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ABSTRACT 
One of the most basic examples of fluid-structure 

interaction is provided by a tethered cylinder or sphere in a 
fluid flow. The tendency of a tethered sphere to oscill ate when 
excited by waves is a well-known phenomenon and it has only 
recently been found that the same system will act in a similar 
fashion when exposed to a uniform flow at moderate Reynolds 
numbers, with a transverse peak-to-peak amplitude of 
approximately two diameters over a wide range of velocities. 
The present paper presents results of DNS of the flow past a 
tethered cylinder. The coupled Navier-Stokes equations and the 
equations of motion of the cylinder are solved using a spectral 
element method. The fluid forces acting on the cylinder as well 
as the tension in the tether are computed and used to determine 
the resulting motion of the object. It is found that the mean 
amplitude response is greatest at high reduced velocities, i.e. 
when the cylinder is oscil lating predominantly transverse to 
the fluid flow. Furthermore, the oscill ation frequency is found 
to correspond to the vortex shedding frequency of a stationary 
cylinder, except at high reduced velocities. This is in contrast 
to a tethered sphere in which the oscil lation frequency does not 
correspond to either the vortex shedding frequency or the 
natural frequency. Visualizations of the vortex structures in the 
wake reveal the mechanisms behind the motion of the cylinder, 
and suggest that the induced oscil lations are highly significant 
in the prediction of cylinder response in a steady flow. 

 
INTRODUCTION 

One of the simplest extensions to the classical problem of 
a hydro-elastically mounted oscil lating cyli nder is a cylinder 
whose motion is confined to an arc by a restraining tether. By 
considering a wide range of mass ratio, M* (the mass of the 
cylinder divided by the mass of the displaced fluid), we may 

allow for both buoyant bodies (M* < 1) and dense bodies (M* 
> 1), and hence describe a parameter space encompassing a 
large and diverse range of practical appli cations. Despite this 
fact, little progress has been made regarding the fluid-structure 
interaction of a tethered body, and to the authors’ knowledge 
virtuall y no work has been published regarding the flow 
around a tethered cylinder. In this work, we have developed a 
numerical code to simulate the interaction of a tethered 
cylinder in a viscous fluid. This code has been validated 
against preliminary experiments performed in the Monash 
FLAIR water tunnel.  

Most previous work regarding tethered bodies has focused 
on the free surface interaction with tethered buoys (Harlemann 
and Shapiro (1961), Shi-Igai and Kono (1969), and Ogihara 
(1988)). In each of these studies the tethered bodies oscill ate 
due to the combined effect of a uniform (or sheared) free 
stream and free surface wave effects. This combination, 
incorporating the interaction of a free surface, has made 
interpretation of results difficult. 

To date, little research has been performed concerning 
tethered bluff bodies and only the work of Willi amson and 
Govardhan (1997), Govardhan and Will iamson (1997), and 
Jauvtis et al. (2001) deal purely with the action of a tethered 
body in a uniform flow. Their work dealt specifically with the 
motion of a tethered sphere in a uniform flow field. They 
found that a tethered sphere sustained large peak-to-peak 
oscill ations with ampli tudes in the order of two sphere 
diameters in the transverse direction. They also found smaller 
stream-wise oscillations of the order of about 0.4 sphere 
diameters. 

For tethered spheres with low mass ratio (M* < 1), the 
experimental investigation of Willi amson and Govardhan 
(1997) found that large amplitude oscill ations occurred, and 
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their work was extended by Jauvtis et al. (2001) to incorporate 
spheres with higher mass ratios, M* > 1. In this study, four 
modes of shedding were observed, two of which were observed 
for a sphere with M* < 1. 

An obvious parallel to the study of tethered bodies is the 
investigation of the flow-induced oscil lation of a hydro-
elastically mounted bluff body. Significant research has been 
undertaken in this field, especially in regards to transversely 
oscill ating bluff bodies. Several interesting features observed in 
this area lend themselves to the present investigation. 

Of note is the dependence of the frequency of vortex-
induced oscill ation on the mass ratio (M*) of the body. For 
cylinders of a high mass ratio, the vibration frequency tends to 
the natural frequency of the cyli nder (for example, Feng 
(1968)). However, experiments by Angrill i et al. (1972) found 
that for cylinders with a low mass ratio (M* ≈ 1.5) the 
vibration frequency tended to the vortex shedding frequency of 
the flow. 

In general, the mass ratio of the bluff body (M*) and the 
damping ratio (λ) are often grouped as a single term (λM*) 
known as the mass-damping parameter. Of interest to the 
present investigation are results concerning low mass-damping 
(λM* « 1), for example in the experiments performed by 
Govardhan and Will iamson (2000), in which significant 
oscill ation amplitudes (of the order of one cylinder diameter) 
have been noted, and three ampli tude regimes exist. Note that 
the transition between the first two amplitude modes involves a 
hysteretic process. 

Brika and Laneville (1993), using smoke visuali zation, 
found that as the mode of oscil lation jumped from the first 
branch to the second, the phase difference between the cyli nder 
displacement and the vortex shedding underwent an abrupt 
change. The two branches were discovered to have 
fundamentally different modes, namely a 2s- and a 2p-
shedding mode respectively. A further mode of shedding was 
observed by Govardhan and Will iamson (2000), when a very 
low mass-damped cylinder underwent flow-induced vibration.  

In this paper, the numerical algorithm for simulating flow 
past a tethered body is presented. Solutions are obtained for a 
tethered cylinder and the results are discussed in the wider 
context of vortex-induced vibration of bluff bodies. 

 
PROBLEM FORMULATION 

The coordinate system and geometry of the problem are 
shown in Figure 1. For the purpose of ill ustration, a body of 
arbitrary geometry is considered without loss of generali ty. 
Note that 

�
 is the angle formed by the plane of the tether to the 

x-axis, and φ is the angle formed by the rotation of this plane 
about the x-axis. For a circular cylinder, φ = 0. The forces 
acting on the object are composed of hydrodynamic loading 
(drag, lift and side forces) and the tension in the tether. The 
buoyancy of the body (B) is combined with the pressure and 

viscous lift to give a net vertical force, and is denoted as FL + B 
in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Schematic of a tethered body in a fluid flow. 
 

We consider the flow of a viscous incompressible fluid 
past a sphere (or cylinder) under tension. The equations 
representing this problem are the coupled system of fluid and 
bluff body equations. The Navier-Stokes equations governing 
the fluid motion in an inertial reference frame are given by 

( ) 21 1

f

p
t Reρ
′∂ ′ ′ ′ ′ ′ ′ ′+ = − +

∂
�u

u u u∇� ∇� ∇� ,    (1a) 

0′ ′ =�∇� u , (1b) 
where u'  is the velocity field, p' is the pressure and Re = Ud/v 
is the Reynolds number based on the sphere (or cylinder) 
diameter. 

The tether is assumed to be rigid and inextensible (i.e., no 
radial movement), and the tension in it is given by 

( )cos sin cos sin sinD L ST F F B Fθ θ φ θ φ= + + + . (2) 

The motion of the object is a result of the forces acting on it 
and can be calculated from the equations  

cosDmx F T θ= −
� �

,  (3a) 

( ) sin cosLmy F B T θ φ= + −
���

,                (3b) 

  sin sinSmz F T θ φ= −� �
.       (3c) 

Combining equations (2) and (3) results in the following 
equations for the acceleration of the sphere in Cartesian form: 

( ) ( )( ){ }2 2
2

1D L Sx L x C x y C M zC
L M

γ α∗
∗

 = − − + − +  
� �

 (4a) 

( ) ( )( ) { }2 2
2

1L D Sy L y C M y xC zC
L M

γ α∗
∗

 = − + − − + 
� �

 (4b) 

( ) ( )( ){ }2 2
2

1S D Lz L z C z xC y C M
L M

γ α∗
∗

 = − − + + −  
� �

 (4c) 

where the values of 	  and 
 , which are geometry dependent, 
are listed in Table 1. Note that the parameter 
  on the right 
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hand side of equation (4) is dimensional and has units of 
acceleration. For the two-dimensional counterpart (the circular 
cylinder), z = CS = 0. 
 
 
 

Table 1. Definition of parameters used in Equation (4). 
 

Parameter 2-D (cylinder) 3-D (sphere) 

�  2 2

1

2 2

gD

U Fr

π π =   
 

2 2

4 4 1

3 3

gD

U Fr
 =   

 

�  
22 U

Dπ
 

23

4

U

D
 

 
In general, the drag, li ft and side forces acting on the body 

are computed by integrating the pressure and viscous stress 
terms as 

( ) ( )( )dTt p sυ= − + +∫
��

F n u u n∇� ∇� ,     (5) 

where the integration is performed over the surface of the 
object and n is the outward unit normal vector to the surface. 

 
NUMERICAL METHOD 

Solving fluid-structure interaction problems generall y 
involves the use of deforming and/or moving meshes. For the 
sake of simpli city, we shall present the numerical procedure for 
the circular cylinder only; extension to the sphere in three 
dimensions is straightforward and does not necessitate 
additional complications. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Transformation used to map from inertial to non-
inertial reference frame. 

 
Figure 2 shows the transformation used to map the inertial 

reference frame to the time-independent reference frame. This 
mapping is described by the foll owing transformation 

( )t′= −x x X   (6) 

where X(t) is the displacement of the cylinder and is described 
in terms of �  as 

( ) ( ) ( )cos ( ),   sinX t L t Y t L tθ θ= =   (7a,b) 

In the transformed system of coordinates the cyli nder 
appears stationary. Given the transformation (6), the Navier-
Stokes and continuity equations (1a,b) become 

( ) ( )21
, ,p p

t Re

∂ + = − + +
∂

�u
u u u A u X∇� ∇� ∇�           (8a) 

0=�
u∇�  (8b) 

where the forcing term A(u, p, X) is an additional acceleration 
introduced by the coordinate transformation (6) and is the 
acceleration of the cyli nder given by (4). Due to the attachment 
of the coordinate system to the cylinder, the cyli nder will rotate 
as it moves about the base pivot. Hence, the boundary 
conditions need to be altered in order to account for this effect. 

The equations of motion for the fluid and the cylinder (or 
sphere) are discretized in space using a spectral element 
method. Typically, eighth-order Legendre polynomials were 
used as the tensor-product expansion basis. The equations 
governing the body’s motion (4) are solved using a predictor-
corrector technique. The Navier-Stokes and continuity 
equations (8) are discretized in time using a three-step time-
splitting approach. The acceleration term A is combined with 
the non-linear terms and these are treated in the first sub step 
of the time update. 

The coupled fluid/structure equations are solved in three 
steps. First, an initial angle �  is input (corresponding to an 
initial displacement x0) and the fluid equations are solved. 
Next, the drag, li ft and side forces are computed using (5). 
Finally, the structure’s motion is updated using (4) and the 
process repeated. 

Detailed resolution tests were performed on a stationary 
cylinder to verify grid independence. A Reynolds number of Re 
= 500 was chosen and the order of the interpolating 
polynomials increased from N = 5 to N = 9. Flow quantities 
such as the Strouhal number, lift and drag coefficients were 
measured and compared to previous research. The results are 
summarized in Table 2. For all measures employed, the 
variation between the values at N = 7 and N = 9 is less than 
1%. Furthermore, the values of all measures for N = 8 (used in 
all simulations) compare to within 1% of the numerical values 
of Blackburn and Henderson (1999) and Henderson (1995). 
Mesh independence was also verified for the moving cyli nder 
by considering the two extremes of tether angle: at small 
angles, motion was predominantly in the crossflow direction, 
whereas at large angles, the motion was largely in the 
streamwise direction. For each value of N from 5 � N 	�
���
mean tether angles, oscillation amplitudes, oscill ation 
frequencies and drag and lift coefficients were measured for 
these two extreme cases. Again, all quantities compare to 
within 1% for the N = 8 case. A plot of the two-dimensional 
mesh is shown in Figure 3. 
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Table 2. Convergence results for a stationary cyli nder. (p) 
denotes peak values, (m) denotes mean values. 

 
N 5 6 7 8 9 

CL (p) 1.1873 1.1809 1.1817 1.1818 1.1854 
CL (m) 0.0383 0.0356 0.0362 0.0373 0.0434 
CD (p) 1.5897 1.5792 1.5798 1.5793 1.5795 
CD (m) 1.4561 1.4457 1.4462 1.4461 1.4459 

St 0.2270 0.2264 0.2267 0.2267 0.2267 
 

Figure 3. Two-dimensional mesh used in the numerical 
simulations. 

 
RESULTS 

The results presented herein involve the flow-induced 
vibrations of a two-dimensional circular cylinder. Predictions 
of the natural frequency of vibration of the cylinder can be 
made as foll ows. 

Since the problem is essentiall y that of a pendulum with 
external forcing applied, the natural frequency is given by  

1

2n

T
f

MLπ
= .                                 (9) 

Experimentall y, the tension is assumed to be primarily 
dependent on the buoyancy term, in which case the normalized 
natural frequency may be written in terms of a Strouhal 
number as 

1 1 1

2
n

n

a

f D M
S

U C MFr Lπ

∗

∗∗

− = ≈   + 
,               (10) 

where Ca is the added mass coefficient for the cylinder. It is 
interesting to note that Equation (10) for the natural frequency 
of the cyli nder is identical to that of a tethered sphere. 
However, the drag coefficient cannot be neglected for angles 

less than approximately 70°, in which case the equation 
defining Sn becomes 

( )( )
3

cos 1 sin1

2

D L

n

C C M
S

M L

θ α θ

π

∗

∗ ∗

+ + − 
=    

,    (11) 

where �  is related to Fr as in Table 1. 
Since the response ampli tude of the cylinder is primaril y a 

function of the reduced velocity (and is relatively independent 
of Reynolds number), for computational efficiency all 
simulations were run at a Reynolds number of Re = 200. The 
stronger vorticity at this Reynolds number (compared to, for 
instance, at Re = 100) means that a more representative 
determination of the vortex shedding process and hence 
cylinder dynamics is possible. Furthermore, both the drag 
coefficient and vortex shedding frequency for 200 < Re < 105 
is almost constant, with changes primarily in the vortex 
formation length. 

Initially, the primary objective was to analyze the effect of 
mass ratio on the oscill ation amplitude and frequency, since for 
a tethered sphere the effect of mass ratio (as well as L* and Fr) 
is to influence the response shape and not necessarily the 
saturation amplitude. However, it was decided to study a 
cylinder of fixed mass ratio and tether length and see how the 
response (i.e., ampli tude and frequency) varies with the 
reduced velocity. This was investigated by varying the 
parameter α between 1 

� α �������
	�������������������������� 
normalized velocities of 4 � U* !#"%$�&('�)�*,+,' -/.�02143 0�365�0�*8790;:%<2365
of L* = 5.5 and a mass ratio of M* = 0.833. These particular 
values were chosen to provide comparisons with preliminary 
experiments being conducted simultaneously in the Monash 
FLAIR water tunnel. Other variables of interest are the drag 
and lift forces acting on the cylinder, since these are the main 
quantities that may be compared to previous work, and the 
mean angle of inclination of the cylinder. 
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Figure 4. Mean angle of tether (in degrees): solid line denotes 
predicted response using equation (12); = , numerical results; >

, experimental results. 
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By considering the effect of the drag and buoyancy at 
equil ibrium, an estimate may be made of the cylinder mean 
displacement. This is given by  

( )1
1

tan
D

M

C

α
θ

∗
−

 −
 =
  

,      (12) 

which is plotted in Figure 4 as a function of reduced velocity. 
Here, the value of CD is obtained from the drag coefficient data 
for a stationary cylinder at the corresponding Reynolds number 
of Re = 200, in this case from Henderson (1995). Also shown 
in Figure 4 is the actual mean angle �  obtained through the 
numerical simulations, as well as preliminary data from the 
present experiments. The predicted response using (12) 
describes the mean angle very well, except at high reduced 
velocity where the mean tether angle is less than 50 degrees. 
This is because at these small angles, the drag for the tethered 
cylinder departs significantly from that of the stationary 
cylinder, as also shown by Blackburn and Henderson (1999) in 
their oscil lating cylinder experiments. 
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Figure 5. Normalized frequency response for M* = 0.833, L* = 

5.5, ∆ numerical results, (solid li ne) normalized vortex 
shedding frequency for a stationary cylinder (Re = 200). 

 
Figure 5 shows the normalized oscill ation for a tethered 

cylinder at the specified conditions (M* = 0.833, L* = 5.5). 
Also shown is the vortex shedding frequency for a stationary 
cylinder. As expected, it appears that the oscillations are due to 
a resonance between the oscill ation frequency of the tethered 
body and the wake vortex shedding frequency. This is in 
contrast to a tethered sphere in which the oscil lation frequency 
does not correspond to either the vortex shedding frequency or 
natural frequency at low mass ratios (M* < 1). Furthermore, 
for a tethered cyli nder the oscill ation frequency for high U* 
corresponds to the vortex shedding frequency and not the 
natural frequency of the system, similar to the response of a 
freely vibrating cylinder at very low mass-damping. However, 
no synchronization or “ lock-in” regime is found when one 
considers the classical definiti on of lock-in, i.e. a 
synchronization of the vortex formation frequency (fV) and 

body oscillation frequency (f) with the natural frequency (f), so 
that f* = f/fN is close to unity, which is valid for large M* = 
O(100). However, a more suitable definition of synchronization 
would be the matching of the periodic wake vortex mode with 
the body oscillation frequency, as pointed out by Khalak and 
Willi amson (1999). In this sense, the fluid force frequency 
must match the shedding frequency, and hence the tethered 
cylinder experiences synchronization throughout the entire 
range of reduced velocities investigated. 

Cylinder oscil lation amplitudes are presented in Figure 6 
for the same mass ratio and tether length described above. 
Note that the (normali zed) amplitudes are described by half of 
the arc length traversed by the cylinder over one period of 
motion. At low reduced velociti es, the ampli tude of oscill ation 
is quite small , then increases almost linearly up to a reduced 
velocity of approximately U* = 16.  

In the range U* = 16 to 17 there is a significant increase 
in amplitude. This corresponds to an increase in the drag 
force, above that which is observed for a stationary cylinder. In 
the range U* = 17 – 19, there is a sudden drop in the 
displacement amplitude. While the drag force remains fairly 
constant throughout this range, the lay over angle is increasing 
and the lift force is dominating the cylinder motion. As the 
RMS li ft force is substantially less than the RMS drag force, 
over the range of reduced velocities investigated, the total force 
tangent to the direction of motion (Ft) decreases for higher 
reduced velocities. Above a reduced velocity of U* = 19, the 
amplitude of motion increases once again. At these very low 
angles of � , the tethered cylinder responds in a similar way to a 
transversely oscillating hydro-elastically mounted cylinder.  

To emphasize this point, a time history of the cylinder 
motion and the time dependent force acting tangent to the 
cylinder motion is presented in Figure 7 for the highest 
reduced velocity case simulated (U* = 21). 
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Figure 6. Cylinder oscillation amplitude as a function of 

reduced velocity. 
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Figure 7. Tangential force coefficient (solid li ne) and cylinder 
displacement (dashed line) as a function of time for a reduced 

velocity of U* = 21. 
 
Figure 7 shows that the phase angle between the cylinder 

motion and the fluid forcing is 180o. For a very low mass-
damped freely oscillating cyli nder (Govardhan and Will iamson 
(2000)), the phase angle between the displacement and forcing 
was 180o only on the initial branch of ampli tude response. On 
both the upper and lower branches (as well as the lower branch 
for a high mass-damped oscil lating cylinder which exhibits 
only two ampli tude response branches), 2P modes of vortex 
formation were observed. However, the numerical prediction of 
2P modes observed experimentally appears to require three-
dimensional simulations, as found by Blackburn et al. (2001). 

Figures 8 and 9 depict the vorticity field for four instances 
in one cycle of cylinder motion. The images in Figure 8 are for 
a low reduced velocity of U* = 5, where the cylinder motion is 
predominantly in the streamwise direction, and the amplitude 
of motion is small . On the other hand, Figure 9 ill ustrates the 
vorticity field for a higher reduced velocity of U* = 21, in 
which the motion of the cylinder is largely transverse to the 
fluid flow. In both cases, the vorticity fields clearly exhibit 2S 
vortex formation modes, similar to Kármán vortex shedding of 
a stationary cyli nder at the same Reynolds number. However, 
the major differences between the two cases are the spacing of 
the shed vortices as they convect downstream and the vortex 
formation length in the near wake. For U* = 5, the spacing 
between the vortices is much smaller than for U* = 21. This is 
related to the frequency of oscill ation of the body and hence 
the frequency of vortex shedding. In Figure 5, at low reduced 
velocity, the vortex shedding frequency of the tethered cyli nder 
matches that of the stationary cylinder. However, at higher 
reduced velocity, there is a significant departure of the 
oscill ation frequency from the fixed cylinder vortex shedding 
frequency. These lower oscill ation frequencies at high U* 
means that the period of vortex shedding is higher. As a result, 

the spacing of the vortices is much larger for high reduced 
velocities, as depicted in Figure 9. 

 

 
Figure 8. Vorticity field over one cycle for U* = 5. Each image 

represents a quarter cycle. 
 
 

 
Figure 9. Vorticity field over one cycle of a fully saturated 

flow, U* = 21. Each image represents a quarter cycle. 
 
Future research involves examining the cyli nder response 

for low mass ratios up to 0.9 and tether lengths in the range 5 �
L* �������	��
�������������������������! "����#%$������"�'&(�*)+
�#-,�.�/-$��	0 similar 

parameters in the Monash FLAIR water channel. However, we 
note that a complete picture of the flow-induced vibrations of a 
tethered cylinder requires the implementation of three-
dimensional simulations, which is a topic of future study. For 
example, 2P shedding modes common in vortex-induced 
vibrations of cylinders may be caused by three-dimensional 
effects, and hence two-dimensional simulations may be 
inadequate for the task of predicting the response and vortex 
shedding mechanisms (Blackburn et al (2001)). In addition, 
further work to be presented shortly considers the vortex-
induced vibrations of a tethered sphere. 
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