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Mixing in a vortex breakdown flow
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In this paper we present experimental and theoretical results on the mixing inside a
cylinder with a rotating lid. The helical flow that is created by the rotation of the disc
is well known to exhibit a vortex breakdown bubble over a finite range of Reynolds
numbers. The mixing properties of the flow are analysed quantitatively by measuring
the exponential decay of the variance as a function of time. This homogenization
time is extremely sensitive to the asymmetries of the flow, which are introduced by
tilting the rotating or the stationary disc and accurately measured using particle image
velocimetry (PIV). In the absence of vortex breakdown, the homogenization time is
strongly decreased (by a factor of 10) with only a moderate tilt angle of the rotating
lid (of the order of 15◦). This phenomenon can be explained by the presence of small
radial jets at the periphery which create a strong convective mixing. A simple model
of exchange flow between the periphery and the bulk correctly predicts the scaling
laws for the homogenization time. In the presence of vortex breakdown, the scalar is
trapped inside the vortex breakdown bubble, and thus increases substantially the time
needed for homogenization. Curiously, the tilt of the rotating lid has a weak effect
on the mixing, but a small tilt of the stationary disc (of the order of 2◦) strongly
decreases (by a factor of 10) the homogenization time. Even more surprising is that
the homogenization time diverges when the size of the bubble vanishes. All of these
features are recovered by applying the Melnikov theory to calculate the volume of the
lobes that exit the bubble. It is the first time that this technique has been applied to a
three-dimensional stationary flow with a non-axisymmetric perturbation and compared
with experimental results, although it has been applied often to two-dimensional flows
with a periodic perturbation.
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1. Introduction
It is well known that helical flows are unstable with respect to vortex breakdown,

leading to a complex geometry of the streamlines with a barrier to transport between
the inner part and the outer part of the bubble. The goal of this paper is to quantify
experimentally the mixing in this three-dimensional flow and to compare it with
available theories derived for chaotic advection.

Vortex breakdown usually refers to a recirculating bubble that occurs past a
stagnation point due to the rapid expansion of a thin vortex into a much broader
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one (Leibovich 1978). It is a surprising and practically important phenomenon, which
has been observed in many different swirling flows from geophysical to industrial
applications. Vortex breakdown was first observed over the delta wings of aircraft
(Wentz & Kohlman 1971; Hall 1972; Lowson & Riley 1995) where it creates a
sudden drop of the lift and an increase in the drag, possibly leading to a loss of
aircraft control (Escudier 1988). By contrast, it is beneficial in the geophysical context
since it decreases the maximal velocities of tornadoes and limits their destructive
power (Burggraf & Foster 1977; Rotunno 2012). The structure and dynamics of these
tornadoes is governed by the mixing of hot air within the core of the vortex. Artificial
tornadoes within a chimney have been proposed as a way of converting green energy
into electric power. But the poor understanding of the stability and mixing properties
of these flows have prevented the development of an operational prototype. Vortex
breakdown has also been used as a flame holder in combustion devices (Gupta, Lilley
& Syred 1984), where the mixing of fuel and oxygen is of primary importance.
Finally, vortex breakdown flows are of interest for bioengineering applications since
they can provide a smooth and efficient mixing without moving a propeller in the
cavity (Dusting, Sheridan & Hourigan 2006; Thouas, Sheridan & Hourigan 2007).
This is beneficial for bioreactors where the growth of cells requires oxygen to be
distributed as fast as possible, but where strong shears or moving objects should
be avoided since they can damage cells. For such bioreactors, the goal is thus to
maximize the mixing with a minimum velocity in the cavity, which will be the guiding
line of the paper.

The structure and stability of a vortex breakdown flow has been actively discussed
in the past century. Early experiments in a pipe (Harvey 1962; Sarpkaya 1971;
Faler & Leibovich 1978) have revealed the presence of an axisymmetric bubble,
which may also contain a single or a double helix (depending on the swirl
and Reynolds number) with a strong hysteresis between these three regimes. The
presence of the axisymmetric bubble has been explained theoretically by Benjamin
(1962) and validated numerically by Wang & Rusak (1997) as a transition from a
supercritical flow (without waves propagating upstream) to a subcritical flow (with
waves propagating upstream) analogous to a hydraulic jump. Ruith et al. (2003)
further showed by direct numerical simulations that helical disturbances constitute
a secondary instability that grow over a finite time on the axisymmetric bubble. This
secondary instability can be explained by a transition from a convective to an absolute
instability (Gallaire et al. 2006) and leads to a global mode whose structure has been
described by Meliga, Gallaire & Chomaz (2012).

Vortex breakdown has also been observed in a simpler configuration consisting of a
closed cylinder with one lid rotating (Vogel 1968; Ronnenberg 1977). This is the topic
of this paper since the flow is very stable experimentally. Escudier (1984) showed
experimentally that vortex breakdown appears in a finite band of Reynolds number
if the height to radius ratio H/R is larger than 1.5. There is a single axisymmetric
bubble until H/R = 1.95, where a second bubble can appear and even a third bubble
around H/R = 3.35. In our experiment, the aspect ratio is equal to two such that
the flow first bifurcates toward an axisymmetric time-dependent flow at a Reynolds
number around 2700. Indeed, it was found numerically by Lopez & Perry (1992) and
theoretically by Gelfgat, Bar-Yoseph & Solan (1996) that periodic perturbations appear,
leading to a vertical oscillation of the bubble. Note, however, that non-axisymmetric
perturbations such as a double, triple or quadruple helix may appear before the
periodic perturbations, but only for aspect ratios larger than 3.3 (Gelfgat, Bar-Yoseph
& Solan 2001; Lopez 2006; Sorensen, Naumov & Okulov 2011; Lopez 2012).
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The presence of a periodic perturbation superimposed on the axisymmetric vortex
breakdown is interesting because it breaks the barrier to transport. Indeed, the
axisymmetric streamlines surrounding the bubble are impermeable because they
connect the two hyperbolic (or heteroclinic) points located on the axis. The transport
of particles from inside to outside the bubble is thus completely governed by the
additional periodic perturbation. Lopez & Perry (1992) showed numerically that it
advects the particles on the unstable manifold of the hyperbolic point. This is very
similar to the theoretical result of Rom-Kedar, Leonard & Wiggins (1990) on a
two-dimensional periodic flow of two oscillating point vortices. They showed that the
particles exiting the bubble are located in the lobes between the stable and the unstable
manifold of the heteroclinic points, and that the area of these lobes can be calculated
by the Melnikov function. The Melnikov theory is a classical tool of dynamical
systems (see e.g. Guckenheimer & Holmes 1983; Wiggins 2003) which gives a simple
formula for the ‘distance’ between the stable and the unstable manifold.

However, the barrier to transport can also be broken by a symmetry breaking, as
has always been found experimentally in the steady case. Indeed, there has been a
long debate on the structure of vortex breakdown since it was different depending
on whether it was predicted by axisymmetric numerical simulations or observed in
the experiments that revealed asymmetric tongues of dye exiting from the bubble
due to what was thought to be an intrinsic asymmetry of the bubble (Spohn, Mory
& Hopfinger 1998). It was finally proven (Thompson & Hourigan 2003) that these
tongues can be due to very small imperfections of the experimental set-up, since
a misalignment of 0.01◦ of the rotation axis (which is of course inevitable) is
sufficient to recover the large asymmetries observed in the experimental images. This
phenomenon highlights the high sensitivity of the flow to asymmetries, which will be
introduced on purpose in this paper in order to quantify their effect on the mixing.
Sotiropoulos, Ventikos & Lackey (2001) showed numerically that it creates a rich
dynamics such as Kolmogorov–Arnold–Moser (KAM) tori and stable islands inside the
bubble, which have even been observed in experimental Poincaré sections (Fountain,
Khakar & Ottino 1998; Sotiropoulos, Webster & Lackey 2002). They also showed
that the stretching and folding of the lobes creates a cantorus at the periphery of
the bubble, which is responsible for a chaotic release of the particles initially located
inside the bubble. This leads to a devil’s staircase (with fractal steps) for the number
of particles as a function of time. This has been confirmed by Brons et al. (2007) who
also noted that the asymmetry can be reduced by introducing a small offset of the axis
of the rotating lid to counterbalance its misalignment. However, there has never been a
quantitative prediction of the escape rate from the bubble, as was done in Rom-Kedar
et al. (1990). Moreover, all of these studies only analyse the evolution of point tracers
(position, spatial structure, fractal dimension, etc.). They have always neglected the
effect of diffusion which is able to break the barrier to transport and introduce a weak
escape rate predicted theoretically by Brons, Thompson & Hourigan (2009).

By contrast, many studies have been devoted to the advection–diffusion of a scalar
in a homogeneous turbulent flow (see e.g. the review of Warhaft 2000). The goal is
to derive the spectra, the probability distribution functions (p.d.f.s) and the variance
of the scalar. In the inertial range the spectra scale as k−5/3 but they scale as k−1

at smaller scales (between the Kolmogorov and the Batchelor scale), as explained
by Batchelor (1959) and Kalda (2000) in a stationary regime. The p.d.f.s reveal
a high intermittency (non-Gaussian), which can be explained by a simple model
of stretched filaments (Duplat & Villermaux 2008; Meunier & Villermaux 2010).
However, the most important result is probably the fact that the variance decays



198 P. Meunier and K. Hourigan

Laser Bearing

Stepper
motor

Field of
view

Octagonal
housing

Camera

Inner
cylinder

Steel base
plate

Pump

Syringe

H
R

FIGURE 1. Schematic of the experimental set-up.

exponentially, as was shown numerically in a two-dimensional almost time-periodic
flow (Pierrehumbert 1994; Antonsen et al. 1996; Thiffeault, Doering & Gibbon 2004;
Meunier & Villermaux 2010) and in a three-dimensional flow (Toussaint, Carrière
& Raynal 1995). This can be explained in a bounded domain by the linearity of
the advection–diffusion equation (Haynes & Vanneste 2005). However, Gouillart et al.
(2007) showed experimentally that the walls can have a non-trivial effect and lead to
‘anomalous’ power law rather than an exponential decay.

In this paper, we will study experimentally the mixing inside a highly heterogeneous
flow. Section 2 is devoted to the experimental set-up. The flow is described in detail in
§ 3. The mixing properties of the flow are studied in the absence of vortex breakdown
in § 4, and in the presence of vortex breakdown in § 5. Conclusions follow in § 6.

2. Materials and methods
2.1. Experimental set-up

We wish to study the flow inside a circular cylinder with a rotating tilted disc. The
set-up has been described in detail in Ismadi et al. (2011) and will only be presented
briefly here. Figure 1 shows the experimental set-up, consisting of a cylindrical
Plexiglas container with internal radius R = 32.5 mm, filled with water. This inner
cylinder is placed inside an octagonal housing full of water with flat exterior faces
to prevent the deformation of images. The flow under study is located inside the
inner cylinder between two discs separated by a height H, with an aspect ratio
H/R = 2 ± 1 %. The top disc is rotated at an angular velocity Ω varying from 0.6 to
3.6 rad s−1 using a stepper motor and a worm wheel allowing a very smooth rotation
of the disc at all speeds.

The goal of the paper is to study the mixing properties of the flow inside the
inner cylinder. For this purpose, a dye mixture is injected at the centre of the bottom
disc through a 0.5 mm hole connected to a 1 ml syringe. A syringe pump creates
a continuous injection at a volumetric flow rate Q = 0.02 ml min−1 for 5 min. This
duration of injection was chosen because it is small compared with the typical time
of the experiments (of the order of a few hours) needed for the dye to spread within
the whole cylinder. But this duration is long enough for the velocity of the injection
jet (0.17 cm s−1) to be small compared with the velocity of the disc periphery varying
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from 2 to 12 cm s−1. The injected volume (0.1 ml) is, of course, very small compared
with the total volume of the cylinder (200 ml). The mixture contains 0.033 wt% of
Fluorescein diluted in water, together with 0.088 wt% of alcohol in order to obtain a
neutrally buoyant mixture. Indeed, Ismadi et al. (2011) showed that a weak density
difference of the order of 0.01 % is sufficient to modify the threshold of the vortex
breakdown.

The Fluorescein dye is illuminated by a blue laser so that it fluoresces very brightly
with a green colour. As illustrated in figure 1(a), the laser is expanded into a vertical
sheet that is carefully placed at the centre of the inner cylinder to visualize the
distribution of dye in a longitudinal section. A digital camera records images similar
to the one shown in figure 1(b). Although the blue component of the images contains
strong reflections of the laser sheet, the green component only contains the image of
the dye and its intensity is proportional to the density of the dye at this high dilution
rate.

As will be shown later, the mixing properties of this flow strongly depend on the
asymmetries of the experiment. We have thus tested two types of asymmetries: a tilt of
the rotating disc and a tilt of the stationary disc. As shown in figure 1(b), the tilt of
the rotating disc is obtained by cutting the disc at an angle α compared with the plane
normal to the axis of the disc. This creates an oscillating motion of the periphery (in
a given section) superimposed on the rotation of the disc. This does not correspond to
the motion of a disc whose axis is tilted with respect to the axis of the cylinder. Six
different discs with angles α equal to 0, 2, 5, 7.2, 9.8 and 14.6◦ have been used, with
an accuracy of less than 0.1◦. The tilt of the stationary disc is obtained by placing a
thin disc on a wedge at an angle β, which is varied from −2.6 to 2.6◦. The uncertainty
on the angle β is relatively large even in the absence of a wedge.

The flow is also studied using particle image velocimetry (PIV), by injecting small
red fluorescent particles in the cylinder. A 4 megapixel PIV camera acquires images
through a red filter in order to remove reflections of the laser. The images are treated
using an inhouse cross-correlation algorithm (Meunier & Leweke 2003), which gives
60 × 60 vectors in the longitudinal section. The acquisition frequency is equal to 8
times the rotation frequency of the top disc in order to apply some phase averaging of
the velocity fields.

2.2. Theoretical and numerical formulation
The flow under consideration depends on four main dimensionless parameters. The
aspect ratio h = H/R is kept to a constant value of two. The Reynolds number
Re =ΩR2/ν, ν being the kinematic viscosity of the water, is varied between 700 and
3000. The angle α of the tilted rotating disc is varied between 0 and 15◦. The angle
β of the stationary disc is varied between −2.6 and 2.6◦ in the plane normal to the
laser sheet. The Schmidt number Sc = ν/κ (κ being the diffusivity of the dye) is an
additional parameter which is large in the experiment and equal to 2000.

The flow is governed by the Navier–Stokes equation together with the
incompressibility condition, which are non-dimensionalized using the radius R and
Ω−1 as length and time scales, leading to

∂u
∂t
+ u ·∇u=−∇p+ 1

Re
4 u. (2.1)

In cylindrical coordinates (r, θ, z), the boundary conditions are u = 0 at the periphery
(r = 1) and at the bottom disc (z= βr cos(θ)) and u= reθ (where eθ is the orthoradial
unit vector) on the top disc defined by z= h+ αr cos(θ − t).
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These equations are easily solved numerically at these moderate Reynolds numbers
using COMSOL Multiphysics which is a finite-element method using standard
Lagrange elements P1–P1. The time stepping is governed by an implicit differential-
algebraic (IDA) solver based on a backward differentiation formula (BDF) scheme
described by Hindmarsh et al. (2005). At each time step, the system is solved using
the direct linear solver for hollow matrices Pardiso (www.pardiso-project.org). The
flow is first calculated as a time-dependent flow from t = 0 to t = 100, with u = 0
at t = 0. The solution at t = 100 is then used as an initial condition for a stationary
solver. The mesh is refined in the boundary layer, leading to 14 882 elements in two
dimensions and 511 000 elements in three dimensions.

The concentration of the dye is a passive scalar c advected by the flow according to
the linear diffusion–advection equation

∂c

∂t
+ u ·∇c= 1

ReSc
4 c, (2.2)

This equation is not solved numerically because the Schmidt number is large such
that dye structures are very thin. The calculation would need an increased spatial
resolution at his large Péclet number (Pe= ReSc' 106), which would be very difficult
in three dimensions. This is why the numerical simulations are only used to derive the
characteristics of the flow and not to study the mixing problem itself.

3. Phenomenology of the flow
We first describe the helical flow inside the cylinder with a rotating disc, which is

well known to exhibit vortex breakdown. The effect of the tilt of the rotating disc is
analysed in detail to explain the mixing properties of this flow in the next sections.

3.1. Vortex breakdown in the presence of a tilted disc
The rotation of the top disc creates a thin rotating layer below the disc, which induces
a radial motion due to the centrifugal force. This Von Kármán pumping creates a
secondary longitudinal recirculation inside the cylinder, which is very well visualized
at moderate Reynolds number (see figure 2a) by the dye going up along the axis of
the cylinder. This toroidal motion is very weakly affected by the tilt of the disc, which
creates a weak periodic perturbation leading to a small undulation of the dye streakline
below the top disc. The dye accumulates on the top disc and is then advected radially
toward the corners by the centrifugal motion. At the corners, the dye predominantly
goes down along the periphery of the cylinder due to the recirculation. But a small
part is ejected radially inward due to small peripheral jets, which will be analysed in
detail in § 3.3.

When the Reynolds number increases, the undulation of the streakline on the axis
increases because the upward velocity decreases on the axis. At the critical Reynolds
number where the velocity vanishes on the axis, the topology of the flow suddenly
changes. This leads to the well-known vortex breakdown bubble, clearly visualized
in figure 2(b). Here, the aspect ratio h is equal to 2 such that the critical Reynolds
number is equal to Re = 1430 ± 30, in excellent agreement with the literature (see
Escudier 1984). This critical Reynolds number is very weakly affected by the tilt of
the disc: it seems to decrease by 20 due to the tilt of the disc, although this could be
within the uncertainty.

Figure 2(c) shows that for a larger Reynolds number (Re = 1900), the vortex
breakdown is larger and contains two bubbles. However, when the Reynolds number is
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(a) (b)

(c) (d)

FIGURE 2. Dye visualization of the flow inside the cavity at the end of the injection phase:
(a) Re= 1000, (b) Re= 1470, (c) Re= 1900 and (d) Re= 3500. Here α = 5◦ and h= 2.

increased further, the size of the bubble decreases and the bubble eventually disappears
above Re = 3000 ± 50, as shown on figure 2(d). This is again in excellent agreement
with the results of the literature obtained in the absence of tilt. It can be noted that
the tilt of the disc creates a small undulation of the streakline just above the bottom
disc, at the location where the bubble disappeared (i.e. where the vertical velocity is
minimum).

3.2. Potential flow induced by the tilted disc
PIV measurements have been performed in order to quantify the meridional flow.
Figure 3(a) shows the mean flow in a vertical section in the absence of vortex
breakdown. The velocity field clearly shows the axisymmetric recirculation with a
strong upward flow on the axis and a downward flow at the periphery. It can be noted
that the radial flow is thinner and stronger at the top than at the bottom because it is
contained within the layer.
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FIGURE 3. (a) Mean flow and (b) periodic perturbation flow obtained by PIV in a
longitudinal section perpendicular to the plane of the tilt angle. Here Re= 1000, α = 5◦ and

h= 2.

The periodic perturbation due to the tilt of the disc can be measured by calculating
the difference between the phase-averaged velocity and the mean velocity. This
perturbation is plotted in figure 3(b) in the absence of vortex breakdown. It is clear
that there is a strong flow from right to left, due to the tilted disc which pushes the
fluid as it rotates. This flow is mainly potential because it is created by the motion of
the disc normal to its surface. It can thus be calculated using the theory for potential
flows, by assuming that the velocity u = ∇ϕ derives from the potential function ϕ.
The potential function ϕ is searched as a sum of potential modes of amplitude an:

ϕ = α
∑

n

an

kn
cosh(knz) cos(θ − t)J1(knr), (3.1)

where J1 is the Bessel function of the first kind. Each mode is indeed a solution at
any time because it satisfies ∇u=4ϕ = 0. The slip boundary condition (ur = 0) at the
periphery (r = 1) imposes the choice of the axial wavenumber kn

J′1(kn)= 0, (3.2)

such that there is a discrete set of wavenumbers, whose first terms are equal to
k1 = 1.8412, k2 = 5.3314, k3 = 11.7060 and k4 = 14.863. The slip boundary condition
at the tilted disc can be written

uz = αr cos(θ − t) at z= h− αr sin(θ − t). (3.3)

This slip boundary condition is a priori valid only when the thickness δ of the
boundary layer (which scales as Re−1/2) is much smaller than the vertical displacement
of the tilted disc (which is equal to α at r = 1), i.e. when αRe1/2 � 1. However, it
is also valid when αRe1/2 � 1 because in the frame of reference precessing with the
disc (i.e. with the z-axis normal to the disc), the Poincaré force is of order α and is
thus negligible compared with the viscous terms governing the boundary layer which
are of order Re1/2. In this frame of reference, the boundary layer is thus axisymmetric,
meaning that the thickness δ is independent of θ , such that the slip boundary condition
(3.3) is still valid but at a distance δ below the disc, i.e. at z= h− αr sin(θ − t)− δ.
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Re= 3036 (O). Here α = 5◦ and h= 2.

Since δ and α are small in both cases, the boundary condition can be replaced at
leading order by the same condition applied at z= h:

uz = αr cos(θ − t) at z= h. (3.4)

A solvability condition is then found by introducing the decomposition (3.1) into this
boundary condition, multiplying by rJ1(kmr), and integrating r from 0 to 1 because∫ 1

0 J1(knr)J1(kmr)r dr = 0 if n and m are not equal. This leads to the value of the
amplitude an which can be simplified as

an =

∫ 1

0
J1(knr)r2 dr∫ 1

0
J2

1(knr)r dr sinh(knh)

= 2
knJ0(kn)(k2

n − 1) sinh(knh)
. (3.5)

The velocity is obtained by differentiating (3.1):

u=
∑

n

an

 J′1(knr) cosh(knz) cos(θ − t)
−J1(knr) cosh(knz) sin(θ − t)/(knr)

J1(knr) sinh(knz) cos(θ − t)

 . (3.6)

This velocity field is plotted in figure 4(a) and is similar to the perturbation field
found experimentally and plotted in figure 3(b). Moreover, there is a good quantitative
agreement of the amplitude of the flow, as shown in figure 4(b) where the radial
velocity on the axis is plotted as a function of time. The experimental result clearly
shows that the potential flow is independent of the Reynolds number. However, it
seems that the experimental velocity is slightly delayed compared with the theoretical
prediction. This may be due to nonlinear effects inside the boundary layer, which have
not been taken into account here.
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FIGURE 5. (a) Periodic perturbation vorticity obtained by PIV at Re = 2000. (b) Vertical
profile of radial velocity at r = 0.9 obtained experimentally at Re = 1000 (solid line),
Re = 1490 (dashed line), Re = 2000 (dash-dotted line) and Re = 2490 (dotted line). Here
α = 5◦ and h= 2.

3.3. Peripheral jets induced by the tilted disc
As shown in figure 5(a), the perturbation flow (i.e. the difference between the phase-
averaged flow and the mean flow) contains almost no vorticity in the bulk of the
cylinder, because the potential flow calculated in the previous section is irrotational.
However, there is some vorticity created at the top disc which is advected to the
periphery of the cylinder. It should be noted that this periodic vorticity perturbation
is small compared with the mean distribution of vorticity (not shown here). The
mean vorticity is antisymmetric whereas the periodic perturbation is symmetric. At
the periphery, this symmetric vorticity corresponds to two helical vortices of opposite
sign which are advected downward by the mean flow. These vortices are due to the
oscillating motion of the disc at the corner, which creates some oscillating vorticity.

These counter-rotating vortices create small radial jets which are responsible for
the tongues of dye which are visible in figure 2(a). The radial velocity of these jets
is plotted as a function of z close to the cylinder in figure 5(b). It seems that the
wavelength of the undulations (i.e. the pitch of the helical vortices) is independent of
the Reynolds number and equal to 0.35. This is close to the value 2πumax

z = 0.38 of
a perturbation at a frequency 1/2π advected by the mean flow at the velocity umax

z
(which is found empirically to be constant around 0.06 for Re ∈ [500, 3500]).

The strength of these jets decreases when the vortices are advected downwards
due to viscous diffusion. Indeed, the attenuation is stronger at smaller Reynolds
numbers: the oscillations disappear after 2 wavelengths at Re = 1000 whereas they
are still visible after 4 wavelengths at Re = 2490. Despite the large uncertainty in
the measurement, it is possible to fit the envelope of these oscillations by a decaying
function of the form:

uenvelope
r = umax

r eµ(z−h) (3.7)

The attenuation parameter µ is plotted in figure 6(a) as a function of the Reynolds
number for three different tilt angles. It is quite clear that this parameter is fairly
independent of the tilt angle α and decreases with the Reynolds number approximately
as Re−1/2. This is coherent with the fact that these jets extend on a larger height when
the Reynolds number increases. The amplitude of these jets is characterized by umax

r
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FIGURE 6. (a) Attenuation parameter µ and (b) amplitude umax used to fit the envelope of the
radial velocity at r = 0.9 using (3.7). Tilt angles are equal to α = 5◦ (O), α = 10◦ (�) and
α = 15◦ (©).

in (3.7) which is plotted in figure 6(b). It is surprising to see that the amplitude
decreases with the Reynolds number. This is probably due to the fact that these jets
come from an interaction of the viscous boundary layer (of thickness Re−1/2) with the
tilt angle α. This would explain why the amplitude scales as αRe−1/2. Using these two
empirical laws, it is possible to give a general formula for the radial velocity of these
jets at r = 0.9:

ur(θ, z, t)= 15αRe−1/2 exp[100Re−1/2(z− h)] sin[18(z− h)+ θ − t] (3.8)

where α is given in radians. This empirical formula will be used in the following.
To summarize, the presence of a tilt of the rotating disc does not modify drastically

the mean flow, including the vortex breakdown bubble. However, it leads to a periodic
potential flow in the bulk of the cylinder and creates periodic radial jets at the top
corners which are advected downward by the mean flow.

4. Mixing in the absence of vortex breakdown
4.1. Mixing for a flat disc

Figure 7 shows the temporal evolution of the dye after injection in the long term. The
dye is advected by the meridional recirculation on a torus and is thus homogeneous
along the streamlines. The dye is mainly located on the axis, with a thickness
which increases with time. This indicates that there is some diffusion across the
streamlines, which allows to spread the dye over the whole volume and thus to
decrease the intensity of the dye. However, this effect is weak because the dye is still
inhomogeneous at t = 4000 (i.e. after 1 h of experiment), as shown by figure 7(d)
where the dye is located on the axis and at the walls. This leaves a large region
without any dye, indicating that this flow is fairly inefficient for mixing.

In fact, there is a small asymmetry in the dye pattern (particularly visible on
the axis of figure 7a), which is due to small imperfections in the experimental
setup. This alternate chevron pattern is probably due to a non-zero angle β

because this asymmetry is stationary with time. It is probably this asymmetry which
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(a) (b)

(c) (d)

FIGURE 7. Dye visualization at t = 0, 300, 1000, 4000. Here Re= 1000 and α = 0◦.
(Negative image of the green component.)

creates a diffusion across the streamlines rather than the molecular diffusion whose
characteristic time is equal to the Péclet number (Pe= ReSc∼ 106) in non-dimensional
units. This already shows that the mixing properties of this flow are highly dependent
on the possible asymmetries of the flow.

4.2. Mixing for a tilted disc
To study quantitatively the effect of the asymmetry, the rotating disc is tilted of an
angle α = 5◦ to surpass the effect of the imperfections of the set-up. Figure 8 shows
the temporal evolution of the dye at the same instants in time. The dye is still advected
by the meridional recirculation, leading to a dense region of dye on the axis. However,
the diffusion across streamlines is much faster, as the dye has spread over the whole
volume at t = 1000 and is completely homogeneous at t = 4000.

This enhanced mixing is due to the tongues of dye which appear on the lateral
walls due to the radial jets created at the top corners and advected along these walls
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(a) (b)

(c) (d)

FIGURE 8. Dye visualization at t = 0, 300, 1000, 4000. Here Re= 1000 and α = 5◦.
(Negative image of the green component.)

(see § 3.3). These tongues are advected by the flow to fill the bulk of the cylinder,
leading to a rapid homogenization of the dye within the whole cylinder. This is clearly
visible in figure 8(b).

4.3. Homogenization time
The mixing efficiency of the flow can be studied quantitatively by comparing the
p.d.f.s of dye concentration for two different tilt angles. These p.d.f.s are homothetic
to the p.d.f.s of intensity P(I) (i.e. the normalized number of pixels with an intensity
I) which are plotted in figure 9(a) because the dye concentration c is proportional to
the image intensity I. For α = 0, the p.d.f. contains a high and narrow peak at I = 10
corresponding to the regions without dye. But there is also a small and broad peak
at I = 200 corresponding to the region around the axis with a lot of dye. These two
peaks are separated by a large plateau indicating the inhomogeneity of the dye within
the volume. For α = 5◦, at the same time, there is a single peak at I ∼ 100 which
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FIGURE 9. (a) The p.d.f.s of the intensity of the images at t = 3200 for α = 0◦ (solid line)
and α = 5◦ (dashed line). (b) Temporal variation of the variance of the image intensity σ for
α = 0◦ (M) and α = 5◦ (©). Lines correspond to the fit (4.2). Re= 1000.

indicates that all parts of the cylinder have almost the same concentration of dye,
which is the sign of a mixed state.

As time evolves, each p.d.f. changes from two separated peaks (at zero and at the
initial injection concentration) to a single peak at the mean final concentration. The
mixing is thus well characterized by the broadness of the p.d.f.s, i.e. the standard
deviation σ of the intensity defined by

σ 2 = 〈(I − 〈I〉)2〉 =
∫

I2P(I) dI −
[∫

IP(I) dI)

]2

(4.1)

where 〈·〉 denotes the spatial average for r < 0.6 and z ∈ [0.1; 1.9]. The evolution of
the standard deviation is plotted in figure 9(b) for two different tilt angles. It is clear
that it decays exponentially in both cases after a small transient stage (although there
is a saturation of the standard deviation at late stages for α = 5◦, due to the noise
in the measurements). It is also clear that the decaying of the standard deviation is
much faster for α = 5◦ than for α = 0, which proves quantitatively that the mixing is
strongly enhanced by the tilted disc.

The decay of the standard deviation is very well fitted by a law

σ 2(t)= σ 2
0 e−2t/T + σ 2

noise (4.2)

which is plotted as lines on figure 9(b). This allows us to measure accurately the
homogenization time T (i.e. the decaying time of the standard deviation) for any
experiment. It should be noted that this homogenization time does not depend on the
amount of dye injected (which only modifies the multiplying factor σ0). It was also
checked that it is independent of the region taken to make the spatial average at late
stages. This can be understood by the fact that the dye concentration c is solution of a
linear equation (2.2) which admits at any time an infinite set of eigenmodes cn(r). For
α = 0, the flow is stationary such that it is the same eigenmode at any time and the
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FIGURE 10. Decaying time as a function of (a) the Reynolds number at α = 5◦ and (b) as a
function of the tilt angle α for all Reynolds number without vortex breakdown.

solution can be written

c(r, t)=
∑

Ancn(r)e−t/Tn (4.3)

where −1/Tn is the eigenvalue of the mode and An is the amplitude of the mode at
t = 0, which is given by the initial condition c(r, 0) =∑Ancn(r). It should be noted
that Tn is always positive because it is a diffusive process; it is actually equal to
2ReSc

∫
cn(r)

2 dr/
∫ |∇cn(r)|2 dr (see e.g. Toussaint et al. 2000). In an infinite medium,

there is an infinite number of eigenvalues such that Tn may not be bounded. This is
the case, for example, in the absence of velocity where a blob of scalar converges to a
Gaussian distribution whose variance decays as 1/t and not exponentially. However, in
a confined geometry, the small-scale cutoff imposed by diffusivity reduces the problem
to a finite-dimensional system, at least for two-dimensional flows (Haynes & Vanneste
2005). This permits one to define the maximum decaying time T1, which corresponds
to the dominant mode remaining at late stages since it is the least damped mode. This
means that at late stages, σ is equal to the standard deviation of c1(r) over the region
considered for the treatment of the images multiplied by A1e−t/T1 (if A1 6= 0). This
demonstrates that the homogenization time T is independent of the region considered
(unless c1(r) vanishes on this region). It also explains why the standard deviation σ
decreases exponentially. For α 6= 0, the flow is not stationary but periodic. The same
analysis can be done over each period, such that the result is still valid for integer
values of time. The standard deviation is thus an exponential decay multiplied by a
periodic function and −1/T1 corresponds to the Floquet multiplier.

The homogenization time T is plotted in figure 10(a) as a function of the Reynolds
number in the absence of vortex breakdown. It seems fairly constant around 1200 for
a tilt angle α = 5◦. This can be understood by the fact that the radial jets are stronger
but are damped quicker at smaller Reynolds numbers. These two effects annihilate
each other which leads to the independence of T with respect to Re.

The homogenization time is plotted in figure 10(b) as a function of the tilt angle
α for all Reynolds numbers (without vortex breakdown). It is clearly decreasing as a
function of α, and seems to be well fitted to by a law scaling as α−1. This shows
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that the homogenization time of this flow is strongly dependent on the tilt angle of the
rotating disc. But it poses a problem for the axisymmetric configuration with α = 0. In
fact, the homogenization time T saturates probably due to small imperfections in the
symmetry of the set-up or at least due to the molecular diffusion which gives an upper
bound equal to the Péclet number (Pe∼ 106 at these Reynolds and Schmidt numbers).

4.4. A simple model
It is possible to give an estimate of the homogenization time by calculating the amount
of concentrated dye which is ejected from the periphery to the bulk of the cylinder due
to the radial jets. Using the empirical formula (3.8) of the radial velocity, the inward
flux of fluid going from the periphery to the bulk can be calculated at r = 0.9 as

Φ =
∫ z=h

z=0
max(−ur, 0)r dθ dz' 0.27α(1− e−100Re−1/2h). (4.4)

This is valid for large Reynolds numbers when the radial jets are attenuated on a
length larger than the wavelength of the oscillation. Furthermore, when h is larger
than Re1/2/100 ' 0.3, the flux becomes independent of the Reynolds number, equal to
0.27 α. This explains why the homogenization time T is independent of the Reynolds
number. This flux creates an exchange between the volume Vp of the periphery at the
concentration cp and the bulk with a volume Vb at the concentration cb. It leads to two
coupled equations for cp and cb, whose solutions are exponentially decaying toward
the mean concentration with a characteristic time:

T = VbVp

Φ(Vb + Vp)
' 1.8h

α
. (4.5)

Here, Vb = 0.81πh and Vp = 0.19πh correspond to the volumes inside and outside
r = 0.9 and α is given in radians. This gives a correct scaling law for the
homogenization time as α−1 but this prediction is 30 times below the experimental
measurement plotted in figure 10(b).

It should be noted that the theory depends on the choice of the radius r at which
the flux is evaluated. However, when r is close to the cylinder, the radial velocity
vanishes such that Φ should be proportional to 1 − r. This seems to be the case
experimentally for r ∈ [0.85; 1] despite strong uncertainties in the PIV measurements
near the boundary. For r close to 1, the volume Vp ≈ 2π(1−r)h is proportional to 1−r
and much smaller than Vb such that T ≈ Vp/Φ is in fact independent of r. However,
for r smaller than 0.85, the velocity is smaller than its linear variation in 1 − r. This
would lead to an overestimation of the flux Φ in the theory which could explain why
the homogenization time T is smaller than in the experiment.

5. Mixing in the presence of vortex breakdown
5.1. Homogenization time

Figure 11 shows the evolution of the dye in the presence of vortex breakdown. The
images are completely different from the case without breakdown because the dye
is trapped inside the bubble. This creates a sharp interface between the bubble with
a strong concentration and the rest of the flow with a weak and homogeneous dye
concentration. This clearly shows that the streamline which delimits the bubble is
a barrier for transport since it prevents any advection across the streamline in the
axisymmetric case.
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(a) (b)

(c) (d)

FIGURE 11. Dye visualization at (a) t = 0, (b) t = 300, (c) t = 1000 and (d) t = 4000. Here
Re= 1900 and α = 5◦. (Negative image of the green component.)

As a consequence, the dye takes a very long time to escape the bubble, as shown
in figure 11. Indeed, even at t = 4000 (figure 11d), the dye is still concentrated within
the bubble although it would be completely homogeneous without vortex breakdown
at this tilt angle (see figure 8d). It is curious to see that the dye is able to enter the
bubble during the injection stage probably because the dye is extremely concentrated
at the hyperbolic point. This allows for a sufficient flux of dye toward the bubble
(due to the weak non-axisymmetric perturbations) before the dye is spread in the bulk
of the cylinder. The images are totally different if the dye is injected outside of the
bubble (with a black bubble surrounded by a weak uniform dye) although it leads to
the same homogenization time.

Figure 12 shows that the variance decays exponentially but with a characteristic
time much larger than in the absence of vortex breakdown. This is clearly shown in
figure 13(a) where the homogenization time T suddenly jumps by a factor of 3 at the
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FIGURE 12. Temporal variation of the variance of the image intensity σ in the presence of
vortex breakdown (Re= 1900). The solid line corresponds to the fit (4.2). Here α = 5◦.

T

Re

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 0 5 10 15

500

1000

1500

2000

2500

3000

3500

4000(a) (b)

FIGURE 13. Decaying time (a) as a function of the Reynolds number at α = 5◦ and (b) as a
function of the tilt angle α for Re= 1900.

onset of vortex breakdown (Rec = 1450). It is curious to see that the homogenization
time then decreases with the Reynolds number although the size of the bubble
increases. It seems that the homogenization time diverges for small bubbles. At
Re = 2500, the homogenization time has reached its value without vortex breakdown.
It then seems to increase from Re= 2500 up to Re= 3000, but the data are somewhat
noisy and should be interpreted carefully.

Figure 13(b) shows the dependence of the homogenization time T with the tilt angle
α of the rotating lid. It is curious to see that it only decreases by approximately 30 %
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(a) (b)

FIGURE 14. Dye visualization at t = 0 for (a) β = 2.6◦ and (b) β =−2.6◦. Here Re= 1900
and α = 5◦. (Negative image of the green component.)

(from 3000 to 2000) when the tilt angle α increases by a factor of almost 10 (from
2 to 15◦). Moreover, the data are quite noisy, as if the mixing was governed by some
imperfections of the experiment rather than the tilt angle α. Finally, it can be noted
by comparing figure 11(a,b) that the asymmetry of the vortex breakdown bubble is
stationary and that it does not rotate with the rotating lid. It is thus possible that the
asymmetries of the bubble are due to a weak angle β of the stationary lid, which is
well known to create large disturbances rather than the imposed tilt α of the rotating
disc. In order to check this assumption, the tilt angle β has been varied by ±2.6◦ with
a constant tilt angle α of 5◦. Figure 14 shows the structure of the bubble for these two
angles. It is clear that the asymmetry of the flow is governed by the tilt angle β and
not by the tilt angle α because the two images are symmetric to each other rather than
identical. Furthermore, figure 15 shows a large variation of the homogenization time T
by a factor of 10 when the tilt angle β is varied by only 2◦. It seems to be correctly
fitted to by

T = 1600
β − β0

, (5.1)

where β is given in degrees and β0 = −0.3◦ is a small angle due to the imperfections
of the experimental set-up. An accurate measurement of the shape of the cylinder
(from the images) indeed shows that there is probably a small angle of the order
of 0.2 ± 0.1◦. It is surprising to see that a small tilt angle β of the stationary lid
(of the order of 1◦) has more influence on the homogenization time T than a larger
tilt angle α of the rotating lid (of the order of 10◦). This result is in agreement
with the numerical study of Brons et al. (2007) who showed that the residence
time inside the bubble is extremely sensitive to the tilt angle β. They explained this
sensitivity by a decorrelation between the unstable manifold of the lower hyperbolic
point P and the stable manifold of the higher hyperbolic point Q. This creates some
undulations of these manifolds, responsible for the tongues visible in the visualizations
of figure 14, as described by Lopez & Perry (1992). In the following, we will try
to quantify these tongues and the mixing they generate using the Melnikov theory in
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FIGURE 15. Decaying time as a function of the tilt angle β of the bottom stationary disc for
Re= 1900. Here α = 5◦.

this three-dimensional stationary flow, as was done by Rom-Kedar et al. (1990) in a
two-dimensional flow with a periodic perturbation.

5.2. Melnikov theory on a model flow
We first need to model the flow as an axisymmetric bubble u0 together with a
perturbation flow βu1 proportional to the tilt angle. The axisymmetric flow, presented
in figure 16, exhibits a bubble located between two hyperbolic (and heteroclinic)
points P and Q on the axis, separated by 2ρ ' 0.36 at this Reynolds number (ρ
being the radius of the bubble). The angular velocity uθ/r varies between 0.1 and 0.2
between the lower part and the upper part of the bubble. However, this variation is
smaller when the size of the bubble decreases because viscous effects tend to smooth
the vorticity. As a consequence, the axisymmetric flow is modelled by the simplest
normal form which presents two hyperbolic points P and Q around z0 and has a
constant angular velocity ω. It can be written in cylindrical coordinates as

u0 = [−λr(z− z0), ωr, λ((z− z0)
2 − ρ2)+ ξr2]. (5.2)

In the following, z0 will be taken equal to zero which corresponds to changing the
origin of the z-axis. Close to the critical Reynolds number, λ, ξ and ω are constant but
ρ vanishes and it should be Taylor expanded to first order, leading to

ρ2 = ζ(Re− Rec). (5.3)

The constants are measured using the numerical simulations at Re= 1900, which gives
λ = 0.25, ξ = 0.17, ω = 0.15 and ρ = 0.18 (i.e. ζ = 7.2 × 10−5). It is well known
(Brons et al. 2007) that a small non-axisymmetric perturbation creates a difference
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FIGURE 16. (a) Axisymmetric flow u0 obtained numerically at β = 0. Solid lines correspond
to streamlines and greyscale to the angular velocity u0

θ/r. (b) Sketch of the stable manifold of
P and the unstable manifold of Q in the presence of a periodic perturbation superimposed on
the bubble flow u0. Here Re= 1900.

between the unstable manifold wu(Q) (i.e. all of the points coming from Q at t =−∞)
and the stable manifold ws(P) (i.e. all of the points ending in P at t = +∞). In
the frame of reference rotating with the bubble at ω, the trajectories remain in a
meridional plane, such that the problem reduces to a two-dimensional flow with a
periodic perturbation (due to the non-axisymmetric perturbation rotating at −ω). If
these manifolds intersect in a point ri, they will intersect an infinite number of times,
because a period 2π/ω later, ri is advected in ri+1, which thus belongs to both
manifolds wu(Q) and ws(P) (see figure 16b). As shown in figure 16(b), this leads
to an infinite number of intersection points which delimits lobes between the two
manifolds. Moreover, the grey lobe located between ri and ri+1/2 and delimited by the
two manifolds is advected a period 2π/ω later into the next grey lobe between ri+1

and ri+3/2. Finally, as noted by Rom-Kedar et al. (1990), the lobes come from the
inside of the bubble (i.e. above wu(Q) at Q) at t = −∞ and are advected outside of
the bubble (i.e. above ws(P) at P) at t = +∞. As a consequence, the volume of this
lobe corresponds exactly to the quantity of dye that exits the bubble during one period.
The goal of the calculation presented in the following is thus to calculate the volume
of this lobe as a function of the non-axisymmetric perturbation.

The perturbation βu1 due to the tilt angle has been evaluated numerically by
subtracting the velocity u0 obtained in a simulation at β = 0 from the velocity
u obtained in a simulation at β = 2◦. However, since these calculations are three-
dimensional and since the perturbation is small (because it is proportional to the small
tilt angle β) there is significant noise in the data. The radial profiles of velocity
are plotted in figure 17 at θ = ±45◦. The main effect of the tilt β is to create a
non-axisymmetric perturbation in the axial velocity w (solid line), related to a positive
(respectively negative) jet at θ = −45◦ (respectively, θ = 135◦). This can be modelled
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FIGURE 17. Numerical profile of the perturbation velocity u1 = u − u0 as a function of r
along a line oriented at θ =−45◦ (a) and θ =+45◦ (b) at z=−0.5 and β = 2◦. Dashed lines
correspond to ur, dash-dotted lines to uθ and solid lines to uz. Here Re= 1900.

locally as a shear oriented at θ 1, which leads to the velocity field for the perturbation:

u1 = (0, 0, γ r cos(θ − θ 1)), (5.4)

with θ 1 = 135◦ and γ = 0.02 if β is given in degrees.
The Melnikov theory is applied in the Appendix in order to calculate the distance

between the stable and the unstable manifolds wu(Q) and ws(P). For this purpose, the
problem is solved in the frame of reference rotating with the fluid at ω such that the
trajectories become two-dimensional. Moreover, we apply a change of variables from
(r, z) into (s = πr2, z) so that the two-dimensional flow becomes Hamiltonian. The
volume of the lobes is then easily evaluated such that the homogenization time can be
written analytically:

T =
√

2ρ3(λξ)3/2 cosh(πω/2λρ)
βγω(λ2ρ2 + ω2)

. (5.5)

The first consequence is that this homogenization time is indeed inversely
proportional to the tilt angle β. This simply comes from the fact that the size of
the lobes is proportional to β since the Melnikov theory is obtained to first order.
The second consequence (less trivial) is that the homogenization time scales as
T ∼ ρ3 cosh(πω/2ρλ) when ρ tends to zero, and it thus diverges when the size of
the bubble vanishes. This is exactly what has been observed experimentally since T
diverges when the Reynolds number gets close to the critical Reynolds number Rec. Of
course, there is a saturation of T due to the molecular diffusion when the size of ρ is
of the order of the diffusion length

√
T/ReS, which leads to a diffusive time

T = ρ2ReSc' 200(Re− Rec). (5.6)

This explains the rapid increase of the homogenization time at the onset of the
vortex breakdown. Finally, it explains why the perturbation due to the tilt angle α

of the rotating lid is less efficient than the angle β of the stationary lid. Indeed, the
tilted rotating lid creates a non-axisymmetric perturbation which rotates at an angular
frequency equal to 1 compared to the laboratory, i.e. at an angular velocity 1 − ω in
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the frame of reference rotating with the bubble (at ω). In formula (5.5), ω should thus
be replaced by 1 − ω when looking at the perturbation due to α. Since ω = 0.1, this
creates a term cosh[π(1 − ω)/2λρ] which is extremely large (1012 times larger than
for the tilt β). This explains why a large tilt α = 15◦ of the rotating lid has almost no
influence on the mixing across the bubble although a small tilt β = 1◦ of the stationary
lid has a large impact.

However, despite this qualitative agreement, the quantitative agreement is poor
because the numerical values lead to T = 250/β at Re = 1900 (when β is in degrees),
which is 6 times smaller than the experimental result. This could be due to the fact
that the concentration within the exiting lobe is not exactly equal to the concentration
within the bubble. Indeed, it contains some fluid coming from an incoming lobe at
earlier time. This entanglement is known to create a fractal structure in the absence of
molecular diffusion (see Rom-Kedar et al. 1990; Sotiropoulos et al. 2001). This has
not been observed here because the Schmidt number is not large enough. However,
this effect leads to a weaker escape rate of the scalar which could explain the
discrepancy between the experiment and the theory.

6. Conclusion

In this paper, we have presented an experimental and theoretical study on the mixing
properties of a helical flow in a motionless cylinder with a rotating end. It was
found that the axisymmetric flow is very inefficient for mixing such that any small
asymmetry completely governs the homogenization of the dye inside the cylinder.
Indeed, the homogenization time is always two orders of magnitude smaller than
the theoretical diffusive time R2/κ , because small imperfections of the experimental
set-up (here a small tilt of the bottom) create a convective mixing much larger than
the diffusive mixing. In order to quantify the influence of the symmetry breaking
on the mixing properties, the top ends have been tilted with controlled angles and
the homogenization time has been measured accurately as the decaying time of the
variance.

The mechanism for mixing strongly depends on the structure of the flow which
is well known to exhibit a vortex breakdown bubble for a finite range of Reynolds
numbers. In the absence of vortex breakdown, the tilt of the rotating disc induces some
inward radial jets at the periphery of the cylinder, which are advected by the mean
recirculation inside the bulk of the cylinder. As a consequence, the homogenization
time is three orders of magnitude smaller than the axisymmetric diffusive time for a
small tilt of only 10◦. The homogenization time is inversely proportional to the tilt
angle and independent of the Reynolds number. These scalings can be explained by a
simple model taking into account the flux of scalar between the periphery and the bulk
of the cylinder.

In the presence of vortex breakdown, the scalar is trapped within the bubble such
that the homogenization time is completely governed by the escape rate from the
bubble. Curiously, the tilt of the rotating lid has a weak impact on the mixing.
However, the tilt of the stationary lid has a very large influence. The homogenization
time is inversely proportional to the tilt angle and seems to diverge when the size of
the bubble vanishes. This surprising result can be predicted by using the Melnikov
theory to calculate the volume of the lobes which exit from the bubble. As far as we
know, this is the first comparison between an experiment and a theoretical derivation
of a mixing rate using the Melnikov function.
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It should be noted that this Melnikov theory has been usually applied for a
two-dimensional flow with a periodic perturbation. It is generalized here for a
three-dimensional axisymmetric stationary flow with a non-axisymmetric perturbation.
However, the angular velocity has to be assumed constant on the whole stable/unstable
manifold in order to restrict the problem to a two-dimensional flow in the rotating
frame of reference. The result is thus only asymptotically valid for small bubble sizes
(i.e. at the onset of vortex breakdown). The full solution could be calculated since the
Melnikov theory has been extended to n dimensions by Gruendler (1985) and applied
to a vortex breakdown flow by Holmes (1984). However, their calculation is more
difficult because the homogeneous problem ξ̇ = Du0(t)ξ has to be solved at any time.

Moreover, although this type of dynamics of a perturbation added to heteroclinic
points has been extensively studied in the absence of diffusion, there has never been
any result characterizing the effect of the diffusion. However, this effect might have
a large influence on the mixing properties. For example, it was shown here that the
fractal properties of the entangled lobes is not recovered because the diffusion is too
large. It would be interesting to quantify the cut-off at small-scale due to diffusion as
a function of the Schmidt number. Diffusion might also smooth the devil’s staircase
which is obtained in the number of particles trapped in the bubble. It might even
change the escape rate of the scalar. Indeed, for small diffusion, the time for the scalar
to exit the bubble is probably governed by the diffusion outside of a KAM torus
rather than outside of the bubble since the separatrix is indeed permeable due to the
perturbation. In fact, it is clear that there is a gap between the theories developed for
homogeneous turbulence with molecular diffusion but without flow structures and the
theories developed for dynamical systems with inhomogeneous flow structures but with
no diffusion. This paper is an attempt to reconcile the two domains. However, new
models still need to be developed in order to predict properly the mixing properties of
flows with heterogeneous structures.
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Appendix
The purpose of this appendix is to evaluate the volume Vl of the lobes between

the unstable and the stable manifolds of the hyperbolic points P and Q in the flow
u0 + βu1 given by (5.2) and (5.4). First, we need to study the problem in the frame of
reference rotating at ω such that the trajectories remain in a meridional plane, leading
to a two-dimensional problem with a periodic perturbation u1

z = γ r cos(ωt). Second,
we make a change of variable because the Melnikov theory can only be applied for
a flow which is Hamiltonian to first order. We thus use the surface s = πr2 instead
of the radial coordinate. Using the relation ds = 2πr dr, the trajectories (s(t), z(t)) are
solution of the flow:ds

dt
dz

dt

=(u0
s

u0
z

)
+ β

(
u1

s

u1
z

)
=
( −2λsz

λ(z2 − ρ2)+ ξ s

π

)
+ β

 0

γ

√
s

π
cos(ωt)

 . (A 1)
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To first order, this flow is Hamiltonian because

∂u0
s

∂s
+ ∂u0

z

∂z
= ∂(ru0

r )

r∂r
+ ∂u0

z

∂z
= 0. (A 2)

The Hamiltonian (which is called the streamfunction in fluid mechanics) defined by
us =−∂H/∂z and uz = ∂H/∂s is equal to

H(s, z)= λs(z2 − ρ2)+ ξs2

2π
. (A 3)

The Hamiltonian is equal to zero on the streamline joining the two hyperbolic points
P and Q, such that s = −2πλ(z2 − ρ2)/ξ . Introducing this relation in the flow to first
order leads to the differential equation ż= λ(ρ2− z2), which is easily integrated, giving
the trajectories to first order:

s0(t)= 2λ
ξ

πρ2

cosh(λρt)
, (A 4)

z0(t)= ρ tanh(λρt). (A 5)

The Melnikov function M(tc) can now be calculated and corresponds to the distance
D(tc) between the stable manifold of P and the unstable manifold of Q, multiplied by
the norm of the velocity (u0

s , u0
z ). This function is evaluated at t = 0 and at the point

(s0(tc), z0(tc)) where tc can be varied from −∞ to +∞. The Melnikov theory (see
Guckenheimer & Holmes (1983) for a demonstration) can be applied by following the
trajectory (s0(t − tc), z0(t − tc)) to first-order and leads to the simple result that it is
equal to

M(tc)= β
∫ +∞
−∞

u0[s0(t − tc), z0(t − tc)] × u1[s0(t − tc), z0(t − tc), t] dt (A 6)

where the cross-product u0 × u1 is equal to u0
s u1

z − u0
z u1

s . In our case, this formula is
simply written (using a change of variable τ = t − tc):

M(tc)=−β
∫ τ=+∞

τ=−∞
2λs0(τ )z0(τ )γ

√
s0(τ )

π
cos[ω(τ + tc)] dτ. (A 7)

This integral can be evaluated by splitting the cosine function and using the residue
theorem, which leads to

M(tc)= 2
√

2βγπ2ω(λρ2 + ω2) sin(ωtc)

3(λξ)3/2 cosh(πω/2ρλ)
. (A 8)

As noted by Rom-Kedar et al. (1990), this function completely governs the transport
across the streamline because the volume of the lobes is equal to

VL =
∫ ri+1/2

ri

D(tc) dl=
∫ ti+1/2

ti

M(tc) dtc (A 9)

since dl = ‖u0‖dt. Here ti, ti+1/2 are two consecutive times at which the manifolds
intersect (i.e. where M(t0)= 0); for example ti = 0 and ti+1/2 = π/ω. It should be noted
that this result was derived in two dimensions by Rom-Kedar et al. (1990); however, it
can be used in three dimensions here because the volume element 2πr dr dz is equal to
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the surface element ds dz by definition of s. The volume of each lobe is thus equal to

VL = 4
√

2βγπ2(λρ2 + ω2)

3(λξ)3/2 cosh(πω/2λρ)
. (A 10)

Finally, after each rotation period 2π/ω, each lobe has been translated from ri to ri+1,
such that the rate of scalar c which exits the bubble is equal to cVLω/2π. Since the
volume of the bubble is approximately equal to VB = 4πρ3/3, the conservation of the
scalar leads to VB dc/dt = VLω/2π such that the scalar c decreases exponentially with
a decaying time equal to

T = 2πVB

ωVL
=
√

2ρ3(λξ)3/2 cosh(πω/2λρ)
βγω(λ2ρ2 + ω2)

. (A 11)
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