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Vortex-induced vibration (VIV) of an elastically mounted sphere placed close to or
piercing a free surface (FS) was investigated numerically. The submergence depth (h)
was systematically varied between 1 and −0.75 sphere diameters (D) and the response
simulated over the reduced velocity range U∗ ∈ [3.5, 14]. The incompressible flow was
coupled with the sphere motion modelled by a spring–mass–damper system, treating the
free-surface boundary as a slip wall. In line with the previous experimental findings,
as the submergence depth was decreased from h∗ = h/D = 1, the maximum response
amplitude of the fully submerged sphere decreased; however, as the sphere pierced the
FS, the amplitude increased until h∗ = −0.375, and then decreased beyond that point.
The fluctuating components of the lift and drag coefficients also followed the same
pattern. The variation of the near-wake vortex dynamics over this submergence range was
examined in detail to understand the effects of h∗ on the VIV response. It was found that
h∗ = 1 is a critical submergence depth, beyond which, as h∗ is decreased, the vortical
structures in the wake vary significantly. For a fully submerged sphere, the influence of
the stress-free condition on the VIV response was dominant over the kinematic constraint
preventing flow through the surface. For piercing sphere cases, two previously unseen
vortical recirculations were formed behind the sphere near times of maximal displacement,
enhancing the VIV response. These were strongest at h∗ = −0.375, and much weaker for
small submergence depths, explaining the observed response-amplitude variation.
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1. Introduction

Vortex-induced vibration of a bluff solid body placed in a fluid flow has been studied for
many years because of its practical significance to various engineering fields. Due to the
alternate shedding of periodic or quasi-periodic vortices from such a body, large-amplitude
vibrations can be excited. This is known as vortex-induced vibration, or VIV. Offshore
structures, underwater submarines, marine turbines, buoys, oil conduits and platforms are
some examples that can be subject to VIV. The VIV response depends on many factors:
the shape of the solid body, its density, the method of mounting, the Reynolds number and
even the proximity of the body to a wall or to a free surface (FS). While potential practical
applications exist concerning VIV of a bluff body in close proximity to a FS or piercing
one, for example, floating offshore ocean structures, such as buoys, floating wind farms,
oil-rig platforms and wave power plants, limited research has been conducted to examine
effects of the FS on VIV. Thus, this article focuses on VIV of a three-dimensional bluff
body in close proximity to a FS or piercing it, using the most generic body shape of a
sphere.

Flow past a bluff body placed beneath a FS mainly depends on the scaled distance
between the body and the FS, h∗ = h/D (where h is the submergence depth and D the
sphere diameter), and the ease of distorting the FS, measured by the Froude number
Fr = U∞/

√
gh (where U∞ is flow speed and g the gravitational acceleration). The

numerical study of Reichl, Hourigan & Thompson (2005) examined the wake of a cylinder
close to a FS for Froude numbers Fr ∈ [0, 0.7] and submergence depths h∗ ∈ [0.1, 5],
at a Reynolds number of 180. They revealed that for low values of Fr, when surface
deformation is minimal, the FS interface can be approximated with a slip wall, as the
flow is mainly governed by geometric constraints. However, when Fr exceeds 0.3–0.4,
the surface deformation becomes substantial; and indeed, as the local Froude number
becomes close to unity, localised FS sharpening and wake breaking can occur. At moderate
Fr, Reichl et al. (2005) observed previously seen metastable wake states observed in the
experimental studies of Sheridan, Lin & Rockwell (1995) and Sheridan, Lin & Rockwell
(1997), who examined the flow past a cylinder close to a FS over the Froude number range
0.47 ≤ Fr ≤ 0.72 and Reynolds number range 5990 ≤ Re ≤ 9120.

The findings of Reichl et al. (2005) were consistent with the observations of Kawamura
et al. (2002) on the flow past a piercing circular cylinder. That study was conducted using
large eddy simulations at Re = 2700 and for Fr = 0.2, 0.5 and 0.8. They found that at Fr =
0.2 and 0.5, surface deformation was small, and that the time-mean flow near the surface
was similar to that near the bottom symmetry boundary. On the other hand, surface wave
generation was large and strongly unsteady at Fr = 0.8. Yu, Avital & Williams (2008)
conducted a similar study varying the Froude number up to Fr = 3 and Re up to 1 × 105

with a piercing circular cylinder, and found that the FS attenuated the vortex generation in
the near wake. This effect of the FS was found to be stronger as Fr was increased, and at
Fr = 2, vortex shedding was no longer regular.

Hassanzadeh, Sahin & Ozgoren (2012) applied large eddy simulations to investigate the
wake flow behind a sphere placed close to a FS at Re = 5000 for submergence depths h∗ =
0.25, 0.5, 1 and 2. They found that the interaction between the FS and the downstream
wake was maximum at h∗ = 0.25, and increasing h∗ resulted in decreasing the level of
interaction. At h∗ = 2, the FS effect was minimal, and beyond that, flow past the sphere
may be assumed to be in a free-stream flow. The experimental studies of Ozgoren et al.
(2012, 2013a,b) and Doğan et al. (2018) also revealed that the wake structures behind a
sphere strongly depend on the sphere submergence depth.

Compared with a flow-induced vibration (FIV) of a cylinder, much less attention has
been directed to FIV of a sphere. Some of the fundamentals of FIV of a sphere were
929 A41-2
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Vortex-induced vibration of a tethered sphere

revealed through the systematic series of experimental studies conducted by Williamson
& Govardhan (1997), Govardhan & Williamson (1997, 2005) and Jauvtis, Govardhan &
Williamson (2001), using tethered and elastically mounted spheres. When only a single
degree of freedom is allowed for the sphere movement, the vibration synchronises with
the vortex shedding behind the body, with a characteristic large-amplitude oscillation, as
happens for a cylinder. Four distinct modes of sphere vibrations (named modes I–IV) were
identified with varying characteristics in terms of sphere oscillation amplitude and phase,
and wake structures. The first two modes have been identified as VIV, which appears
in the reduced velocity range 5 � U∗ � 12. Mode I is the most robust vibration state,
associated with the natural resonance. As the reduced velocity is increased, the sphere
motion smoothly transitions to mode II (Govardhan & Williamson 2005). Interestingly, the
amplitude of mode II was observed to be about twice that of mode I. In contrast to these
experimental observations at high Reynolds numbers, the transition between modes I and
II was obscure in the amplitude response at low Reynolds numbers (Behara, Borazjani
& Sotiropoulos 2011; Behara & Sotiropoulos 2016; Rajamuni, Thompson & Hourigan
2018a,b). The recent study of Rajamuni, Thompson & Hourigan (2020b) numerically
investigated vibration modes of a tethered sphere, and found that the effect of Reynolds
number on the modes I and II regimes was significant over the Reynolds number range
300 ≤ Re ≤ 2000, although it was found to be insignificant beyond that range for 2000 ≤
Re ≤ 12 000 in the experimental studies of Govardhan & Williamson (2005). Rajamuni
et al. showed that the sphere response amplitude progressively increased as the Reynolds
number was increased, especially in the mode II regime. Their response predictions at
higher Reynolds numbers (Re = 1200 and 2000) were close to those seen in previous
experimental studies. Importantly, the wakes in the modes I and II regimes consisted of
vortex streets of interlaced hairpin-like vortex loops, with the modes distinguished by the
phase difference between the vortex force and displacement.

The mode III state, first observed by Jauvtis et al. (2001) in the reduced velocity
range U∗

∼ 20–40, was later identified as a movement-induced vibration by Govardhan
& Williamson (2005). Compared with the first three highly periodic modes, mode IV,
found by Jauvtis et al. (2001) for U∗ > 100, was characterised by intermittent bursts of
vibration. Interestingly, both Rajamuni et al. (2018a, with a sphere of mass ratio, m∗ = 2.6)
and Rajamuni et al. (2020b, with a sphere of m∗ = 0.8) observed mode IV type aperiodic
response right after the mode II regime, without the intervening mode III response. In
fact, mode III has been seen only with heavy spheres. As the mass ratio of the sphere was
increased from 0.8 to 80, at U∗ = 30, Rajamuni et al. (2020b) observed a smooth transition
from mode IV to mode III. With this observation, Rajamuni et al. (2020b) hypothesised
that mode III is a delicate state that manifests only with the larger inertia of dense spheres.
By analysing the sphere response trajectories and Poincare maps, Rajamuni et al. (2020b)
showed that sphere response is chaotic in mode IV.

The above-mentioned studies have been conducted with a fully submerged sphere far
away from a wall boundary. Little research has been undertaken to examine the effect
on VIV of the presence of a wall boundary or a FS. Barbosa et al. (2017) examined
the effects of a plane boundary on the VIV of a freely vibrating cylinder and found that
the vibration amplitude increased for gap ratios smaller than 0.75D, while the amplitude
decreased for gap ratios between 2D and 0.75D. Chung (2016) numerically investigated
2-degrees-of-freedom (2-DOF) VIV of a horizontal circular cylinder near a FS at Re = 100
for Fr = 0.2 and 0.8 for various submergence depths. It was stated that proximity to a
FS strengthened and suppressed the VIV for low and high Froude numbers, respectively.
Saelim (1999) examined self-excited transverse vibrations of a horizontal, elastically
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mounted cylinder located beneath a FS for 0 ≤ h∗ ≤ 3. Although the amplitude response
curves agreed with past studies when the cylinder was well submerged, there were dual
amplitude response curves when the cylinder was sufficiently close to the FS. In addition,
for small submergence depths, very large regions of hysteresis occurred in the variation of
oscillation amplitude as a function of the reduced velocity.

Mirauda, Plantamura & Malavasi (2014) studied the dynamic response of a sphere
immersed in shallow water flow with a sphere of mass ratio m∗ = 1.34. For small
submergence depths (0 ≤ h∗ ≤ 0.5), the transverse amplitude was significantly smaller
with respect to the completely submerged sphere, inhibiting the formation of mode II.
Nevertheless, for h∗ > 0.5, both modes were observed. However, no attempt was made
to examine the effect on fluid forces or the wake behind the sphere to support their
claims. Sareen et al. (2018) experimentally investigated VIV of a sphere close to a FS
over a range of reduced velocities 3 ≤ U∗ ≤ 20, by varying the submergence depth from
−0.75 to 1. For the fully submerged case (0 ≤ h∗ ≤ 1), the vibration amplitude decreased
monotonically and gradually, as h∗ decreased, with greater influence on modes II and III.
On the other hand, when the sphere pierced the FS, the response amplitude first increased,
even beyond that observed for a completely submerged sphere, as h∗ decreased from 0 to
−0.5, and then it decreased as h∗ was decreased further. Sareen et al. (2018) found both
mode I and II type responses, even when the sphere was piercing the FS, in contrast to the
findings of Mirauda et al. (2014), although the mass ratio was quite different. Sareen et al.
(2018) also found that the sphere response was insensitive to the Froude number for the
range 0.05 ≤ Fr ≤ 0.45.

Recently, Chizfahm, Joshi & Jaiman (2021) numerically investigated the transverse FIV
of an elastically mounted sphere in the vicinity of a FS at h∗ = −0.25, 0 and 1 over the
reduced velocity range 3 ≤ U∗ ≤ 20. The response amplitude decreased as h∗ decreased
from 1 to 0, but it increased as h∗ further decreased to −0.25, consistent with the findings
of Sareen et al. (2018). They also reported that the surface deformation was not substantial
for the Froude number range Fr ≤ 0.44, although the amplitude response decreased by
∼30 % as the Froude number was increased from Fr = 0.22 to 0.44. However, the wake
flow structure was also observed to be similar across this range.

The main limitation of the experimental study of Sareen et al. (2018) was that the
three-dimensional (3-D) wake could not be adequately quantified or even characterised.
Although through-plane vorticity was determined in a downstream cross-plane, no
concrete physical explanation could be drawn about the influence of the FS on the
wake, and hence, the changing VIV state. The wake structure of a sphere is intrinsically
three-dimensional, and hence difficult to characterise the wake with in-plane velocity
measurements on one plane through the wake. Whilst spatio-temporal reconstructions of
the wake were attempted by Sareen et al., these may not provide a good representation
of the wake dynamics, and especially the near-wake dynamics that governs the coupled
VIV forcing. On the other hand, the study of Chizfahm et al. (2021) was limited to
three submergence depths, and although they presented the global changes to the vortical
wake structure over that depth range, the focus was more on the effect of surface
distortion on near-wake vorticity than directly relating the details of the near wake to
the changes in amplitude response. Thus, further research is called for to understand the
findings of Sareen et al. (2018) and Chizfahm et al. (2021), and to address the questions:
(i) What happens to the lift and drag forces when the sphere is close to a FS? (ii) Why
does the sphere response become weak as it approaches a FS? And (iii) why does the
response subsequently become stronger when the sphere slightly pierces the surface? The
present study investigates the influence of the FS on the VIV response, for fully and
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Vortex-induced vibration of a tethered sphere

Parameter Symbol

Amplitude ratio A∗ = √
2Arms/D

Drag coefficient Cd = 2Fd/(ρπU2D2)

Lift coefficient Cl = 2Fl/(ρπU2D2)

Froude number Fr = U/
√

gD
Frequency ratio f ∗ = f /fn
Submergence depth h∗ = h/D
Mass ratio m∗ = m/md

Reynolds number Re = DU/ν

Strouhal number St = fvoD/U
Reduced velocity U∗ = U/(Dfn)
Normalised velocity Un = U∗St/f ∗ = fvo/f

Periodicity of vibration λA = √
2Arms/Amax

Table 1. Non-dimensional parameters. The streamwise direction is parallel to the x-axis, the y and z are axes
are orthogonal to the flow and referred to as the transverse and vertical directions, respectively. Here, m and
md are the mass of the sphere and mass of the displaced fluid, respectively; D is the diameter of the sphere;
h is the vertical distance from the FS to the top of the sphere, U is the upstream velocity; ν is the kinematic
viscosity of the fluid; f is the sphere vibration frequency; fn is the natural frequency of the system (without the
added-mass effect); fvo is the vortex shedding frequency; Fd and Fl are the drag and lift forces, respectively;
and Arms and Amax are the root-mean-square (r.m.s.) and the maximum of the sphere displacement signals in y
direction, respectively.

semi-submerged spheres, and attempts to answer the above questions through a thorough
examination of fluid forces and detailed near-wake dynamics.

Prior to proceeding further, it is noted that, in the experiments of Sareen et al. (2018), the
Froude number was found to be small, with only minor surface deformation detected, and
its effect on the VIV response of fully and semi-submerged spheres appeared relatively
minor. In particular, as the surface deformation is small for small Froude numbers,
through a comparison with experiments (Reichl et al. 2005) concluded that a FS can be
approximated with a slip wall in such cases. Therefore, rather than modelling this problem
as a two-phase flow system, the FS was approximated as a free-slip wall. This also will
provide a reference case that can be used to establish the effects of non-negligible Froude
number in future studies.

The governing parameters for this study are tabulated in table 1. The article is organised
as follows: § 2 describes numerical methods used together with validation studies; results
on the sphere response near a FS are presented in § 3.1, then force predictions are given
in § 3.2, while § 3.3 provides a comprehensive discussion on the influence of FS on the
VIV of a sphere in terms of the vortical structure of the wake in induced forces; finally,
concluding remarks are provided in § 4.

2. Numerical methodology and validation

The computational study employed the open-source finite-volume computational fluid
dynamics package OpenFOAM (https://openfoam.org). Efficient parallelisation has been
implemented in OpenFOAM, allowing it to tackle reasonably large flow problems
efficiently. Recent versions of OpenFOAM enable the solving of fluid–structure interaction
problems based on dynamic grid techniques. As the technique requires the reconstruction
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Free-surface

h

z
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x
D

U U

(a) (b)

Figure 1. Schematic of the elastically mounted sphere near a FS. Panel (a) shows the side view (x–z plane),
while (b) shows the plan view (x–y plane).

or movement of the grid at the end of each time step, this approach can add significant
computational overhead for problems having continual structure motion. However, the
present fluid–structure interaction problem of a single rigid body can be solved efficiently
and accurately by using a body-fixed reference frame and a non-deformable grid, as
used by Blackburn & Henderson (1996), Leontini, Thompson & Hourigan (2006) and
Leontini, Lo Jacono & Thompson (2013). In this section, the problem formulation
and fluid-structure interaction (FSI) solver are discussed, the computational details are
provided, and finally the validity of the approach and selected resolution for the main
simulations are discussed.

2.1. Problem formulation
Figure 1 shows a schematic of the set-up used for the study. A solid sphere was mounted
in a flow domain with elastic supports in the transverse direction (y direction) near a FS.
The flow was assumed to be in the x direction. The diameter of the sphere is D and the
vertical distance between the top of the sphere and the FS is h. To achieve the maximum
vibration amplitude, the sphere was supported with springs without dampers.

The fluid flow was modelled in the moving reference frame attached to the centre of the
sphere, to avoid grid deformation. This is a non-inertial reference frame, as the velocity of
the sphere is not fixed. Therefore, the fixed-frame (momentum) Navier–Stokes equations
need to be adjusted by adding the acceleration of the sphere to the momentum equations,
as a source term. The fluid was assumed incompressible, Newtonian and viscous. The
sphere was taken as a rigid body with a uniformly distributed mass, while its motion was
controlled through its set-up as a spring–mass–damper system.

The fully coupled fluid–solid system can be described by the incompressible
Navier–Stokes equations given by (3.1) and the continuity equation given by (2.2), together
with the governing equation for the motion of the sphere by (2.3)

∂u
∂t

+ (u · ∇)u = −∇p + ν∇2u − ÿs, (2.1)

∇ · u = 0, (2.2)

mÿs + cẏs + kys = fl . (2.3)

Here, u = u(x, y, z, t) is the velocity vector, p is the scalar kinematic pressure and ν is
the kinematic viscosity of the fluid. The vectors ys, ẏs and ÿs are the sphere displacement,
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Vortex-induced vibration of a tethered sphere

velocity and acceleration, respectively (the x and z components of these vectors are set to
zero, as the sphere motion was restricted to the y direction only). In addition, m is the mass
of the sphere, c is the damping constant (taken as zero), k is the structural spring constant
and f l is the flow-induced vector fluid force acting on the sphere.

2.2. The fluid–structure solver
Recently, we developed a fully coupled FSI solver named vivIcoFoam to efficiently solve
FIV problems of an elastically mounted single rigid body. Rajamuni (2018), Rajamuni
et al. (2018a) and Rajamuni, Thompson & Hourigan (2019, 2020a) have documented this
solver in detail, so only brief details are provided here.

This FSI solver is based on the pre-built icoFoam transient solver, which is implemented
according to the pressure implicit splitting of operators algorithm introduced by Issa
(1986). The vivIcoFoam solver employs a predictor–corrector iterative method, which
initially predicts the solid motion and corrects it in several corrector iterations. At the end
of each iteration, the fluid equations given in (3.1) and (2.2) are solved with the predicted
or subsequently corrected solid acceleration, and the fluid forces induced on the solid are
calculated. Readers are referred to Rajamuni et al. (2020a) for the details of the solver.
The iterative process to move from one timestep to the next terminates when the relative
error of the magnitudes of the solid acceleration and the fluid forces are less than a given
error bound, typically ε = 0.001. As for the fluid solver, the overall vivIcoFoam solver is
of second-order temporal accuracy.

The fluid domain was modelled in a moving frame of reference. The frame motion
is acknowledged through adjusting the outer domain velocity boundary conditions (except
the outlet boundary). In this study, the velocity is prescribed on all outer boundaries except
the outlet. Once the predictor–corrector iterative process has been completed, the velocity
at the inlet boundaries is updated according to the velocity of the solid body, ẏs, before
proceeding to the next time step.

2.3. Computational details
As figure 2 shows, a cubical domain was chosen for the fluid. The sphere was placed at the
middle of the fluid domain such that it is at a distance h to the FS and 50D to other five
boundaries. Four of these boundaries were treated as inlets with the velocity supplied, and
the remaining one is the outlet. At the inlet boundaries, a varying Dirichlet boundary
condition was prescribed for the velocity, while a zero-gradient Neumann boundary
condition was prescribed for the pressure (see figure 2). At the FS, a slip boundary
condition for the velocity was applied. The sphere surface was treated as a solid wall and
no-slip and no-penetration boundary conditions were applied on it. At the outlet boundary,
the pressure was set to zero while the velocity was prescribed as zero gradient in the normal
direction.

A set of block-structured grids were generated for the simulations by varying the
submergence depth in the range h∗ ∈ [−0.75, 1]. Each grid was created such that it
was concentrated towards the sphere surface with help of ‘O-grid’ blocking. The grid
generation process is similar to that of Rajamuni et al. (2018a), and as such, details are
omitted here. Figure 3 displays the mesh for the h∗ = −0.5 case, for which the sphere
pierces the FS by exposing half of it. A grid of this study looks similar to that of Rajamuni
et al. (2018a) which is cut off by the FS. Grids were generated by fixing the minimum
cell thickness in the radial direction from the sphere surface, δl, at 0.002D, having similar
characteristics to grid 3 of Rajamuni et al. (2018a). This yielded approximately 1.2 million
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u = (U,0,0) − ẏs∇p · η = 0

u = (U,0,0) − ẏs∇p · η = 0
u = slip
∇p · η = 0

∇u · η = 0
p = 0

u = 0∇p · η = 0

Free surface Inlet

Inlet

Outlet

100D

50D

h

100D

Figure 2. Schematic of the computational domain and boundary conditions.

(a) (b)

(c)

z z

y

y y

z

x x

x

Figure 3. The unstructured-grid computational domain for h∗ = −0.5: (a) isometric view, (b) grid at the FS
and (c) grid near the sphere surface at x–z plane.

total cells in a grid. Rajamuni et al. showed that their grid 2 (δl = 0.004D) is sufficient
for accurate simulation predictions, noting that it has approximately 10–16 cells in the
boundary layer before the separation, with further refinement providing little benefit.

2.4. Validation of the solver
Rajamuni et al. (2018a) provide several validation studies of the implemented numerical
model, including a standard validation study of the vivIcoFoam solver by comparing
the results of VIV of a cylinder at Re = 200 with the results of Leontini et al. (2006).
This solver with a similar computational set-up was used for the computational study
of Rajamuni, Thompson & Hourigan (2016) and Rajamuni et al. (2018b) to examine the
effect of transverse rotation on the FIV of a sphere. In addition, Rajamuni et al. (2019)
used it to examine the VIV of a sphere having three degrees of freedom for Reynolds
numbers up to 2000. To provide further evidence of the validity and accuracy of the solver
for this case, figure 4 shows the prediction of the amplitude response of a completely
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Vortex-induced vibration of a tethered sphere

0.5 1.0 1.5 2.0 2.5
0

0.2

Mode I

Mode II

Sareen et al. (2018)

Govardhan & Williamson (2005)
Current study

0.4

0.6

0.8

Un

A∗

Figure 4. Comparison of the amplitude response of a completely submerged sphere with results from the
experimental studies of Govardhan & Williamson (2005) and Sareen et al. (2018). The present study was carried
out at Re = 2000 with a sphere of m∗ = 3 and ζ = 0. The mass damping, (m∗ + Ca)ζ , was approximately 0.03
and 0.0169, for the Govardhan & Williamson (2005) and Sareen et al. (2018) studies, respectively, where Ca is
the added-mass coefficient.

submerged sphere far away from a wall boundary as a function of normalised velocity (Un)
at Re = 2000 in comparison with experimental curves of Govardhan & Williamson (2005)
and Sareen et al. (2018). As can be seen, the current predictions match well the findings
of both Govardhan & Williamson (2005) and Sareen et al. (2018) over both mode I and II
regimes. Although the damping ratio, ζ , was non-zero in those studies, the mass damping
parameter, (m∗ + Ca)ζ , was small and hence they could achieve the saturation amplitude
which is similar to the case of ζ = 0. Note that further convergence studies are provided
in the previously mentioned papers (Rajamuni et al. 2020b, 2019), confirming that the
predictions are insensitive to further increases in grid resolution, even at this Reynolds
number.

3. Results

The influence of a FS on VIV was examined for an elastically mounted sphere at Re =
2000, by systematically varying the submergence depth from h∗ = −0.75 to 1. A positive
submergence depth corresponds to a fully submerged sphere, while a negative submerged
depth represents a piercing sphere. The mass ratio of the sphere was m∗ = 3 for the fully
submerged cases. However, since the mass ratio was defined as the ratio of the mass of
the sphere to the mass of the displaced fluid, it increased from 3 to 19.2, as h∗ decreased
from 0 to −0.75. The VIV response of the h∗ = 1 case was effectively identical to that of
a fully submerged sphere placed far away from a wall boundary. For the h∗ = −0.75 case,
the sphere almost remained stationary having no VIV response, except at U∗ 	 5. Most
probably this is because only a very small portion of the sphere was submerged in the
fluid and so the weaker wake forcing was not strong enough to trigger vibrations. These
simulation predictions collapse well with the experimental response curves of Sareen et al.
(2018), as discussed below; however, unlike the experiments, they provide the detailed
near-wake dynamics which is linked to the structural response. No attempt was made to
examine submergence depths of h∗ > 1 or h∗ < −0.75.

The results are presented in the following three subsections. Initially, the effect of FS on
the sphere response is discussed with its oscillation amplitude, periodicity and frequency
of the oscillation. Next, the forces exerted on the sphere are given in terms of time-mean
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1.2
0.4

0.6

0.8

1.0

1.2

A∗

h∗ = 1.0

h∗ = 0.75

h∗ = 0.50

h∗ = 0.375

h∗ = 0.25

h∗ = 0.125

h∗ = 0.0625

h∗ = 0.03125

f ∗

U∗
2 4 6 8 10 12 14

2 4 6 8 10 12 14

U∗

Mode I

Mode II

λA

(a) (b)

(c)

Regime I: 0 < h∗ < 1

Figure 5. VIV response of a fully submerged sphere in the reduced velocity range U∗ = [3.5, 14]: (a) the
sphere response amplitude, A∗, (b) the periodicity of the sphere vibration, λA, and (c) the frequency ratio,
f ∗ = f /fn.

values and fluctuation amplitudes. Finally, the nature of the flow is analysed through the
vortical structures in the wake behind the sphere.

3.1. The sphere response
Figures 5 and 6 display the effect of the FS on the sphere response, in terms of the
response amplitude, A∗ = √

2Arms, periodicity of the vibration, λA = √
2Arms/Amax (see

Govardhan & Williamson 2005) and frequency ratio of the signal, f ∗ = f /fn, when the
sphere was fully and semi-submerged, respectively. Here, Arms is the root mean square of
the amplitude and Amax is the highest sphere amplitude recorded, f is the sphere vibration
frequency and fn is the natural frequency of the system taking account of the influence of
added mass.

3.1.1. VIV of a fully submerged sphere (regime I)
For the fully submerged case (regime I: 0 < h∗ ≤ 1), the sphere response amplitude
monotonically and gradually decreased as the sphere was moved closer to the FS, as
shown in figure 5(a). These findings reasonably match those of Sareen et al. (2018) in
general, although the Reynolds number of their study varied in the range 5000 ≤ Re ≤
30 000, while Re was fixed at 2000 in the present study. However, it is relevant that
Govardhan & Williamson (2005) showed the effect of Re is negligible over the range
2000 ≤ Re ≤ 12 000 for fully submerged spheres. Therefore, it is reasonable to expect
similar observations to Sareen et al. (2018) despite the Reynolds number difference. It can
be seen that the sphere response curves of a fully submerged sphere reasonably reproduce
those of Sareen et al. (2018), as shown in figure 7(a) for h∗ = 0.5 and 0.0625.
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Vortex-induced vibration of a tethered sphere
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0

0
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0.2

Mode I

Mode IIh∗ : –0.125
h∗ : –0.2
h∗ : –0.25
h∗ : –0.375
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0.8

1.0

0

0.4

0.2
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2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Regime II: –0.4 < h∗ < 0 Regime III: –0.75 < h∗ < –0.4(a) (b)

(c) (d)

(e) ( f )

Figure 6. VIV response of a semi-submerged sphere in the reduced velocity range U∗ = [3.5, 14]: (a,b) the
sphere response amplitude, A∗, (c,d) the periodicity of the sphere vibration, λA, and (e, f ) the frequency ratio,
f ∗ = f /fn.

The effect of the FS was significant over the mode II regime compared with that for the
mode I regime. This is perhaps not surprising since mode II was found to be less robust
than mode I (Rajamuni et al. 2020b), as the latter is due to the natural resonance between
the normal shedding frequency and the system frequency. As h∗ was decreased, the
maximum response amplitude was smaller and it occurred at a progressively lower reduced
velocity. Nevertheless, the sphere response was highly periodic over both mode I and II
regimes, even when it was in the vicinity of the FS. This is evident from figure 5(b), which
plots the periodicity of the response λA as a function of U∗, noting λA = 1 corresponds
to a purely periodic signal. As h∗ was decreased, the mode II regime also narrowed. At
higher U∗ values, both the response amplitude and the periodicity decreased. Especially
when the sphere was very close to the FS (at h∗ = 0.0625 and 0.03125), the responses
were less periodic (λA ≈ 0.7), and with amplitudes less than 0.2D for U∗ > 10.

As figure 5(c) shows, the vibration frequency was close to the natural frequency of
the system (f ∗ ≈ 1), at each h∗ value. Within the modes I and II regimes, f ∗ uniformly
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Figure 7. Comparison of the sphere response curves, © (colour), with the response curves observed by
Sareen et al. (2018), � (grey), at (a) h∗ = 0.5, 0.0625, (b) −0.125, (c) −0.375 and (d) −0.625.

increased with increasing U∗, following the same trend observed for VIV of a bluff
body placed far away from a wall boundary. Nevertheless, beyond the mode II regime,
f ∗ fluctuated as the response was less periodic, especially at lower h∗ values.

3.1.2. VIV of a semi-submerged sphere (regimes II and III)
When the sphere was positioned so that it pierces the FS, the sphere response amplitude
first increased, and then decreased, as h∗ decreased from 0 (or the piercing height of the
sphere increased), as found by Sareen et al. (2018). Therefore, to analyse the results, the
semi-submerged range was partitioned into two: regime II (−0.4 < h∗ < 0) and regime
III (−0.75 ≤ h∗ < −0.4).

The sphere response when it was slightly below the FS (at h∗ = 0.03125, plotted in
figure 5a by �) and slightly piercing the FS (at h∗ = −0.125, plotted in figure 6a by �)
was similar in terms of the response amplitude. However, the response curve for h∗ =
−0.125 was shifted to the right (higher U∗ values) compared with that for h∗ = 0.03125.
In addition, at h∗ = −0.125, the amplitude was roughly 0.6D until it tapered off towards
the end of the U∗ range. The periodicity of the signal was noticeably lower at this h∗ value,
compared with the fully submerged cases.

In regime II, as h∗ decreased from −0.125 to −0.375, the sphere response amplitude
increased monotonically and globally, see figure 6(a). This effect was significant in mode
II, while it was barely noticeable in mode I. Moreover, the periodicity of the signal lifted
as h∗ decreased, throughout the mode I and II ranges (see figure 6c). At h∗ = −0.375, the
maximum oscillation amplitude was 0.93D at U∗ = 9.5, which is even higher than that of
a fully submerged sphere placed far away from a wall boundary. Consistently, Sareen et al.
(2018) also found that the sphere vibration is at its strongest when the submergence depth
is −0.375, in agreement with the current predictions.

Figures 7(b) and 7(c) compare two response curves in regime II with those of Sareen
et al. (2018). Comparatively, their response curves were shifted slightly to the right.
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0.2

–0.2

0 40 80 120 160 200 240 280 320

0A/D

τ/T
Figure 8. Time history of the sphere displacement, A, at h∗ = −0.75 and U∗ = 5. The sphere undergoes a
very long transition period before reaching the asymptotic state. In this case, even after 320 cycles, it has not
achieved this state.

Also, in their experiments, the sphere vibrated with a relatively larger amplitude at higher
reduced velocities. This is likely due to the higher Reynolds number of the experiments.

In regime III, the sphere response amplitude decreased gradually and monotonically
and the lock-in regime narrowed, as h∗ was decreased beyond −0.375. As figure 6(b)
shows, the effect was more significant over the mode II range. The current predictions
for regime III also collapse well with the findings of Sareen et al. (2018), except for the
fact that the latter observed two distinct peaks in the vibration response curves. For the
current predictions, there was only a small trace of a secondary peak at U∗ = 10.5, for the
submergence depths h∗ = −0.5 and −0.575. As can be seen from figure 7(d), the response
curve at h∗ = −0.625 closely matches with that of Sareen et al. (2018) until U∗ = 9,
beyond which they observed a second peak, while there were no significant vibrations
in the current predictions. At this submergence depth, only a small portion of the sphere
is submerged in the water, and consequently, it may be considered to act as an almost
‘dry’ mass–spring–dashpot system with only weak forcing from the wake. Notably, Sareen
et al. (2018) observed that a slight reduction of the submergence depth (from h∗ = −0.625
to −0.688), caused the sphere to reduce its response amplitude significantly, and cease
vibrations for U∗ > 11. Perhaps also relevant is that the angle between the sphere and
fluid surface in this case is small, so relatively minor surface distortion may lead to larger
effects on the wake forcing. At a given submergence depth, the vibration response was
periodic and sinusoidal (λA = 1) in the synchronisation regime, while it was significantly
less periodic outside the synchronisation regime – see figure 6(d). Piercing of the surface
by the sphere did not significantly affect the f ∗–U∗ variation, as observed for the fully
submerged cases.

When the submergence depth was −0.75, where only one quarter of the sphere height
was in the fluid, only synchronised vibrations were seen at U∗ = 5, 5.5 and 6. At this
depth, the simulations had to go through a very long transition period before reaching
the asymptotic state. This is because the mass ratio of the sphere becomes very large
(m∗ = 19.2) in this case with only a small portion of the solid immersed in the fluid.
Figure 8 displays the time history of the sphere displacement at U∗ = 5, for 320 oscillation
cycles. The vibration amplitude increases only slowly as the simulation time increases and
is yet to reach the asymptotic state after three hundred oscillation cycles. It is possible that
the simulation would still take hundreds more oscillation cycles to reach the asymptotic
state. These extremely long simulations are very costly and were not continued further. The
sphere response curve for h∗ = −0.75 given in figure 6(b) was obtained by considering
the last 10 vibration cycles, although the signal has yet to reach the asymptotic state.
However, to confirm, simulations at other submergence depths reported in these figures
were integrated long enough to reach their asymptotic states.
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Figure 9. Plot of the maximum vibration amplitude, A∗
max, as a function of the submerged depth, h∗.

For an overall view of the effect of FS on the VIV response of a sphere, figure 9 plots the
maximum oscillation amplitude observed at each submergence depth, A∗

max, as a function
of h∗. As discussed in § 3.1.1, in regime I, the maximum vibration amplitude decreased
as the submergence depth decreased from h∗ = 1 and sphere was moved closer to the FS.
This reduction was larger near the FS. As the submergence depth was decreased further
by raising the sphere until h∗ ≈ −0.4, A∗

max continued to increase, indicating the strong
effect of the FS and its effect on the wake. In regime III, raising the position of the sphere
further, A∗

max decreased gradually, as h∗ decreased from −0.4. This decrement of A∗
max is

probably due to the reducing immersed portion of the sphere and/or due to the mass ratio of
the sphere increasing rapidly, as h∗ is decreased. Interestingly, for submergence depths of
h∗ = −0.25, −0.375, −0.45 and −0.5, the maximum response amplitude was even larger
than that of a fully submerged sphere placed far away from a wall boundary. Figure 9 also
plots the A∗

max–h∗ curve reported by Sareen et al. (2018). The current prediction matches
well with that of Sareen et al. (2018), especially in regime III. However, Sareen et al.
(2018) found a local minimum of A∗

max = 0.65D near h∗ = 0.2, while the current local
minimum was A∗

max = 0.6D close to h∗ ≈ −0.1. Thus, the current prediction of the trend
of A∗

max deviates slightly from that of Sareen et al. (2018), around zero submergence depth.
This is probably a slight Reynolds number effect, since in the experiments the Reynolds
number varies as the reduced velocity is changed; however, there are also weak surface
waves and quasi-steady surface distortion generated in the experiments which cannot be
entirely ruled out as having some effect on the wake.

3.1.3. Effect of mass ratio on the sphere response
Although the mass ratio was fixed at 3 for the fully submerged sphere simulations, it varies
with the submergence depth when the sphere pierces the FS. As h∗ is decreased from 0
to −0.625, the mass ratio gradually increases from m∗ = 3 to 9.48, and beyond this, as h∗
is decreased further to −0.75, the corresponding mass ratio reaches 19.2. Figure 10 plots
the amplitude response curves for different mass ratios at two representative submergence
depths: (a) h∗ = −0.375 for m∗ = 3, 4.38 (the nominal case) and 10; and (b) h∗ = −0.75
for m∗ = 3 and 19.2 (nominal case). As can be seen from figure 10(a), there is very little
effect of the mass ratio over the range 3 ≤ m∗ ≤ 10 for the moderately piercing case (h∗ =
−0.375). Note that this mass ratio range corresponds to submergence depths −0.625 ≤
h∗ ≤ 1. In a previous study, Rajamuni et al. (2018a) also reported a similar finding for a
range of 1.2 ≤ m∗ ≤ 10 with a sphere placed far from a FS. However, for simulations at
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Vortex-induced vibration of a tethered sphere

1.0

0.8

0.6

0.4

0.2

0

2 4 6 8 10 12 14

0.4

0.3

0.2

0.1

0

2 4 6 8 10 12 14

A∗

(a) (b)

U∗

m∗ = 3

m∗ = 3
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U∗

Figure 10. The effect of mass ratio on the amplitude response of a piercing sphere: (a) h∗ = −0.375; and
(b) at h∗ = −0.75. The sphere response is found be insensitive to mass ratio over the range 3 ≤ m∗ ≤ 10
(−0.625 ≤ h∗ ≤ 1). For the simulations reported in this paper, as h∗ is decreased from 0 to −0.75, the mass
ratio increases from 3 to 19.2.

1.0 y-only

xy
0.8

0.6

0.4

A∗

0.2

0

2 4 6 8 10 12 14

U∗

Figure 11. Comparison of the response amplitude of 1-DOF (y-only) and 2-DOF (xy) VIV responses.

h∗ = −0.75, the sphere response amplitude was noticeably higher for the mass ratio of 3
than for 19.2. However, because of the high mass ratio and weaker forcing in this case, the
sphere response at m∗ = 19.2 did not reach the final asymptotic state. From these studies,
we can assert that the variation of the sphere response curves is due to the influence of h∗
and not the changing mass ratio, except perhaps for the extreme h∗ = −0.75 case.

3.1.4. Sphere response for 2-DOF movement
As discussed previously, the effect of the FS was found to be substantial when the sphere
was free to translate only in the transverse (y) direction. Nevertheless, a lot of applications
exist for systems having 2-DOF movement. Thus, to broaden the applicability to a wider
range of FSI problems, a set of simulations was conducted at h∗ = −0.375, by allowing the
sphere to freely move in the streamwise (x) direction as well. The ratio between the natural
frequencies of x and y directions is 1. Figure 11 compares the responses when the sphere
was allowed to have 1-DOF or 2-DOF movement. The sphere response curves almost
coincide on each other, indicating the effect of the FS on the vibration response is not
very sensitive to the degrees of freedom, at least for the highest-amplitude piercing case.
Hence, results presented in this paper allowing y only motion are tentatively applicable to
a sphere have 2-DOF movement.
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Figure 12. Variation of the time-mean drag coefficient, Cd for different h∗ values in regime I (a), regime II
(b) and regime III (c).

3.2. Effect of the FS on fluid forces
As the sphere vibrated symmetrically, the time-mean lift coefficient, Cl, was close to zero
at each submergence depth and reduced velocity considered. Thus, an analysis of Cl was
not included here. Figures 12(a), 12(b) and 12(c) show the variation of the time-mean
drag coefficient, Cd, with the reduced velocity at each submergence depth in regimes
I, II and III, respectively. At each h∗, the time-mean drag coefficient increased through
the synchronisation regime from its pre-oscillatory value, as has been previously found
for a bluff body undergoing VIV (Govardhan & Williamson 1997; Behara et al. 2011;
Rajamuni et al. 2018a, 2019, 2020b). At a given submergence depth, the value of Cd
increased sharply at approximately U∗ ≈ 5, as synchronised vibration is triggered. Then,
this increment generally lessened, as the reduced velocity was increased. For h∗ = 1,
Cd increased approximately 80 % at U∗ = 4.5, and this increment of Cd was negligible
at U∗ = 14. As h∗ decreased to 0, the increment of Cd monotonically increased over
the reduced velocity range 4.5 ≤ U∗ ≤ 7 and slightly decreased for U∗ � 9.5 – see
figure 12(a). The value of Cd = 1.06 observed at h∗ = 0.03125 and U∗ = 4 was the largest
from all the cases considered in this study.

The variation of Cd with U∗ in regimes II and III was significantly different from that
of regime I. As can be seen from figure 12(b,c), the Cd–U∗ curves were roughly bell
shaped when the sphere pierces the FS. In regime II, the peak of Cd shifted progressively
to the right (higher U∗), as h∗ decreased. Thus, at h∗ = −0.2 and −0.375, the peaks of
Cd were observed at the heart of mode II. In regime III, the peak of Cd always occurred
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Vortex-induced vibration of a tethered sphere

1.0 Current study (h∗ = 1)

Rajamuni et al. (2020b)

0.8

0.6

0.4
2 4 6 8 1210 14

C�d

U∗

Figure 13. Comparison of the time-mean drag coefficient at h∗ = 1 with predictions of Rajamuni et al.
(2020b) for a tethered sphere. The Reynolds number of the flow is 2000 and the mass ratios are 3 and 0.8,
in the current study and the study of Rajamuni et al. (2020b), respectively.

close to the peak sphere response of mode II. Consistent with the sphere response, the
peak of Cd monotonically decreased and was observed at a progressively lower U∗ value,
as h∗ decreased – compare figures 6(b) and 12(c). The above observations indicate that
the response of a piercing sphere is significantly different from the response of a fully
submerged sphere.

The variation of Cd of a fully submerged elastically mounted sphere reasonably matches
with that for a tethered sphere, as can be seen from figure 13, which provides a comparison
of current prediction at h∗ = 1 with that for a tethered sphere from our previous study
(Rajamuni et al. 2020b). Consistently, there were two peaks in the current prediction in
the Cd–U∗ curve. Nevertheless, the value of Cd was slightly different for mode II. In the
mode II regime, a tethered sphere experiences a large time-mean drag compared with an
elastically mounted one. As can be seen from figure 12(a), at each h∗ value in regime I,
there were two peaks in the Cd–U∗ curves.

The fluctuating components of the force coefficients were analysed using the r.m.s.
values. Figure 14 shows the variation of the r.m.s. of the drag and lift coefficients (Cd,rms
and Cl,rms) with reduced velocity for various submergence depths, covering all three
regimes. In regime I, as evident from figures 14(a) and 14(b), there are sudden jumps
in both Cd,rms and Cl,rms associated with the sudden increase in the amplitude response at
the beginning of the synchronisation regimes. Both Cd,rms and Cl,rms generally decreased
as U∗ increased. However, there were two peaks in the Cd,rms–U∗ curves, as shown in
figure 14(a). Here, both Cd,rms and Cl,rms roughly decreased with decreasing h∗, having
a significant effect in mode II. This is consistent with the reduction of the response
amplitude as the sphere gets close to the FS. Cl,rms dropped back to its original value at a
progressively lower reduced velocity, as h∗ decreased towards 0. The current predictions
of Cl,rms for a fully submerged sphere match well with those of Sareen et al. (2018).

In contrast to sudden jumps of Cd,rms in regimes I and III, it increased gradually in
regime II, associated with a gradual increase of the sphere response amplitude. The r.m.s.
of the drag coefficient increased with decreasing h∗, especially in mode II, as did the
sphere response amplitude – see figure 14(c). Similar to Cd,rms, Cl,rms also increased with
decreasing h∗ in regime II. However, as can be seen from figure 14(d), the Cl,rms–U∗ curve
of h∗ = −0.125 was different from that of other h∗ values, which have local peaks near
U∗ = 7.5. In regime III, both Cd,rms and Cl,rms decreased with decreasing h∗, associated
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Figure 14. Variation of the r.m.s. drag coefficient, Cd,rms, (a,c,e) and the r.m.s. lift coefficient, Cl,rms, (b,d, f ),
with reduced velocity for various submergence depths in regimes I (a,b), II (c,d) and III (e, f ).

with the reduction in sphere vibration amplitude. As observed for fully submerged cases,
Cd,rms–U∗ curves of semi-submerged cases also consist of two peaks that can be related
to the mode I and II vibrations.

To explore the effect of FS on the mode of sphere vibration, the vortex phase, φv ,
and total phase, φt, were examined. The total lift force acting on the body, Ftotal, can
be decomposed into to a potential force component, Fpotential = −maÿs(t), that arises due
to the potential added-mass force, and a vortex force, Fvortex, that is due to vorticity within
the flow domain (Lighthill 1986; Govardhan & Williamson 2005),

Fvortex = Ftotal − Fpotential, (3.1)

here, ma is the added mass due to the acceleration of the sphere. It is the product
of added-mass coefficient and the displaced mass of fluid (ma = CAmd). For a
fully submerged sphere placed far away from a wall boundary, CA = 0.5 and md =
(4/3)π(D/2)3ρ, and thus ma = πD3ρ/12.

As the sphere approaches or pierces the surface, the added mass varies from the fully
submerged value. This can be estimated by setting up a simulation where a constant
force is applied to the sphere and the acceleration is measured. The difference between
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Figure 15. Computed variation of the added-mass coefficient with the submergence ratio for the zero Froude
number (non-deformable free-slip surface) case.

predicted acceleration (assuming no added-mass effect) and the actual acceleration
extrapolated to time zero can be used to calculate the added mass. Figure 15 shows
the predicted added-mass coefficient as a function of h∗, when the FS is approximated
with a non-deformable free-slip boundary. Note that the value quickly asymptotes to the
fully submerged value of CA = 0.5 as the sphere is increasingly submerged: at h∗ = 0.5,
CA 	 0.515. The estimated accuracy of the added-mass coefficient is approximately 1 %,
given that the predicted value at h∗ = 9.5 was CA = 0.503 – approximately 0.6 % larger
than the accepted value from potential flow theory.

The vortex and total phases are the phase differences between the total and vortex forces,
and the sphere displacement, respectively. The sphere vibration mode transition between
modes I and II was found to be associated with approximately a 180◦ phase shift in φv

(Govardhan & Williamson 2005; Rajamuni et al. 2018a, 2020b; Sareen et al. 2018). The
study of Govardhan & Williamson (2000), on VIV of an elastically mounted cylinder,
showed that a shift in φv or φt of a purely sinusoidal vibration response with zero damping
ratio should be abrupt, as the phase can only be either 0◦ or 180◦ in the equilibrium state.
The switching from φv = 0◦ to 180◦, occurs as the vibration frequency crosses the natural
frequency of the system (f ∗ = 1 line). Rajamuni et al. (2018a) also verified this behaviour
for the mode transition of a tethered sphere between modes I and II.

Consistently, we found that φv switched suddenly from 0◦ to 180◦ with increasing U∗,
indicating a vibration mode transition from mode I to mode II at each submergence depth,
see figure 16(a,b). Govardhan & Williamson (2005) explained that the shift in vortex phase
is due to the shift in the timing of vortex formation. For a fully submerged sphere, the mode
transition occurred in the range, 4 ≤ U∗ ≤ 6. However, for a piercing sphere, the mode
transition was delayed, by expanding the mode I regime. For h∗ < 0, the mode transition
occurred in the range, 7.5 ≤ U∗ ≤ 9.

As shown in figure 16(c,d), the total phase was also switched from 0◦ to 180◦, when the
sphere response reached the peak saturation value. Within mode I, the sphere vibrated with
an amplitude of A∗ 	 0.5 by phase aligning with both vortex and total forces. The sphere
vibrated with a large amplitude during the U∗ range when φv = 180◦ and φt = 0◦, for
example, at h∗ = 1 and 6 ≤ U∗ ≤ 9.5. This regime can be identified as mode II. Beyond
this regime, both φv and φt were 180◦, and the sphere response amplitude decreased with
increasing U∗. Rajamuni et al. (2018a) also reported a similar result for an elastically
mounted sphere placed far away from a FS. Even for a cylinder, there are sudden jumps
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Figure 16. Variation of the vortex phase, φv , and total phase, φt, with U∗ (a,c) in regime I and (b,d) regimes
II and III. Shift of φv from 0◦ to 180◦ indicates the vibration mode transitions from mode I to mode II.

in φv and φt, which are related to the switching of the vibration branches. Consistent with
the current predictions, the upper branch for VIV of a circular cylinder was also observed
when φv = 180◦ and φt = 0◦.

3.3. Analysis of vortical structures in wake
Although Sareen et al. (2018) have previously investigated VIV of a sphere close
to a FS experimentally, the fluid–structure interaction was not well explained, as it
was not possible to map the wake in any detail. The streamwise vorticity field was
obtained on a single downstream cross-plane. From these data, the wake was visualised
through spatio-temporal reconstructions using phase-averaged vorticity fields. Figure 17
compares one spatio-temporal reconstruction from Sareen et al. (2018) with the predicted
instantaneous wake visualised by the Q criterion (Q = 0.5∗(vorticity2 − strain rate2)) for
a similar parameter set. Such reconstructions can provide only limited information about
the actual wake, and are not representative of any instantaneous snapshot of the wake
structure. In particular, as the wake near the sphere was not quantified, that study could
not provide much insight into why the sphere vibration varies as its position approaches
a FS and pierces it. To try to increase our understanding of the role of the near-wake
dynamics on the varying VIV response, here, we carefully examine the near wake for
different submergence depths, focusing on both the vorticity field and iso-surfaces of the
Q criterion. Both the near wake and far wake are characterised and analysed, and concrete
interpretations for the distinct sphere responses as h∗ is varied are provided below.
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Vortex-induced vibration of a tethered sphere
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Figure 17. Comparison of the spatio-temporal reconstruction of the vorticity field from experiments with the
predicted wake structure: (a) spatio-temporal reconstruction of the streamwise vorticity crossing the transverse
plane at a distance of 1.5D from the sphere rear surface at (h∗, U∗) = (0.125, 10) from Sareen et al. (2018),
and (b) the numerically predicted wake structures at (h∗, U∗) = (0.0625, 9) visualised by the Q-criterion at
Q = 0.01.

To explore the wake structures behind the sphere, very fine grids having a large number
of cells near the sphere surface and the downstream were generated for eight submergence
depths, to better resolve the very fine details of the near-wake vortical structures. Each of
these grids contains approximately 5.3 million hexahedral cells. The results presented in
this section were acquired by simulating the flow on these grids for one to two oscillation
cycles starting from snapshots from the existing simulations.

The wake structure behind the sphere under VIV was found to be modified substantially
as the sphere approached the FS and pierced it. To explore the effect of the FS, wake
structures were observed at various submergence depths, by fixing the reduced velocity
at U∗ = 9, as the sphere vibration was approximately maximum close to this reduced
velocity in almost all of the cases. In § 3.1, the submergence depth range −0.75 ≤ h∗ ≤ 1
was partitioned into three regimes based on the characteristics of the sphere response.
Covering all three regimes, figure 18 displays iso-surfaces of the wake visualised by the
Q-criterion in two orthogonal planes for eight h∗ values. In each case, the sphere is in
its peak position of a vibration cycle. As can be seen, the wake behind the sphere varied
gradually, as h∗ decreased from 1; nevertheless, it has a distinctly different structure in each
regime. Hence, partitioning the submergence depth range based on the sphere response
agrees well with the changing wake pattern.

3.3.1. Regime I
At h∗ = 1, the wake behind the sphere consists of two trails of two-sided hairpin
loops, as shown in figure 18(a). This wake strongly resembles the wake observed in the
synchronisation regime of a sphere placed far away from a wall boundary by Govardhan
& Williamson (2005), Behara et al. (2011) and Rajamuni et al. (2018a, 2020a,b). It
also supports the finding that the effect of FS on VIV of a sphere was insignificant for
h∗ ≥ 1. Figure 19 shows the evolution of the wake over a vibration cycle at four h∗ values:
h∗ = 1 and 0.0625 from regime I and h∗ = −0.125 and −0.375 from regime II. As shown
in the first column of figure 19 and in see supplementary movie 1 available at https://
doi.org/10.1017/jfm.2021.873, at h∗ = 1, there are two large-scale vortex loops shed per
oscillation cycle from the opposite sides of the sphere. Although these two vortex loops
were connected near the sphere, they become disconnected as they convect downstream.
The wake is approximately symmetric in the x–y plane, thus, the wakes viewed from above
and below the FS are nearly identical – compare the structures given in the last two rows
of the second column of figure 19.
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y

x
x

3D

3.75D

–z

∗∗ ∗

∗

∗

Regime I Regime II

Regime III

(a)

(b)

(c)

(d )

(e)

( f )

(g) (h)

Figure 18. Iso-surfaces of the wake visualised using the Q criterion (Q = 0.01) and coloured according
to the velocity at U∗ = 9, for (a) h∗ = 1, (b) 0.25, (c) 0.0625, (d) −0.125, (e) −0.2, ( f ) −0.375,

(g) −0.45 and (h) −0.625 : (a–c) regime I, (d–f ) regime II and (g,h) regime III. The asterisks indicate the
presence of a vortex bubble. Flow is from left to right.
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Vortex-induced vibration of a tethered sphere

Regime I Regime II

h∗ = 1 h∗ = 0.0625 h∗ = –0.125 h∗ = –0.1375

A

B B

A

1/4T

1/2T

3/4T

T

T

Figure 19. Evolution of the wake structures for one sphere oscillation cycle in regime I (h∗ = 1 and 0.0625)
and regime II (h∗ = −0.125 and −0.375). Four columns show the instantaneous wake structures observed at
four time instances of a vibration cycle for h∗ = 1, 0.0625, −0.125 and −0.375. First four rows display wake
structures viewed from above the FS, while the last row displays wake structure viewed from below the FS at
T , where T is the length of a vibration cycle.

As the sphere vibrates in the y direction, the thickness of the wake in the x–z plane is
comparatively small. For h∗ = 1, it spans only 3 diameters, i.e. vortex loops were always
below the FS, and the largest vortex ring was about to connect to the FS; consequently,
the interaction of the FS and sphere vibration was negligible. Thus, h∗ = 1 again can be
identified as the minimum submergence depth, or critical submergence depth, where the
sphere response is not altered by the FS. Extrapolating from this, for h∗ < 1, vortex loops
connected to the FS are expected to appear.

In regime I, as evident from figures 18(b) and 18(c), the wake structures adjust
substantially as the distance between the top of the sphere and the FS becomes smaller
than one diameter. For 0 < h∗ < 1, downstream vortex loops are connected to the FS, as
expected. The shape of the vortex loops is also modified, by stretching and twisting. These
observations of vorticity transformation in the current results closely relate to the case of
a vortex ring approaching a FS, as reported by Zhang, Shen & Yue (1999). They explained
that the mechanisms of vorticity transformation via turning, stretching and diffusion take
on distinct roles in the surface layers: an inner thin viscous layer resulting from the
dynamic free-stress boundary condition at the FS and a thick outer blockage layer, due
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to the kinematic boundary condition at the FS. The dominant mechanism in the blockage
layer is vortex turning, which in the viscous layer is due to viscous diffusion, while vortex
stretching remains important throughout. Similar observations of vortex disconnection and
connection at a FS were reported by Bernal & Kwon (1989), Ohring & Lugt (1991), Gharib
& Weigand (1996), Reichl et al. (2005) and Campagne et al. (2009).

Wakes at h∗ = 0.25 and 0.0625 were moderately dense with small structures, compared
with the wake for the h∗ = 1 case. Consequently, the wake convected downstream in a
zig-zag pattern, displaying many interconnected loops, rather in two distinct trails as for
the h∗ = 1 case. At h∗ = 0.25, the near wake appears less affected by the FS, albeit that the
near wake for h∗ = 0.0625 is certainly affected by the FS, as the sphere is then very close
to the FS – see figure 18(b,c). For sufficiently large submergence depths, only the far wake
is in the viscous layer, not the near wake. For example, at h∗ = 0.25, vortex diffusion to the
FS is observed approximately 3.75 diameters downstream from the centre of the sphere,
as indicated in figure 18(b).

In § 3.1.1, we reported a systematic reduction in the sphere vibration amplitude with
decreasing h∗ in regime I. Specifically, at U∗ = 9, the sphere vibration amplitude reduced
from A∗ = 0.8 to 0.51, as the submergence depth decreased from h∗ = 1 to 0.03125.
However, the reduction of A∗ remains negligible until approximately h∗ = 0.375 – see
figure 9. This reduction of the response amplitude is strictly associated with the surface
layer(s) in which the near wake resides. For large h∗ values, the near wake is affected
only by the blockage layer, resulting in a small reduction of the vibration amplitude.
Nevertheless, for small submergence depths, the near wake is affected also by the viscous
layer, causing a significant reduction of the VIV response amplitude, due to substantial
modification of the wake with vorticity diffusion at the FS. From this, we can conclude
that the VIV response of a fully submerged sphere is sensitive to the proximity of the
sphere to the viscous layer.

The second column of figure 19, together with supplementary movie 2, show the
evolution of the wake at h∗ = 0.0625 for one oscillation cycle of the sphere. The wake
has been adjusted significantly compared with the wake at h∗ = 1, especially near the
sphere surface. Obviously, the wake is no longer symmetric through the x–y plane, as the
elongated vortex core that wraps the sphere opens from the FS side – see the last two rows
of the second column of figure 19. Nevertheless, two large-scale vortex loops are shed per
oscillation cycle, maintaining the VIV response.

3.3.2. Regime II
An interesting wake structure is found when the sphere pierces the FS. Figure 18(d–f )
display a visualisation of the wake using iso-surfaces of the Q criterion for h∗ = −0.125,
−0.2 and −0.375, respectively. As can be seen, the wake behind the sphere in regime
II consists of a collection of small structures that are more dispersed, compared with
a more regulated wake in regime I. The wake consists of both: vortex tubes, which
are spiralled, elongated and located strictly below the FS; and vortex loops that are
twisted, elongated and connected to the FS. Obviously, the effect of the viscous layer
is pronounced everywhere, including in the near wake. Interestingly, a vortex bubble
connected to the FS appeared protruding in the near wake behind the sphere that is
not seen for a fully submerged sphere; these vortex bubbles are indicated by ∗ in
figure 18(d–f ) and are shown in more detail later in figure 20. These vortex bubbles
can be recognised as an added feature in the modification of the hairpin vortex ring
of the h∗ = 1 case, indicated by ∗∗ in figure 18(a), as the sphere pierces the FS.
Readers are encouraged to watch the supplementary movies, to get a clear view of these
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Vortex-induced vibration of a tethered sphere

y

y

y

p = –0.l

p = –0.l

x
x

x

p
6.00 × 10–1

–6.00 × 10–1

0.3

–0.3

0

(a) (b)

(c) (d )

Figure 20. Vortex whirling in the near wake at h∗ = −0.125: (a,b) iso-surfaces of Q criterion at Q = 0.001
when the sphere in the valley and peak positions, respectively; (c,d) iso-surfaces of pressure at p = −0.1, −0.2,
−0.3, −0.4, −0.5 and −0.6, with the sphere in the valley and peak positions, respectively. With the sphere is
in its valley (peak) position, vortices behind it whirl in the counterclockwise (clockwise) direction. The second
row shows the wake viewed from below the FS, indicating the asymmetric vortex loops.

vortex bubbles. The evolution of the wake and the effect of this new vortex bubble are
discussed below in detail, for the h∗ = −0.125 case.

The third column of figure 19 and supplementary movie 3 display the evolution of
the wake for a sphere vibration cycle for h∗ = −0.125. Over a vibration cycle, vortex
shedding from the opposite sides of the sphere is evident. In the near wake, two large
vortex loops that are connected to the FS are shed per oscillation cycle. These vortex
loops shed asymmetrically, with the attached vortex bubble that consists of many small
vortex tubes and rings, from the outer side. These vortex bubbles evolve in size and
strength during a vibration cycle, and are strongest at 1

2 T and T , marked by A and B in
figure 19, respectively. Figures 20(a) and 20(b) display close-up views of the near wake,
when the sphere is in its valley (minimum y) and peak (maximum y) positions, respectively.
When the sphere moves towards its valley position, the flow behind the lower part of the
sphere swirls in the counterclockwise direction, creating a vortex bubble located below
the stagnation point. Similarly, as the sphere moves towards its peak position, the flow
behind the upper part of the sphere swirls in the clockwise direction, creating a vortex
bubble located above the stagnation point. Although these vortex bubbles are initially
small and hard to visualise, they grow in size and become strongest at the peak and valley
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Figure 21. Schematic of the action of vortex bubbles over a vibration cycle. Red arrows indicate the strength
of the induced velocity on the sphere. The induced velocity is aligned with the direction of the sphere motion,
providing an additional energy enhancing sphere vibration.

positions of the sphere, as indicated in figure 21. In addition to the induced force from
the hairpin vortex loops, these vortex bubbles also induce a periodic force on the sphere,
enhancing the VIV response. In particular, the vortex bubble that swirls in the clockwise
(counterclockwise) direction generates an induced velocity on the sphere in the y (−y)
direction during the sphere movement towards the maximum (minimum) y. Of course, at
equilibrium, when the amplitude reaches an approximately constant value, the net power
transfer from the fluid to the sphere is zero; so the interpretation here is that the additional
near-wake vortex-bubble structures observed in the piercing case allows the amplitude to
build up to higher values prior to saturation.

Such a vortex bubble is associated with a low-pressure core region that develops behind
the sphere. Figures 20(c) and 20(d) display 6 iso-surfaces of pressure in the range −0.6 ≤
p ≤ −0.1 when the sphere is in its valley and peak positions, respectively. As can be seen,
the low-pressure cores closely resemble the wake visualised through surfaces of Q. As the
sphere vibrates and reaches its extreme positions, highly swirling fluid forms these vortex
bubbles. As a result, the wake convects downstream with some spiralling structures. For a
clearer visualisation of the swirling motions in the newly attached vortex bubbles, please
refer to supplementary movie 3.

Figure 22(a) shows two views of the streamlines that pass through the line in the x–y
plane that is 1D downstream from the centre of the sphere and lies in the FS when the
sphere is in its valley position. Two counter-rotating spirals of streamlines can be seen
downstream of the sphere at the FS. As shown from figure 22(b–d), two nearby streamlines
coming from the upstream create these counter-rotating spirals. In one case, the fluid
coming from underneath the sphere enters into the core of the lower spiral, then spins
in the counterclockwise direction, and is later convected downstream by mixing with the
fluid coming below the sphere. In the second case, fluid coming underneath the sphere
rises and convects downstream to a point in the FS, and then returns creating the upper
spiral that spins in the clockwise direction. The flow exiting from the core of the upper
spiral splits and convects in two directions, creating two trails, as indicated in figure 22(a).
Simultaneously, two vortical trails can be seen in the wake, as shown in figure 22(e).

To extend and clarify this analysis, the vorticity field in a plane was also examined.
Figure 23 compares the vorticity contours in the x–y plane that passes through the centre
of the sphere (centre plane) and that in the FS, for various submergence depths. The sphere
is approximately in its peak position. At h∗ = 1, vorticity is close to zero at the FS, as
expected, and not shown in the figure. Vorticity contours through the centre plane are
modified as h∗ is decreased from 1, which have a significant effect for the piercing sphere
cases. Simultaneously, vorticity contours at the FS are also reshaped with decreasing h∗.
In regimes II and III, two counter-rotating vortex pairs that attach to the sphere are evident
at the FS, in agreement with the counter-rotating streamline spirals discussed earlier –
see figure 23(e–j). The upper blue contours are larger in size and further away from the
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Vortex-induced vibration of a tethered sphere

Trail 1

Trail 1

Trail 2

Rotation

–3.821 × 102 1.268 × 102–127 0

Trail 2

y

y y

x

x x

x

–z

(a) (b)

(e)

(c) (d )

Figure 22. Formation of two vortical trails behind the sphere as it turns: (a) streamlines that passes through
a line in the FS that is 1D downstream from the sphere centre, coloured by the rotation; (b,c) close-up views
of the lower and upper vortex spirals shown in (a), respectively; (d) two streamline spirals viewed below the
FS; and (e) the wake visualised by an iso-surface of the Q criterion at Q = 0.001. The submergence depth is
h∗ = −0.125, reduced velocity is U∗ = 9 and the sphere is in its valley position.

sphere compared with the lower red contours. These structures are also evident in the
centre plane but are smaller in size, indicative of the 3-D vortex bubble that is found in the
wake discussed previously.

The characteristics of the counter-rotating vortex pair in the near wake and the two
vortex trails in the far wake were analysed to help answer the question: why does the sphere
response amplitude increase in regime II with decreasing h∗? At the FS, the location,
orientation and size of the vortex pair varied significantly with decreasing submergence
depth. At h∗ = −0.375, both the upper and lower vortices were located closer to the sphere
surface compared with those for h∗ = −0.125. Moreover, the clockwise rotating upper
vortex structure wraps back to attach to the sphere surface, see figure 23(i). Consequently,
the 3-D vortex bubbles, representing recirculating flow regions attached to the sphere,
when the sphere is in its valley and peak positions, are more prominent at h∗ = −0.375
compared with h∗ = −0.125 – see the vortex cores indicated by A and B in the last two
columns of figure 19. Indeed, these vortex bubbles appear to have a significant influence
in amplifying the VIV response of the sphere.

Figure 24 displays the evolution of the vorticity field at the FS for a cycle of sphere
vibration for h∗ = −0.125, −0.375 and −0.625. The shed vorticity for the h∗ = −0.125
case rolled up into discrete vortical structures that do not reattach to the sphere surface at
each phase of the sphere vibration. The equivalent vortical structures were comparatively
less spread in the near wake at h∗ = −0.375, especially at 0.25T and 0.75T phases
where there are clear signs of reattaching to the sphere surface. As a result, the low
pressure associated with these attached structures causes the sphere to vibrate with a
large amplitude at h∗ = −0.375 compared with h∗ = −0.125. As can be seen from fourth
column of figure 19 and supplementary movie 4, at h∗ = −0.375, the wake also appears
more regular. These strong vortex bubbles located close to the sphere surface appear to
empower the sphere vibration, as they add a fluctuating component of lift in phase with
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x

y

x

z

Regime I

Regime II

Regime III

Trail 2

Trail 1

h∗ = 1

h∗ = 0.0625

h∗ = –0.125

h∗ = –0.2

h∗ = –0.375

h∗ = –0.625

(a)

(b) (c)

(e)(d)

( f ) (g)

(i)(h)

( j)

Figure 23. A comparison of vorticity contours in the x–y plane that pass through the centre of the sphere
(a,b,d, f,h) and the FS (c,e,g,i,j) at U∗ = 9, for h∗ = 1, 0.0625, −0.125, −0.2, −0.375 and −0.625. The sphere
in its peak position.
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Vortex-induced vibration of a tethered sphere

x

y

Regime II Regime III

h∗ = –0.125 h∗ = –0.375 h∗ = –0.625

1/4T

1/2T

3/4T

T

Figure 24. Evolution of the vorticity field at the FS for one cycle of sphere oscillation at submergence depths
h∗ = −0.125, −0.325 and −0.625. The two solid lines in each image show peak-to-peak vibration amplitude
and indicate the position of the sphere in a vibration cycle.

the displacement. Hence, the sphere achieves a vibration amplitude that is even larger than
that of a sphere located far from a boundary.

As shown by figure 23, similar to the h∗ = −0.125 case, a secondary vortex trail is
visible in the wake for all other submergence depths in regime II as well. Generation of
this secondary vortex trail in the wake, as a result of the sphere piercing the FS, can be
identified as a disturbance to the VIV response of the sphere. The starting point of this
trail progressively shifts downstream and it is connected to the first vortex trail, as h∗ is
decreased. Therefore, its effect on the sphere response is more significant at h∗ = −0.125
and is smaller, as the submergence depth decreased in regime II. This may be a reason for
less periodicity of the sphere vibration at h∗ = −0.125.
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3.3.3. Regime III
When only a small portion of the sphere is above the FS (h∗ ≈ −0.125), the wake is
dispersed with numerous small-scale structures. However, as the submergence depth is
decreased, the scattered nature of the wake diminishes, and at h∗ = −0.45, the wake
becomes more regular with a zig-zag shape and fewer smaller-scale structures – see
figure 18(d–h). Beyond this, at h∗ = −0.625, the wake consists of two trails of vortex loops
that are connected to the FS. Although only 37.5 % of the sphere height is submerged in
the fluid at h∗ = −0.625, two vortex loops are shed per oscillation cycle, contributing
to the formation of two vortex trails, see supplementary movie 5. The wake is more
organised at this submergence depth, as it consists mainly of large-scale structures, and
is somewhat similar to that for h∗ = 1 but trimmed off by a plane parallel to the x–y
plane – compare figures 18(h) and 18(a). However, as the sphere vibration amplitude
was small at h∗ = −0.625, the distance between the upper and lower vortex trails is
smaller.

In regime III, the secondary vortex trail seen in regime II completely disappears. As
explained in § 3.1, unlike in the first two regimes, the sphere vibrated sinusoidally in
regime III. This is consistent with the more organised wake found in this regime that
consists mainly of larger-scale structures. Nevertheless, a vortex bubble still forms behind
the sphere at h∗ = −0.45, as indicated by the symbol ∗ in figure 18(g). At h∗ = −0.45,
the size of the vortex bubble is comparatively small, since a smaller portion of the sphere
resided in the fluid. Furthermore, at h∗ = −0.625, the existence of such a bubble is
obscure. To provide a clearer view, figure 25 displays the near wake viewed from above
and below the FS, and the vorticity field at the FS for these two submergence depths, at
the time when the sphere is in its peak position.

Although the vortex bubble becomes stronger with decreasing submergence depth until
h∗ = −0.375, it subsequently becomes increasingly weaker. Simultaneously, the sphere
vibration amplitude increases with decreasing h∗ until −0.375, and then it gradually
decreases as h∗ is decreased further. As discussed earlier, the vorticity field at the FS
can be used to investigate the nature of this vortex bubble. At h∗ = −0.375, the positive
and negative vortices forming behind the sphere at the FS plane at the 0.5T and T
phases, respectively, are relatively circular in shape and located immediately behind the
sphere – see figure 23. This combination results in the maximum sphere vibration. As
h∗ is decreased to −0.45, these vortices become even more elongated in the streamwise
direction, although strong circulation is still evident, see figure 25(c). At h∗ = −0.625, the
shape of the near-wake vortex structure dramatically changes. Both positive and negative
vortex structures are elongated in the streamwise direction, are oriented close to each other
and form away from the rear of the sphere – see figure 25(d). These features are consistent
the low-level vibration observed at smaller submergence depths.

Unlike the almost sudden wake transition between regimes I and II, the wake transition
between regimes II and III is more continuous. This is to be expected as the sphere is
semi-submerged in both regimes II and III. As discussed in § 3.1.2, the sphere response
amplitude decreases with decreasing h∗ in regime III. This reduction of the sphere
response amplitude can be directly attributed to the reduction of the energy that the
sphere can receive from the fluid, as the submerged surface area of the sphere reduces
with decreasing h∗. Because of the convex shape of the sphere, two hairpin-type vortex
loops shed from the opposite sides of the sphere in a vibration cycle persist even at a very
small submergence depth. These are associated with the fluid–structure interaction, and
hence sphere vibrations persist, although they are much smaller, even with only 25 % of
the sphere height immersed in the fluid.
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x

y

x

y

x
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(a) (b)

(c) (d )

Figure 25. Near wake in regime III: (a,b) wake visualised by Q criterion at Q = 0.001 at h∗ = −0.45 and
−0.625, respectively; (c,d) vorticity field at the FS at h∗ = −0.45 and −0.625, respectively. The second row
shows the wake viewing below the FS. Sphere is at its peak position.

3.3.4. Energy transfer
The rate of energy transfer (or ‘power input’) from the fluid to the sphere was examined,
to further investigate why the strength of the VIV response varies in each regime. The
normalised rate of energy transfer can be obtained by

ėv = Cvortex ∗ ẏ, (3.2)

as described by Govardhan & Williamson (2005), where Cvortex = 2Fvortex/(ρπU2D2) is
the vortex force coefficient, and ẏ is the transverse velocity of the sphere normalised by
the diameter. Figure 26 displays the time history of ėv and response amplitude for two h∗
and U∗ combinations. As can be seen, the energy transfer is mostly positive during the
transient response for both cases, whereas it fluctuates about zero in the asymptotic states.
This positive energy transfer during the period of amplitude growth essentially fuels the
VIV response, resulting in the amplitude increasing until the average energy transfer over
a cycle reduces to zero, as the response saturates and the flow about the sphere changes
concurrently. For the following discussion, it is useful to define the net energy transfer rate
(per cycle) as

ėv,T =
∫ T

0
Cvortexẏ dt. (3.3)
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Figure 26. Time history of the sphere response amplitude, A∗, and energy transfer to the sphere, ėv : (a) at
h∗ = 1 and U∗ = 8 and (b) at h∗ = 0.5 and U∗ = 6. The energy transfer over a vibration cycle is positive
during the transient response.

With the assumption of sinusoidal sphere vibration and sinusoidal vortex force with a
phase difference of φv , one can show that ėv,T = C sin(φv), where C is a constant. The
vortex phase of this study is either approximately 0◦ or 180◦ (see figure 16). Thus ėv,T is
ideally = 0 at the asymptotic state. Nevertheless, even though the asymptotic response is
nearly sinusoidal, the vortex force is not close to a pure sinusoidal signal in many cases.
Thus, for cycles after the sphere vibration saturates, ėv,T can be expected to vary around
zero.

Figure 27 displays the variation of net energy transfer per cycle and the response
amplitude at the corresponding cycle at eight submergence depths (U∗ = 8). In each case,
ėv,T is positive and increased with the simulation time over the transient stage, providing
the energy to achieve a large saturation amplitude. Once the sphere vibration reached
saturation, ėv,T fluctuated around zero. The fluctuation of ėv,T was significantly larger
in regime II, where the sphere response was far from sinusoidal – see figure 27(e, f ).

The variation of ėv,T with submergence depth over the transient growth phase could
be a useful predictor of the asymptotic response. Thus, we examined ėv,T values that
correspond to the transient response of the signal for this analysis. For h∗ = 1, during
the transient response, ėv,T reached a maximum value of 4. This maximum value of ėv,T
steadily decreased, as h∗ was decreased in regime I, consistent with the VIV response
amplitude monotonically decreasing – see the first column of figure 27. However, as
h∗ was decreased through regime II, the maximum value of ėv,T increased to a value
of approximately 6 at h∗ = −0.375, see figure 27(e, f ). This increase of ėv,T , perhaps
together with the increased number of cycles over which the amplitude is allowed to
grow, essentially provides more energy to the sphere so that it can vibrate with an
even larger vibration amplitude than for the fully submerged case. As h∗ was decreased
further in regime III, the maximum value of ėv,T reduced indicating a smaller power
input. Indeed, the saturated VIV amplitude across each regime is strictly dependent
on the maximum energy transfer per cycle the sphere receives during the transient
growth phase.

Given this analysis, it seems reasonable to argue that it is the added feature of
counter-rotating vortex bubbles in the wake of a piercing sphere that essentially leads to the
additional energy transfer per cycle to maintain the higher-amplitude response compared
with that for fully submerged sphere. Also supporting this conclusion is that these vortex
bubbles can be observed from the beginning of the transient response – see figure 28 and
supplementary movie 6.
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ėv,T A∗

(a) (e)
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Figure 27. Plots of the net energy transfer per cycle, ėv,T , and the response amplitude, A∗ at the corresponding
cycle at U∗ = 8 and h∗ = 1, 0.5, 0.125, 0.03125, −0.125, −0.375, −0.5 and −0.625. The value of ėv,T strictly
positive in the transient response, as h∗ decreased the variation of the maximum value of ėv,T collapsed well
with the variation of A∗

max.

4. Conclusions

The effects of the proximity to a FS on transverse VIV of a sphere were investigated
numerically at a Reynolds number of 2000. Past studies have indicated that this is
sufficiently large to be relevant to many previous experimental studies discussed in the
introduction. The FS boundary was modelled with a slip wall, as the effect of low
Froude number in previous experiments (Sareen et al. 2018) was found to be negligible
on the VIV response. To determine the influence of the FS on sphere vibration, a
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τ = 115.8 τ = 249.0(a) (b)

Figure 28. Wake visualised using the Q criterion at Q = 0.005 at h∗ = −0.375 and U∗ = 8: (a) and (b) at
the time instances shown in the bullseyes of figure 27( f ), which correspond to the transient and saturated
responses, respectively. For a piercing sphere, the formation of swirling vortex bubbles behind the sphere is
evident at the transient response as well.

comprehensive set of simulations was conducted over the reduced velocity range U∗ ∈
[3.5, 14] and the submergence depth range h∗ ∈ [−0.75, 1]. The submergence depth range
was itself partitioned into three regimes delineated by h∗ = 0 and −0.375, based on the
characteristics of the sphere response and the wake. The major findings of this study over
the previous experimental study of Sareen et al. (2018) can be summarised as follows.

The effect of the viscous layer (associated with the zero stress condition) is significant
on the VIV response of a fully submerged sphere. The submergence depth h∗ = 1 was
identified as the critical depth such that the sphere response is not altered by the FS. The
formation of two streets of hairpin vortex loops was observed in the wake, as found in
previous experimental and computational studies of a sphere placed far away from a wall
boundary. Since the thickness of the wake in the vertical direction was restricted to 3
diameters, vortex loops remained strictly below the FS and the influence of the FS on
the sphere response was minimal. As the submergence depth was decreased in regime I
(0 < h∗ ≤ 1), i.e. moving the sphere towards the surface, the wake was modified under
the influence of the surface, and as a result, the sphere response amplitude decreased
globally and monotonically, with a greater effect at higher reduced velocities. However,
the relative reduction of maximum response amplitude was less than 5 % until h∗ = 0.375,
and it reached approximately 25 % for h∗ ≈ 0. The reduction of response amplitude
was associated with the simultaneous reduction of the fluctuating component of the lift
coefficient and the reduced energy transfer per cycle during the transient growth phase.
Nonetheless, the mean drag coefficient monotonically increased with decreasing h∗. As
seen for a vortex ring approaching a FS, the vortex loops are twisted and stretched under
the influence of the thick blockage layer, and large downstream vortex loops connect to the
FS through diffusion. The influence of the zero stress condition at the surface on the near
wake was only pronounced for the range 0 < h∗ < 0.375, and hence, the sphere response
was affected strongly for submergence depths close to zero. From these observations, we
can conclude that the effect of the viscous layer (associated with zero stress) on VIV
of a fully submerged sphere is more significant than that of the thicker blockage layer
(preventing flow through the surface).

Two counter-rotating vortex bubbles formed on opposite sides of a piercing sphere being
strongest close to the positive and negative peak displacements, as it vibrated during a
cycle. As the submergence depth was decreased beyond zero with the sphere piercing
the FS, both the near- and far-wake structures were modified significantly. Nevertheless,
as found for a fully submerged sphere, two vortex loops connected to the FS were shed in
each vibration cycle for a piercing sphere, leading to the extra transfer of fluid energy to the
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sphere for large-amplitude VIV to persist. However, in this regime attached vortex bubbles
formed in the near wake, consisting of finer-scale vortical flow features. Previously unseen,
these counter-rotating vortex bubbles were only clearly visible in the instantaneous flow
field when the sphere was close to times of maximal displacement. However, these vortex
bubbles were clearer in the dynamic field. They provided an additional induced force
enhancing the VIV response. The characteristics of the wake and these vortex bubbles
were highly dependent on the submergence depth.

Vortex bubbles strengthen the VIV response in regime II. In regime II (−0.375 ≤ h∗ <

0), with less than half of the sphere piercing the FS, the swirling of the fluid forming
a vortex bubble resulted in the generation of a secondary vortex trail. These secondary
vortex trails act as a disturbance to VIV, leading to a less periodic VIV response. As h∗
was decreased in regime II, the vortex bubbles strengthened and the effect of the secondary
vortex trail lessened; consequently the sphere response amplitude increased to be above
even that of a fully submerged sphere. The predicted trend was similar to that reported from
experimental studies by Sareen et al. (2018); however, they did not examine the near-wake
structure to provide a physical explanation. By carefully analysing the near-wake structure
and evolution, we can conclude that the development of two vortex bubbles per vibration
cycle enhances VIV, leading to larger-amplitude vibration than for the fully submerged
case, as they enhanced the energy transfer rate during the transient response.

Strength of the vortex bubbles reduces in regime III. As the submergence depth was
decreased below −0.375, i.e. in regime III, the size of the vortex bubbles reduces, due
to the reduction of the portion of the sphere immersed in the fluid. Together with the
overall weakening of the wake, the reduced vortex bubbles result in less energy transfer
with decreasing h∗, resulting in a reduction in the saturated sphere response amplitude. As
well as the fluctuating components of the drag and lift coefficients, the time-mean drag
coefficient and energy transfer rate during the transient response decreased in regime III
with decreasing h∗.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.873.
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