplitude of the

modes in their independent stage of growth. The total time for the amplitude of
a mode to grow to high amplitudes, where nonlinear effects were important, was
equal to the time it would take for impulsive increases plus a delay time. The delay
time has a shortest-to-longest ordering of the modes corresponding to the lowest-to-
highest ordering of the critical Reynolds number of each mode. As the time delay is
proportional to the ramp time, progressively longer ramp times result in a change of
the ordering of the time taken for each mode to begin self-interaction. Then, for a
particular ramp time, the mode which has sufficient time to self-interact will become
preferred. When the ramp time was sufficiently large, the delay time outweighed the
time taken for impulsive increases. In this case, the amplitude of the mode with
the critical wavelength was delayed the least from growing to high amplitudes, where
the flow self-interacted and approached the form of a steady Taylor-vortex flow.

For the case examined in this paper, the model parameters for the linear model were
determined and used to predict the selected wavelength of the Taylor-vortex flow.
These analytical predictions agree with the observed final states from the numerical
simulations.

The description of the mode selection is as follows. For short ramp times, the mode
with the maximum growth rate at the final Reynolds number is selected since the
Taylor vortices must grow and saturate effectively at this final Reynolds number.
However, this relies on the modes having the same initial amplitude. For long ramp
times, (4.14) reduces to (4.16), which gives the minimum t∗

λ for the critical wavelength.
Physically, the critical mode has time to grow to significant amplitudes before the
other modes begin to grow. This is true even if the critical mode is initially damped
faster than some other mode. In particular, for increasingly long ramp times, the
critical mode is preferentially selected independent of its initial amplitude. The linear
model describes this process mathematically. Given the initial mode amplitudes and
their growth rate coefficients (derived from numerical simulations or linear stability
analysis) it is possible to predict the final state for any ramp time and the approximate
time at which saturation begins to set in.

Finally, to take account of rapid growth of some modes prior to saturation,
a nonlinear model has been suggested which includes three-way resonant mode
interactions. This model can account for the observed features of the nonlinear
behaviour. It may be possible to determine the model coefficients through careful
numerical experiments in future work.
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