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The flow-induced vibration of a sphere elastically mounted in the cross-flow direction
with imposed feedback rotation was investigated experimentally. The application
of rotation provides a means to exercise control over the vibration response of
axisymmetric three-dimensional objects. Both the rotational amplitude, which was
imposed in proportion to sphere transverse displacement, and the phase of the control
signal were varied over a broad parameter space comprising: a non-dimensionalised
proportional gain (0.5 6 K∗p 6 2); rotation phase (0◦ 6 φrot 6 360◦), which is the
phase between the applied sphere rotation and the transverse displacement; and
reduced velocity (3 6 U∗ 6 20). The corresponding Reynolds number range was
(3900 . Re . 25 800). The structural vibration, fluid forces and wake structure were
examined to characterise the effect of the imposed rotation. It was found that the
rotation not only altered the magnitude of the vibration response, either amplifying
or attenuating the response depending on operating conditions, but it also altered
the reduced velocity at which vibrations commenced, the vibration frequency and
periodicity and significantly altered the phase between the transverse fluid force
and displacement. It was possible to almost completely suppress the vibration in
the mode I, mode II and mode III transition regimes for imposed rotation over
the ranges 90◦ . φrot . 180◦, 15◦ . φrot . 135◦ and 0◦ . φrot . 120◦, respectively.
In particular, this could be achieved at effective rotation rates well below those
required by using open-loop control (Sareen et al., J. Fluid Mech., vol. 837, 2018,
pp. 258–292). Past the peak of mode II, a ‘galloping-like’ response, similar to that
reported by Vicente-Ludlam et al. (J. Fluid Mech., vol. 847, 2018, pp. 93–118) for
the circular cylinder, was observed with an increase in vibration amplitude of up to
368 % at the highest reduced velocity tested (U∗ = 20). Particle image velocimetry
measurements revealed a change in the timing and spatial position of the streamwise
vortex structures with imposed rotation. Contrary to what has been observed for the
circular cylinder, however, no de-synchronisation between vortex shedding and sphere
motion was observed.
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1. Introduction
Flow-induced vibration (FIV) is observed in a diverse range of engineering

applications. Traditionally, the primary concern for engineers has been the effect
of vibration on the structural integrity of objects. In particular, the potential for a
diminished usable life or critical failure of a structure poses a significant threat to
safety and may result in detrimental economic effects. This practical concern, along
with an interest in the fundamental fluid mechanics, has resulted in a broad literature
base that reveals, in detail, the physical mechanisms behind FIV. Predominantly,
the focus of past research has been the canonical case of the vibration response of
a circular cylinder. Reviews by Bearman (1984), Sarpkaya (2004) and Williamson
& Govardhan (2004) and books by Blevins (1990), Païdoussis, Price & de Langre
(2010) and Naudascher & Rockwell (2012) describe how a resonance between the
system response and the fluid forces results in the vibration of an object. Naudascher
& Rockwell (2012) defined three sources of excitation leading to vibration. Namely,
extraneously induced excitation, instability-induced excitation and movement-induced
excitation, the latter two of which are intrinsically linked to the fluid–structure
system and are of interest to this investigation. Instability-induced excitations are
most often a result of periodic vortex shedding from a structure. This is referred
to as vortex-induced vibration (VIV). Movement-induced excitation, as the name
suggests, arises due to movement of a structure. This movement may arise due
to an initial disturbance, which in turn results in self-sustained motion due to an
alteration of the fluid force on the structure over a vibration cycle (e.g. galloping).
The comprehensive knowledge base that researchers have developed on these forms
of FIV has allowed engineers to mitigate or even eliminate the vibration of many
structures.

More recently, researchers have also begun to investigate the potential to use FIV
as a method to extract energy from a flow. The predominant benefits often reported
are that energy can be extracted at flow speeds below those at which traditional fluid
energy harvesting devices, such as turbines, are efficient, and that the geometry of
FIV energy harvesting devices may make them more suitable to certain locations such
as rivers. The most well-developed energy generation device that harvests the power
of VIV is the vortex-induced vibration for aquatic clean energy (VIVACE) generator
outlined by Bernitsas et al. (2008). This device harnesses the power of VIV using
multiple circular cylinders constrained to one degree of freedom. Devices harnessing
the power of other FIV phenomena including flutter (Michelin & Doaré 2013) and
galloping (Hémon, Amandolese & Andrianne 2017) are also being researched as
potential candidates for efficient energy generation.

Although to a lesser extent than for the circular cylinder, the sphere geometry
has also been investigated to determine the physical mechanisms causing VIV of
three-dimensional geometries. The first to investigate the vibration response of a
sphere systematically were Govardhan & Williamson (1997) and Williamson &
Govardhan (1997). Prior to their investigations, it was unclear whether a tethered
sphere would substantially vibrate, given that the alternating vortex shedding driving
VIV of a circular cylinder does not occur in the sphere wake. They found that
a tethered sphere would indeed vibrate and that it would do so at amplitudes of
up to approximately one sphere diameter over a broad range of flow speeds. In a
similar manner to the work undertaken for a circular cylinder, Jauvtis, Govardhan
& Williamson (2001) described a series of vibration modes that could be observed
for a sphere. Mode I and mode II were defined as the regimes where resonance
was observed. The resonance occurs where the equivalent fixed-body vortex shedding
frequency remains close to the natural frequency of the oscillating system. For a
sphere, a significant change in timing of the fluid forcing occurs over the transition
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Feedback control of FIV of a sphere 889 A30-3

between the mode I and mode II regimes. Jauvtis et al. (2001) also identified mode III
and mode IV regimes that occurred over reduced velocity ranges of 20 . U∗ . 40
and U∗& 100, respectively, at least for high mass-ratio spheres. Lastly, they observed
that, at these higher reduced velocities, the primary vortex structures form at a much
higher frequency than the body oscillation frequency. In addition to the tethered
sphere, Govardhan & Williamson (2005) examined a sphere constrained to one
degree of freedom, free to oscillate transverse to the free-stream flow. They found
a similar amplitude response to the tethered case; the main difference being a
continuation of vibration in the transition from mode II to mode III regimes. Using
particle image velocimetry (PIV), Govardhan & Williamson (2005) were able to
visualise the formation of vortex loops in the wake of the vibrating sphere, likening
the generation of transverse lift, leading to vibration, to that of the lift generation
associated with aircraft wing-tip trailing vortices. Recently, numerical simulations
have shown that the resonant modes also occur at much lower Reynolds numbers
(Re∼ 1000), although at very low Reynolds numbers (Re∼ 300) only mode I appears
(e.g. Behara, Borazjani & Sotiropoulos 2011; Behara & Sotiropoulos 2016; Rajamuni,
Thompson & Hourigan 2018a,b). More recently, Eshbal et al. (2019) conducted
tomographic PIV measurements in the wake of a tethered sphere. They reported
the formation of ‘omega-shaped’ vortices, the legs of which merged as the vortex
structure convected downstream, transforming into a vortex ring as observed in dye
visualisations by Govardhan & Williamson (2005). They also identified a weak vortex
filament that connected the vortex ring to upstream vortex structures.

Given the implications of structural failure, or conversely the potential to harvest
energy from VIV, there is a clear motivation to manipulate the vibration response of
an object to our advantage. Several studies have investigated the potential for passive
control methods to suppress vibration. Helical strakes (Zhou et al. 2011), control
rods (Wu et al. 2012) and spanwise grooves (Law & Jaiman 2018) are examples of
methods that have been employed for the circular cylinder. Active control methods
have also been examined, examples include moving surface boundary-layer control
(Korkischko & Meneghini 2012), wake control cylinders (Silva-Ortega & Assi 2017),
suction and blowing (Wang et al. 2016) and body rotation (Wong et al. 2017, 2018;
Zhao et al. 2018). van Hout, Katz & Greenblatt (2013a) appear to be the first to
attempt to control the vibration response of a sphere. Using acoustic control, in the
form of speakers mounted to wind-tunnel walls, they imposed acoustic excitation at
approximately the shear-layer instability frequency, which amplified vibrations in the
mode III regime. Perturbing the flow at higher frequencies, they were able to almost
completely suppress vibrations in the mode I and mode II regimes. More recently,
Sareen et al. (2018a,b) implemented imposed rotation using a sphere constrained to
one degree of freedom. They found it more difficult to suppress vibration in the
mode I regime, where the vortex shedding frequency is close to the natural frequency
of the system. Implementing rotary oscillations, Sareen et al. (2018b) were able to
force body vibration to ‘lock-on’ to the imposed forcing frequency when the forcing
frequency was close to natural frequency of the system. In this ‘lock-on’ regime,
close to, but not at the natural frequency of the system, the vibrations were greatly
attenuated.

Whilst effective, the open-loop control strategies implemented by Sareen et al.
(2018a,b) have no direct coupling to the system dynamics. Rather, they relied on the
vortex dynamics naturally locking to the imposed forcing frequency. For a circular
cylinder, Vicente-Ludlam, Barrero-Gil & Velazquez (2018) were able to link imposed
forcing to the system dynamics by rotating the cylinder in proportion to either its
transverse position or velocity. By using feedback in proportion to displacement they
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889 A30-4 T. McQueen, J. Zhao, J. Sheridan and M. C. Thompson

were able to gain greater control over the vibration response for much of the reduced
velocity range examined. They were able to either amplify or attenuate the vibration
response by setting the proportional gain to rotate the leading side of the cylinder
with (negative) or against (positive) the direction of the free-stream flow. For large
negative gain values they observed a ‘galloping-like’ response and postulated that
the large-amplitude vibration was due to rotation-induced forces as opposed to being
driven by vortex shedding, as seen for the natural response. This was supported by the
observation that for the ‘galloping-like’ response, the frequency of vibration remained
close to the natural frequency of the system, whilst vortices were shed independently
at approximately the Strouhal number observed for an equivalent stationary cylinder.
Using a quasi-steady analysis, they estimated the minimum proportional gain value
required for a ‘galloping-like’ response, and showed that this response is not possible
for rotation in proportion to cylinder velocity.

Sareen et al. (2018a,b) demonstrated the potential to alter the vibration response
of three-dimensional structures by implementing open-loop control in the form of
imposed rotation of a sphere. For a two-dimensional cylinder, Vicente-Ludlam et al.
(2018) demonstrated that linking the instantaneous rotation to the system dynamics
enabled a greater degree of control over the vibration response. Therefore, the
first question to be addressed in this paper is: to what extent does linking the
imposed rotation to the system dynamics of a sphere enable control of the vibration
response? Vicente-Ludlam et al. (2018) implemented feedback control with positive
and negative gain terms in proportion to both cylinder displacement and velocity
separately. The imposed rotation can be related to the phase angle between applied
body rotation and transverse body displacement, which is referred to as the rotation
phase (φrot). For Vicente-Ludlam et al. (2018), this resulted in imposed rotation at
four distinct values: φrot = 0◦, 90◦, 180◦ and 270◦. From their study, it is evident
that altering the rotation phase can significantly alter the vibration response. From
a practical perspective, unlike the proportional gain term, altering the rotation phase
does not alter the required energy input. Therefore, optimising the rotation phase
offers an opportunity to enhance either vibration suppression or amplification without
increasing energy input to the system. As such, the second focus of this study is
to conduct a systematic investigation to determine the effect of varying the rotation
phase on the vibration response of a sphere.

The structure of the paper is as follows. In § 2 the experimental method and
rotation control laws are detailed, followed by a validation of the experimental set-up
in § 2.3. In § 3 the vibration response of a sphere with imposed rotation in proportion
to transverse displacement is presented. This is followed by a discussion on the effect
varying phase has on the vibration response. Finally, in § 4 the outcomes of the study
are summarised and concluding remarks presented.

Throughout this paper, the effects of imposed rotation are often compared to the
standard vibration response with no imposed rotation. Hereafter, the response of the
sphere with no imposed rotation will be referred to as the ‘natural’ response.

2. Experimental methodology
2.1. System modelling and control laws

The system studied here consists of an elastically mounted sphere that is free to
oscillate only in the direction transverse to the free-stream flow. Rotation (for control)
of the sphere is imposed about the axis perpendicular to the direction of free-stream
flow and the free-vibration axis. Figure 1 illustrates the fluid–structure interaction
set-up looking down along the rotation axis.
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Feedback control of FIV of a sphere 889 A30-5

x

y

U

m

Fy

k c

Dθ

FIGURE 1. Schematic of the experimental set-up highlighting the key parameters for the
transverse VIV of a rotating sphere. The hydro-elastic system is simplified as a one-degree-
of-freedom system constrained to move in the cross-flow direction. The axis of rotation
is perpendicular to both the free-stream flow direction (x-axis) and the oscillation axis
(y-axis). Here, U is the free-stream velocity, Fy is the transverse force, k is the spring
constant, D is the sphere diameter, m is the oscillating mass, c is the structural damping
and θ is the angular position of the sphere.

The governing equation of motion for transverse vibration can be expressed as

mÿ+ cẏ+ ky= Fy, (2.1)

where y is the displacement in the transverse direction, m is the oscillating mass of the
system, c is the structural damping, k is the structural stiffness and Fy is the transverse
force. Table 1 shows the relevant non-dimensional parameters for the study.

In this investigation, active control of cross-stream vibration was instigated through
controlled sphere rotation. In particular, the sphere was rotated in proportion to its
transverse displacement, y. Firstly, the rotation was imposed according to

θs =Kpy, (2.2)

where θs is the angular displacement of the sphere and Kp is the proportional
gain. Next, this control law was modified to allow a phase difference between the
instantaneous transverse displacement and the applied rotational displacement. To
construct this law, the Hilbert transform, H(y), of the displacement signal is first
evaluated in real time. The purpose of the Hilbert transform is to impart a −π/2
phase shift to the transverse displacement signal, i.e. y(φ − π/2) = H(y(φ)). This
provides a means of constructing a control signal with any desired phase shift,

θs =Kp[cos(φd)y+ sin(φd)(−H(y))], (2.3)

where φd is the required phase shift in radians, and H(y) is the Hilbert transform of
the transverse displacement signal, y. To implement this law in a real-time control
system, a Hilbert transform filter was designed in Simulinkr. Furthermore, using
the same notation as Vicente-Ludlam et al. (2018), the diameter of the sphere, D, is
introduced as a reference length so that the rotation law can be made dimensionless.
Thus, the two dimensionless rotation laws implemented are

θs =K∗p y∗ (2.4)
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Amplitude ratio A∗
√

2Arms/D
Damping ratio ζ c/

√
k(m+mA)

Frequency ratio f ∗ f /fn

Mass ratio m∗ m/md

Mass-damping parameter ξ (m∗ +CA)ζ

Reduced velocity U∗ U/fnD
Reynolds number Re ρUD/µ
Scaled normalised velocity U∗s (U∗/f ∗)S= fvo/f
Strouhal number S fvoD/U
Transverse force coefficient Cy Fy/(

1
8ρU2πD2)

Transverse force frequency ratio f ∗Cy
fCy/fn

TABLE 1. Relevant non-dimensional parameters. Here, A∗ is the root-mean-square value
of the vibration amplitude in the y direction, D is the sphere diameter, c is the structural
damping, k is the structural stiffness, m is the oscillating mass, mA = CAmd is the added
mass, md is the displaced mass of the fluid, CA is the added mass coefficient (0.5 for a
sphere), fn is the natural frequency of the system in quiescent water, fvo is the equivalent
fixed-body vortex shedding frequency, f is the body oscillating frequency and Fy is the
transverse fluid force acting on the sphere.

and
θs =K∗p [cos(φd)y∗ + sin(φd)(−H(y∗))], (2.5)

where y∗ = y/D is the non-dimensional transverse displacement and K∗p = KpD is the
normalised proportional gain. As an example, if K∗p = 1, φd = 0, and the sphere was
displaced one diameter in the positive y direction, the leading side of the sphere would
be rotated one radian towards the oncoming free-stream flow.

2.2. Experimental set-up
The investigation was conducted in the recirculating free-surface water channel of
the Fluids Laboratory for Aeronautical and Industrial Research (FLAIR) at Monash
University. The water channel has a working section of 600 mm in width, 800 mm
in depth and 4000 mm in length. The free-stream turbulence level is less than 1 %
over the flow-rate range investigated. During experiments, the free-stream velocity
was varied within the range 55 6 U 6 370 mm s−1. The sphere, which was subject
to VIV oscillatory forcing, was elastically mounted using a low-friction air-bearing
system situated above the water channel. The system provides low structural damping.
The structural stiffness was adjustable by modifying the type, quantity and position
of stainless-steel springs. A schematic of the experimental set-up is shown in figure 2.
For more details on the air-bearing system and its characterisation, refer to Nemes
et al. (2012) and Zhao et al. (2014). The 70 mm diameter sphere, CNC machined
from medium density precision modelling board (RenShape 460), was mounted
by a 3 mm hardened stainless-steel rod to a servo motor (Maxon Motor, EC-max
4-pole 22, equipped with a rotary encoder with a resolution of 5000 counts per
revolution). To minimise deflection of the rod with the imposed rotary oscillations,
a 6.35 mm stationary cylindrical shroud with a stainless-steel bearing and nylon
bushing supported part of its length. This provided stiffness to the mounting rod and
limited (Magnus) forcing that would be induced if the shroud rotated. The immersed
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U Springs

Rotor

Bearing

Bushing
Driving rod

Sphere

Guide shaft
Air-bearing system

Support structure

Side view Back view

U

Carriage

Shroud

Top view

FIGURE 2. Schematic of the experimental set-up for the current study.

length of the sphere was 1 D as recommended by Govardhan & Williamson (2005)
and Sareen et al. (2018c). The shroud extended 0.3 D below the free surface. The
diameter ratio between the (un-shrouded) rod and sphere was 23.3. Evidently, the
presence of the mounting rod will have some effect on the flow in proximity to the
sphere. As a necessity of the experimental set-up, a compromise between the need
to rigidly mount the sphere and minimise the influence of the mounting rod was
made. Sareen et al. (2018a) verified that the presence of a mounting rod (of the
same diameter ratio as used in this investigation) did not appreciably influence the
amplitude of the vibration. However, there may still be noticeable differences to the
wake structure. The Reynolds number range investigated is 165 . Re . 1100 for the
un-shrouded rod and 350 . Re . 2340 for the shrouded rod. Vortex shedding will
therefore occur for all reduced velocities investigated (Williamson 1996). van Hout
et al. (2018) performed detailed tomographic PIV measurements of a sphere with
a mounting rod (diameter ratio 6) immersed in a turbulent boundary layer. Whilst
they observed clear vortex shedding from the rod in proximity to the sphere, they
noted that the there was at least an order of magnitude less energy in the wake of
the rod in comparison to the sphere and that no distinct frequency peak associated
with the rod was observable in the sphere wake. Additionally, for a stationary sphere
with no mounting rod, vortex shedding occurs at random azimuths. However, when
a mounting rod is introduced, axisymmetry is broken and vortex shedding is more
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889 A30-8 T. McQueen, J. Zhao, J. Sheridan and M. C. Thompson

likely to occur at certain azimuths (Grandemange, Gohlke & Cadot 2014). Whilst it
is noted that the presence of the rod may affect the wake structures, this effect is
expected to be negligible in the context of this investigation.

The transverse displacement of the sphere was measured using a digital linear
encoder with a resolution of 1 µm (model RGH24; Renishaw, UK). As a result of
the highly accurate digital displacement measurements, it is possible to derive the
sphere velocity and acceleration with good accuracy. In turn, the lift force and phase
between lift and displacement can be determined. Zhao et al. (2018) and Sareen
et al. (2018a) have verified this methodology for the circular cylinder and sphere,
respectively, using the same air-bearing system and comparisons to independent
measurements of lift force obtained using a force balance. The mass ratio was
m∗ = 10.1. Free decay tests were conducted to determine the natural frequency and
structural damping ratio of the system in air and water. The natural frequency was
fna = 0.270 Hz in air and fn = 0.265 Hz in water. The structural damping ratio with
consideration of the added mass (see Govardhan & Williamson 2005) was found to
be ζ = 4.24× 10−3.

The rotation was implemented using Beckhoff Automation GmbH hardware and
Beckhoff TwinCATr 3 software. The system consisted of a coupler (model EK1100),
analogue input (model EL2124), digital input (model EL3124), encoder module
(model EL5001) and motor controller (model MAXPOS 50/5, Maxon Group). The
sampling rate of the system was 2 kHz. For imposed rotation implemented using
(2.4), the maximum observed phase lag between transverse displacement and desired
rotation angle was 1.5◦. For imposed rotation implemented using (2.5), a finite
impulse response filter was designed using the Simulinkr ‘Hilbert Filter’ block.
Due to the implementation of the filter and further filtering required to smooth the
output signal, an increase in maximum phase lag of up to approximately 8◦ was
observed in the worst case. The desired rotation phase, was adjusted prior to testing
to account for this delay in an approximate manner. However, all values of rotation
phase presented in this study were calculated during post-processing, thus the actual
rotation phase, may differ from the theoretical phase shift, φd, given in equation 2.5.
The Hilbert filter also slightly affected the amplitude of the output signal, causing
the sphere position to deviate from the desired value. A mean variation of 1.96 %
and standard deviation of 2.40 % were observed. Whilst the phase-shifted control
law (2.5) is able to accurately impose a specified phase shift, with small-amplitude
less-periodic vibrations, larger variations in the imposed rotation amplitude are seen.
Excluding data points where y/D < 0.1, the mean variation and standard deviation
of the vibration amplitude are reduced to 1.23 % and 1.25 %, respectively. Although
less than optimal, this level of accuracy was deemed suitable to show the trend of
the vibration response to phase variation. Perhaps unsurprisingly, where the signal
became highly non-periodic, for very small vibration amplitudes, the phase of the
displacement signal became unclear and it became difficult for the second control
law to determine the required sphere rotation.

To gain an insight into the wake dynamics, PIV was employed in the equatorial
(x–y) and the cross-stream (y–z) planes at x/D = 1.5. The flow was seeded using
hollow micro-spheres (model Sphericel 110P8; Potters Industries Inc.) with normal
diameter 13 µm and specific weight 1.1 g cm−3. A high-speed camera (Dimax S4,
PCO AG, Germany) with resolution 2016× 2016 pixel2 and a 105 mm lens (Nikkon,
Japan) was used in conjunction with a 5 W continuous laser (MLL-N-532 mm, CNI,
China) that produced a 3 mm thick laser sheet to capture the images. For the y–z
plane, a mirror was placed approximately 10D downstream of the sphere at 45◦
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Feedback control of FIV of a sphere 889 A30-9

to the free-stream flow. To capture large-amplitude oscillations in the y–z plane, a
field of view capturing only half the oscillation cycle was used. For the x–y, y–z,
and reduced field of view y–z planes respectively, the magnification factors were
6.62 pixel mm−1, 9.6 pixel mm−1 and 10.2 pixel mm−1. In-house cross-correlation
software, originally developed by Fouras, Lo Jacono & Hourigan (2008), was
used to correlate interrogation windows of size 32 × 32 pixel2 with an overlap
of 50 % to obtain the velocity fields. This corresponded to a velocity vector field of
125× 125 vectors for the x–y plane, and 125× 87 vectors for the y–z plane. Two sets
of data, comprising totals of 6200 image pairs for the x–y plane, and 8800 image
pairs for the y–z plane, were acquired at 10 Hz. Subsequently, the two out-of-plane
components of the vorticity field were calculated. The vector fields were phase
averaged by sorting them into 48 bins based on the sphere displacement. Each bin
consisted of at least 120 vector fields. Finally, the phase-averaged vorticity fields were
smoothed slightly using Gaussian smoothing to remove short length scale structures
highlighting the larger-scale structures, which are of interest to this study.

2.3. Validation
The experimental set-up was first validated by comparing results obtained without
imposed rotation to those of Govardhan & Williamson (2005) and Sareen et al.
(2018a). Sareen et al. (2018a), investigating imposed constant rotation on a sphere,
previously validated the experimental facility and as such only a brief (re-)validation
is presented here. Figure 3 compares the amplitude response of the sphere against
scaled normalised velocity (U∗s ) for the three studies. The amplitude response has
been plotted against U∗s = (U∗/f ∗)S to allow direct comparison to the previous
studies. Govardhan & Williamson (2005) demonstrated that plotting the amplitude
response against U∗s collapses data sets with varying mass-damping parameters well.
Two data sets from Govardhan & Williamson (2005) are used for comparison here:
m∗ = 7 with mass damping (m∗ + CA)ζ = 0.03; and m∗ = 53.7 with mass damping
(m∗ + CA)ζ = 0.92. The data set from Sareen et al. (2018a) has values of m∗ = 14.2
with mass damping (m∗ +CA)ζ = 0.021.

Good agreement can be seen between the instigation of the vibration response at
U∗s ≈ 0.87 and the subsequent trend of the response through mode I, mode II and
mode III transition regimes. For a sphere elastically constrained to one degree of
freedom, over the range of mass-damping parameters examined in figure 3, there
is no sharp distinction between the first two modes of vibration (although a slight
inflection is visible in the response curve at U∗s ' 1.25). Rather, a slow change in
vortex phase from approximately 40◦ to 160◦ distinguishes modes I and II (Govardhan
& Williamson 2005). The peak amplitude response is observed in the mode II regime,
where the phase between transverse displacement and the fluid force acting on the
body, termed total phase (φtotal), rises to 90◦. Past the peak of mode II, there is
a transition region where the response becomes less periodic and the amplitude
plateaus. As discussed by Govardhan & Williamson (2005) and Sareen et al. (2018a),
the differences in the amplitude response between studies may be attributed to the
difference in experimental conditions; primarily the difference in mass ratio and
structural damping.

3. Results
To determine the effect of sphere rotation in proportion to transverse displacement,

the two control laws detailed in § 2.1 were implemented. Firstly, as per equation (2.4),
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0
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0.6
A*

0.8 Mode I

Mode II

Mode III
transition

0.5 1.0 1.5 2.0

U*
s

2.5 3.0

FIGURE 3. Comparison of the vibration response for a non-rotating sphere undergoing
VIV. The blue circles (E) show the results from the current study with (m∗ + CA)ζ =
0.045; the triangles (A) show the results from Govardhan & Williamson (2005) with (m∗+
CA)ζ = 0.03; the diamonds (6) show the results from Govardhan & Williamson (2005)
with (m∗ + CA)ζ = 0.92 (with m∗ = 53.7); the squares (@) show the results from Sareen
et al. (2018a) with (m∗ +CA)ζ = 0.021.

rotation was imposed with both the leading side (in the transverse direction) of the
sphere moving against (φrot= 0◦) and with (φrot= 180◦) the oncoming free-stream flow,
over the range 36U∗6 20. Secondly, to determine the effect of varying φrot, rotation
was implemented according to (2.5) over the range 0◦ 6 φrot 6 360◦ in the mode I
(U∗ = 6), mode II (U∗ = 10) and mode III transition (U∗ = 14) regimes. For both
rotation laws, proportional gain values of K∗p = 0.5, 1, 2, and 4 were investigated.

3.1. Control imposed with a rotation phase of 0◦

To develop an understanding of the potential effect of imposed rotation on the
vibration response of a sphere, it is worthwhile to first consider the isolated
contribution of the Magnus effect induced by the imposed rotation over a vibration
cycle. Put succinctly, the Magnus effect results in a lift force perpendicular to the
axis of rotation, in the direction of the side of the sphere rotating with the free-stream
flow (retreating side). The effect occurs due to the addition of momentum near the
surface of the sphere, reducing the adverse pressure gradient on the retreating side
which delays separation, whilst conversely increasing the adverse pressure gradient
on the advancing side which promotes separation. The resultant pressure difference
over the sphere produces a force in proportion to the Reynolds number and rotation
ratio, α = ΩD/(2U), with Ω the angular velocity, at least for small to moderate α.
For certain flow conditions (Re∼ 105), a force in the opposite direction is generated;
this is referred to as the ‘negative’ or ‘inverse’ Magnus effect. It is not expected that
the inverse Magnus effect would be encountered over the Reynolds number range
investigated in this study (Kim et al. 2014). Indeed, even for the normal Magnus
effect, there has been little research conducted on it over the Reynolds number range
of the current study. Notably, Tsuji, Morikawa & Mizuno (1985) collated past results
in the range Re < 1 to Re = 1.1 × 105 and conducted their own experiments over
the range 5.50 × 102 6 Re 6 1.60 × 103. In addition, various numerical studies (e.g.
Giacobello, Ooi & Balachandar 2009; Poon et al. 2010; Dobson, Ooi & Poon 2014;
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Feedback control of FIV of a sphere 889 A30-11

Rajamuni et al. 2018b) have documented the effect for Re6 1000. Over this relatively
low Reynolds number range of the current study, and the range of rotation ratios
implemented, it is expected that the lift force due to the Magnus effect will increase
monotonically with increasing rotation ratio. As a result, for rotation at φrot = 0◦,
the force from the Magnus effect is expected to be 90◦ out of phase with sphere
transverse displacement, with the peak force occurring at y/D = 0 in the direction
opposite to the motion of the sphere. Therefore, if the Magnus effect were to act in
isolation, it is expected that the amplitude of sphere vibration would be reduced for
φrot = 0◦.

Figure 4 shows key characteristics of the vibration response of the sphere for the
four proportional gain values investigated at φrot = 0◦. Commencing with the mode I
response, it is apparent from figure 4(a) that the imposed rotation alters the reduced
velocity at which the vibration is instigated. As previously discussed, it is expected
that the Magnus effect due to the imposed rotation would suppress vibration. However,
increasing the proportional gain results in a reduction in the reduced velocity at which
the vibration is instigated, down to U∗ = 4 for K∗p = 4, the largest proportional gain
tested. Over this regime, the vibrations occur close to the natural frequency of the
system (figure 4b), there is a sharp increase in the root-mean-square (r.m.s.) transverse
force coefficient, Cy, where the vibration is instigated, as for the natural response
(figure 4c), and the total phase remains close to that observed for the natural response
(figure 4d).

Figure 5 shows sample time traces of the transverse displacement and force
coefficient at U∗= 4 for the natural response and at U∗= 5.25 with imposed rotation
(K∗p = 4). As observed for the natural response in the mode I regime, with imposed
rotation, the fluid force acting on the sphere is highly periodic and it is evident that
the total phase is close to 0◦. The time trace and power spectral density (PSD) plots
of the transverse force coefficient from figure 5 highlight the similarity between the
two responses, suggesting the imposed rotation promotes early onset of the mode I
response as opposed to a new mode of vibration. Furthermore, if the vibration was
instigated due to a Magnus force like effect, then it would be expected that, as a
minimum, an inflection in the trace of transverse force coefficient (figure 5c) would be
observed at y/D= 0 where the Magnus effect is expected to be maximum. Rajamuni
et al. (2018b) imposed constant rotation to a sphere constrained to one degree of
freedom. They found that with the leading side of the sphere, in the transverse sense,
rotating towards the oncoming free stream, the vortex street that developed either
diminished in strength or was suppressed completely. Therefore, in this study, where
for φrot = 0◦ the leading side of the sphere is always rotating towards the oncoming
free stream, it was expected that the strength of the lift-inducing streamwise vortex
structures would reduce. Rather, it is suspected that as the imposed rotation is linked
to the system dynamics, periodic vortex shedding is promoted, enabling earlier onset
and expansion of the resonance vibration regime.

At higher reduced velocities, perhaps the most notable feature of the amplitude
response shown in figure 4(a), is that the imposed rotation results in an attenuation
of the maximum vibration amplitude. For the proportional gain values investigated,
a maximum reduction in the peak vibration amplitude of 44 % was observed. It is
also evident that the peak amplitude response occurs at lower reduced velocities with
increasing proportional gain and that higher proportional gain values are associated
with a broader peak vibration region. Govardhan & Williamson (2005) showed that the
mode II regime is associated with the total phase transitioning through 90◦. As can be
seen in figure 4(d), the imposed rotation causes the total phase to transition from close
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FIGURE 4. Response of the sphere with imposed rotation at φrot= 0◦ as a function of U∗
for K∗p = 0.5, 1, 2 and 4. (a) Variation of vibration amplitude, A∗. (b) Dominant vibration
frequency obtained from the power spectrum of transverse sphere position. (c) Variation of
the r.m.s. transverse force coefficient, Cy. (d) Variation of total phase, φtotal. (E, blue) K∗p =
0, (E, black) K∗p = 4, (@) K∗p = 2, (A) K∗p = 1, (6) K∗p = 0.5. Note that φtotal is presented
in degrees.

to 0◦ through 90◦ at a lower reduced velocity. This, along with the decreased reduced
velocity at peak vibration, implies that the mode II regime is shifted to increasingly
lower reduced velocities with increasing proportional gain. Interestingly, the vibration
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FIGURE 5. Variation in the characteristics of Cy with imposed rotation in the mode I
regime. (a,b) Natural response at U∗ = 4. (c,d) Response with K∗p = 4 and φrot = 0◦ at
U∗ = 5.25. (a,c) Time traces of sphere displacement (black line) and Cy (orange line).
The horizontal axis shows time non-dimensionalised by the oscillation period, τ = t/T .
(b,d) Power spectrum of Cy as a function of f ∗. Black dashed lines represent the vibration
frequency of the sphere and higher harmonics. Note that for (a,c) the scale of y/D and
Cy has been adjusted for each plot to aid comparison.

frequency remains at f ∗≈ 1.03 at the peak of the mode II response for all proportional
gain values investigated (figure 4b).

For the sphere to undergo sustained vibration, there must be a net energy transfer
from the fluid to the sphere over a vibration cycle. A net energy transfer can only
occur with 0◦ < φtotal < 180◦. For a given transverse force coefficient, the maximum
energy transfer occurs with φtotal= 90◦, and reduces to zero at φtotal= 0◦ and 180◦. So
increasing the proportional gain, which causes the total phase to transition closer to
φtotal= 180◦ in the mode II regime, reduces the potential for net energy transfer to the
sphere.

Over the range 4 . U∗ . 12, the imposed rotation noticeably alters the transverse
force coefficient (figure 4c). The minimum in the transverse force coefficient, which
is observed close to the peak of the mode II regime, remains almost constant for
all proportional gain values. Past the peak of the mode II regime, there is a second
maximum in the transverse force coefficient seen. The magnitude of the second
maximum increases significantly with proportional gain. Considering the magnitude
of the transverse force coefficient in conjunction with total phase, it is evident that
the net energy transfer to the sphere remains relatively constant over a broad range of
reduced velocities. This in turn may explain the relatively constant, and increasingly
broad, peak vibration region seen with increasing proportional gain. Figure 6, which
shows time traces of the transverse displacement and force coefficient at U∗= 10, for
the natural response and with imposed rotation (K∗p = 4), highlights how the imposed
rotation continues to promote a highly periodic transverse force response past the
mode I regime.

At U∗ ≈ 12, there is a distinct change in the response of the sphere for the
largest proportional gain, K∗p = 4, which is visible across the range of vibration
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FIGURE 6. Variation in the characteristics of Cy with imposed rotation in the mode II
regime (U∗ = 10). (a,b) Natural response. (c,d) Response with K∗p = 4 and φrot = 0◦.
(a,c) Time traces of sphere displacement (black line) and Cy (orange line). The horizontal
axis shows time non-dimensionalised by the oscillation period, τ = t/T . (b,d) Power
spectrum of Cy as a function of f ∗. Black dashed lines represent the vibration frequency
of the sphere and higher harmonics. Note that for (a,c) the scale of y/D and Cy has been
adjusted for each plot to aid comparison.

characteristics examined in figure 4. Here, the steepest decline in vibration amplitude
is observed (figure 4a), there is a step change in the vibration frequency (figure 4b),
a rapid reduction in the transverse force coefficient (figure 4c) and, lastly, an abrupt
reduction in total phase (figure 4d). It is conjectured that the periodicity promoted
by the imposed rotation can no longer be sustained as the equivalent fixed-body
(i.e. stationary sphere) vortex shedding frequency increases, moving further from the
natural vibration frequency of the system. Consequently, the Magnus effect begins to
dominate and the amplitude response is further reduced. In figure 4(d) it can be seen
that total phase falls close to 90◦ at U∗ ≈ 12, and that it slowly decreases further at
a similar rate to the natural response. In stark contrast to figures 5 and 6, figure 7
reveals a significantly decreased periodicity with imposed rotation.

Further to the reduction in periodicity of the transverse force as reduced velocity
increases, a similar reduction is seen in the displacement response. To quantify this
change, the definition of periodicity used by (Jauvtis et al. 2001) is adopted here.
Periodicity is defined as P=

√
2yrms/ymax, noting it attains a value of unity for a purely

sinusoidal signal and reduces in value for a less periodic signal. Figure 8 shows a
reduction in the periodicity of the sphere displacement with imposed rotation at φrot=

0◦. When proportional gain is set to larger values, the magnitude of this reduction is
increased and it begins to occur at lower reduced velocities.

In an effort to compare the magnitude of the imposed rotation to the open-loop
control studies of Sareen et al. (2018a,b), the mean effective velocity ratio, α∗r =
ΩmaxD/(2U), where Ωmax is the maximum angular velocity over a vibration cycle,
was calculated. As can be observed from figure 9, a significant benefit of the
feedback control is that as the amplitude of imposed rotation is linked to the sphere
displacement; when the vibrations are suppressed, the amplitude of the imposed
rotation reduces in proportion. Consequently, past the peak of mode II, where the
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FIGURE 7. Variation in the characteristics of Cy with imposed rotation in the mode III
transition regime (U∗ = 13). (a,b) Natural response. (c,d) Response with K∗p = 4 and
φrot = 0◦. (a,c) Time traces of sphere displacement (black line) and Cy (orange line).
The horizontal axis shows time non-dimensionalised by the oscillation period, τ = t/T .
(b,d) Power spectrum of Cy as a function of f ∗. Black dashed lines represent the vibration
frequency of the sphere and higher harmonics. Note that for (a,c) the scale of y/D and
Cy has been adjusted for each plot to aid comparison.
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FIGURE 8. Periodicity of the sphere displacement as a function of U∗. (E, blue) K∗p = 0,
(E, black) K∗p = 4, (@) K∗p = 2, (A) K∗p = 1, (6) K∗p = 0.5. The dashed line represents a
purely sinusoidal signal.

vibrations are significantly suppressed, the largest proportional gain value investigated,
K∗p = 4, has a very small effective velocity ratio (α∗r < 0.1).

3.2. Control imposed with a rotation phase of 180◦

As may be expected, the amplitude response for φrot = 180◦ is loosely inverse to that
for φrot = 0◦. Overall, there is a slightly delayed instigation of the vibration for large
proportional gains, an attenuation of vibration in the mode I regime and a monotonic
increase from near the peak of the mode II regime onwards.

Figure 10 shows key characteristics of the vibration response of the sphere with
φrot = 180◦ for the four proportional gain values investigated. The amplitude response
of the sphere is shown in figure 10(a). For the natural response, the vibration
commences suddenly at U∗ = 5.25, with the amplitude of vibration increasing from
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FIGURE 9. Mean velocity ratio, α∗r , as a function of U∗. (E) K∗p = 4, (@) K∗p = 2,
(A) K∗p = 1, (6) K∗p = 0.5.

A∗ = 0 to A∗ = 0.37. With increasing proportional gain, the magnitude of the initial
vibration is increasingly attenuated. For the highest proportional gain tested, K∗p = 4,
the vibration response increases slowly, and relatively linearly, up to U∗ = 8.5. For
U∗.9, the total phase remains close to 0◦ for all proportional gain values (figure 10d),
although there is a significant variation in the transverse force coefficient as shown
in figure 10(c). Over this regime, as shown in figure 10(b), the vibration frequency
is reduced, particularly for K∗p = 4.

As discussed in § 3.1, at low reduced velocities it appears that the imposed rotation
promotes a highly periodic transverse force signal. For φrot=0◦, this in turn resulted in
highly periodic vibration. However, it was noted that the vibration was not anticipated
given the expected direction of the Magnus effect. Here, for φrot = 180◦, it was
expected that the Magnus effect would contribute to increased vibration. Evidently,
this did not occur. As can be seen from figure 11, the imposed rotation results
in a highly periodic, albeit attenuated, transverse force signal. The combination of
attenuated transverse force and shift in total phase closer to 0◦, results in a reduction
in the net energy transfer to the sphere over a vibration cycle in the mode I regime.

Whereas for φrot = 0◦ and K∗p = 4, U∗ ≈ 12 marked a change in the characteristics
of the vibration response, for φrot = 180◦, U∗ ≈ 9 marks a distinct change in the
response for all proportional gain values. At U∗≈ 9, prior to the peak of the mode II
response seen with no imposed rotation, the amplitude of vibration for all proportional
gain values investigated switches from an attenuated to an amplified response. Here,
U∗ ≈ 9 coincides with the sharp increase in total phase seen for the natural response.
From U∗ ≈ 9, for K∗p > 1, the vibration response increases monotonically well above
the amplitude observed with no imposed rotation. A similar trend was observed
for a sphere (Sareen et al. 2018b) and circular cylinder (Zhao et al. 2018) with
imposed open-loop rotary oscillations, and for a circular cylinder with feedback
control (Vicente-Ludlam et al. 2018). This type of response has been labelled as
‘rotation-induced’ vibration, a result of the imposed rotation dominating the natural
vortex shedding, causing a ‘galloping-like’ response. It is evident from figure 12 that
over the rotation-induced vibration regime, the periodicity of the vibration approaches
unity as proportional gain is increased.

As shown in figure 13, for U∗ . 9, the frequency spectrum of transverse force
consists of a single distinct peak at f ∗Cy

= 1. Above U∗ ≈ 9, harmonics of f ∗ begin to
appear, and by U∗ = 20 the spectrum is dominated by vibration at f ∗ = 3. Figure 14
highlights how the frequency response of the transverse force coefficient is dominated
by the second harmonic of vibration frequency at U∗ = 20.
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FIGURE 10. Response of the sphere with imposed rotation at φrot = 180◦ as a function
of U∗ for K∗p = 0.5, 1, 2 and 4. (a) Variation of vibration amplitude, A∗. (b) Dominant
vibration frequency obtained from the power spectrum of transverse sphere position.
(c) Variation of the r.m.s. transverse force coefficient, Cy. (d) Variation of total phase, φtotal.
(E, blue) K∗p = 0, (E, black) K∗p = 4, (@) K∗p = 2, (A) K∗p = 1, (6) K∗p = 0.5. Note that φtotal
is presented in degrees.

As can be seen from figure 10(b), there is minimal variation in the vibration
frequency for φrot = 180◦. Vicente-Ludlam et al. (2018) reported that for the circular
cylinder, the imposed feedback control resulted in the vibration frequency remaining
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FIGURE 11. Variation in the characteristics of Cy with imposed rotation in the mode I
regime (U∗ = 6). (a,b) Natural response. (c,d) Response with K∗p = 4 and φrot = 180◦.
(a,c) Time traces of sphere displacement (black line) and Cy (orange line). The horizontal
axis shows time non-dimensionalised by the oscillation period, τ = t/T . (b,d) Power
spectrum of Cy as a function of f ∗. Black dashed lines represent the vibration frequency
of the sphere and higher harmonics. Note that for (a,c) the scale of y/D and Cy has been
adjusted for each plot to aid comparison.
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FIGURE 12. Periodicity of the sphere displacement as a function of U∗. (E, blue) K∗p = 0,
(E, black) K∗p = 4, (@) K∗p = 2, (A) K∗p = 1, (6) K∗p = 0.5. The dashed line represents a
purely sinusoidal signal.

constant close to f ∗ = 1 in the rotation-induced vibration regime. Likewise, for
φrot = 180◦, above U∗ ≈ 9 where rotation-induced vibration is observed, the vibration
frequency remained close to constant, slightly below that observed for the natural
response. Over this regime, where the vibration response was amplified, the total phase
progressively deviates from the trend seen for the natural response as proportional
gain increases (figure 10d). For K∗p = 4, the total phase increases monotonically up to
φtotal = 76◦ at U∗ = 20.

Once again, comparing the velocity ratio values to those for open-loop rotary
control (Sareen et al. 2018a), we find that the feedback control provides a more
efficient means to amplify the vibration (figure 15). Whilst not directly attempting
to optimise the amplification of vibration, Sareen et al. (2018a) did present results
with imposed rotary oscillations at a frequency 1.1 times the natural frequency of the
system with α∗r = 1, resulting in a vibration amplitude of A∗ = 1 at U∗ = 20. Here,
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FIGURE 13. Frequency PSD contour plots of Cy against U∗. (a) Natural response;
(b) φrot = 180◦ and K∗p = 4. The spectral power is normalised by the maximum value at
each U∗ and is presented on a log10 scale.
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FIGURE 14. Variation in the characteristics of Cy with imposed rotation in the mode III
transition regime (U∗ = 20). (a,b) Natural response. (c,d) Response with K∗p = 4 and
φrot = 180◦. (a,c) Time traces of sphere displacement (black line) and Cy (orange line).
The horizontal axis shows time non-dimensionalised by the oscillation period, τ = t/T .
(b,d) Power spectrum of Cy as a function of f ∗. Black dashed lines represent the vibration
frequency of the sphere and higher harmonics. Note that for (a,c) the scale of y/D and
Cy has been adjusted for each plot to aid comparison.

we have two comparable data points at U∗ = 20; imposed rotation with K∗p = 2 and
α∗r = 0.51 resulting in A∗ = 1.27, and imposed rotation with K∗p = 4 and α∗r = 1.30
resulting in A∗ = 2.1.
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FIGURE 15. Mean amplitude ratio, α∗r , as a function of U∗. (E) K∗p = 4, (@) K∗p = 2, (A)
K∗p = 1, (6) K∗p = 0.5.

3.3. Effect of phase variation
In §§ 3.1 and 3.2, the effect of rotation at φrot = 0◦ and φrot = 180◦ was examined. It
was shown that varying the rotation phase significantly altered the vibration response
of the sphere. To determine how the vibration response evolves over the range 0◦ 6
φrot 6 360◦, in this section the second control law (2.5) is implemented. In this study,
the rotation phase is varied in 15◦ increments for K∗p = 0.5, 1, 2 and 4 at reduced
velocities of U∗ = 6, 10 and 14 corresponding to mode I, mode II and mode III
transition regimes for the non-rotating sphere.

3.3.1. Mode I
Figure 16 shows key characteristics of the vibration response of the sphere for the

four proportional gain values investigated over the range 0◦ 6 φrot 6 360◦ at U∗ = 6.
The amplitude response of the sphere is plotted in figure 16(a). Due to the complex
response over 90◦ 6 φrot 6 180◦, measurements were acquired in 5◦ increments in
this range. For all proportional gain values investigated there is no amplification of
the vibration amplitude. For K∗p 6 1 there is a moderate reduction in the amplitude
response over the range 150◦ . φrot . 360◦. For larger gain values, K∗p > 2, there is
significant variation in the vibration response over the full range of rotation phase.
The maximum response for K∗p > 2 is seen close to φrot ≈ 0◦, with the minimum, a
reduction of up to 97 % for K∗p = 4, observed between 90◦ . φrot . 165◦.

Coincidentally, the choice of K∗p = 2 reveals a highly sensitive region of the
vibration response. For K∗p = 2, a ‘lobe’ can be observed between approximately
120◦ . φrot . 150◦. Within this lobe the vibration is only moderately suppressed,
whilst to each side of the lobe, the vibration is nearly completely suppressed. Further
testing over this region, not presented here, revealed that particularly for 90◦ .
φrot . 120◦ and to a lesser extent for 150◦. φrot . 170◦, the amplitude response takes
a significant time to stabilise. Over the vast majority of the parameter space examined
in this study, the vibration typically stabilised within one minute (∼16 vibration
cycles). However, over this sensitive region the vibrations took approximately ten
minutes (∼162 vibration cycles) to stabilise. Over 90◦ . φrot . 150◦ the amplitude of
vibration varied significantly with small changes in K∗p . At φrot ≈ 105◦ the vibration
was most sensitive between 1.75. K∗p . 2. This rose to 2.K∗p . 2.25 for φrot ≈ 135◦,
and fell to 1.5 . K∗p . 1.75 for φrot ≈ 150◦.

For K∗p 6 2 there is minimal variation in the vibration frequency (figure 16b). For
K∗p = 4, however, there is a step change in the vibration frequency at φrot = 135◦,
which occurs over the region where the lobe is observed in the amplitude response.
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FIGURE 16. Response of the sphere in the mode I regime (U∗= 6) with imposed rotation
over the range 0◦ 6 φrot 6 360◦ (polar angle) for four proportional gain values K∗p =
0.5, 1, 2 and 4. Radius shows (a) A∗, (b) f ∗, (c) Cy and (d) φtotal. In (a–d) (u) K∗p = 4,
(p) K∗p = 2, (q) K∗p = 1, (f) K∗p = 0.5. (e, f ) PSD contour plots of f ∗ and f ∗Cy

, respectively,
for K∗p = 2. The spectral power is normalised by the maximum value at each φrot and is
presented on a log10 scale. The black dashed line represents the natural response.
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For K∗p > 2, figure 16(c) shows a point of relatively sharp change in the magnitude
of the transverse force coefficient. This point occurs at φrot = 135◦ for K∗p = 2, and
φrot = 60◦ for K∗p = 4, where a corresponding sharp change in amplitude response was
observed. Figure 16(d) reveals a consistent pattern in the variation of total phase. For
all proportional gain values investigated, the maximum total phase is located at 60◦.
From approximately 150◦. φrot . 330◦, total phase is reduced below that observed for
the natural response. Whilst this pattern was consistent for all proportional gain values
tested, at least from examination of the data obtained, there appears to be correlation
between changes in total phase, Cy, and the amplitude response in this instance as one
might expect.

Figure 16(e, f ) shows PSD contour plots of the frequency of sphere transverse
displacement and transverse force respectively. Over the region of amplitude
sensitivity, 120◦ . φrot . 150◦, for K∗p = 2, the vibrations remain periodic with the
spectral power concentrated close to the natural frequency of the system. Similarly,
the spectral power of transverse force remains highly periodic over the central
portion of the sensitive region, with a broader frequency response seen at φrot = 105◦.
Figure 16( f ) also reveals a broad range of spectral power for the transverse force,
centralised around φrot = 60◦ where significant changes in total phase were observed
in figure 16(d).

3.3.2. Mode II
Previous studies implementing open-loop control for a sphere undergoing VIV have

found it most difficult to alter the vibration response at the peak of the mode II
regime (Sareen et al. 2018a,b). Figure 17 shows the response of the sphere with
imposed rotation in the mode II regime (U∗ = 10). The imposed rotation results in
a slight increase in the vibration amplitude, for all proportional gain values, over
the range 165◦ . φrot . 300◦ (figure 17a). Conversely, the vibrations are attenuated
between 315◦. φrot . 135◦. The maximum attenuation for all proportional gain values
is observed at φrot≈ 60◦. It is not immediately obvious why this maximum attenuation
occurs at this phase angle. Here, the transverse force is only slightly attenuated over
the region 45◦ . φrot . 120◦ (figure 17c). Additionally, there is no clear trend in
total phase suggesting a particular amplitude response (figure 17d). At φrot ≈ 60◦, for
K∗p > 2, the total phase is reduced well below that for the natural response, whilst for
K∗p 6 1, total phase is increased.

As can be seen from figure 17(e), for K∗p =4, where the vibrations are amplified, the
spectral power is concentrated at f ∗ = 1. Whilst, where the vibrations are attenuated,
the spectral power is distributed broadly over the range 0 . f ∗ . 2. Similarly, distinct
differences in the frequency spectra of transverse force signals for the regimes of
vibration amplification and attenuation can be observed in figure 17( f ). Interestingly,
where the vibrations are attenuated, there is a distinct lack of spectral power at f ∗Cy

= 1.
Conversely, where the vibration is amplified, there is a strong peak in spectral power
at f ∗Cy

= 1 and to a lesser extent, peaks at f ∗Cy
= 2 and f ∗Cy

= 3.

3.3.3. Mode III
In the mode III transition regime, a similar response in the vibration amplitude to

that seen in the mode II regime can be observed, although, in the mode III transition
regime a more pronounced trend is seen. The vibration is amplified over 150◦.φrot .
315◦, and attenuated elsewhere as observed in figure 18(a), with the peak vibration
amplitude occurring between 180◦6 φrot 6 210◦. The vibration frequency (figure 18b),
and transverse force coefficient (figure 18c), also show similar trends to the mode II
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FIGURE 17. Response of the sphere in the mode II regime (U∗ = 10) with imposed
rotation over the range 0◦ 6 φrot 6 360◦ for four proportional gain values K∗p = 0.5, 1, 2
and 4. Radius shows (a) A∗, (b) f ∗, (c) Cy and (d) φtotal. In (a–d) (u) K∗p = 4, (p) K∗p = 2,
(q) K∗p = 1, (f) K∗p = 0.5. (e, f ) PSD contour plots of f ∗ and f ∗Cy

, respectively, for K∗p = 4.
The spectral power is normalised by the maximum value at each φrot and is presented on
a log10 scale. The black dashed line represents the natural response.
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FIGURE 18. Response of the sphere in the mode III transition regime (U∗ = 14) with
imposed rotation over the range 0◦ 6 φrot 6 360◦ for four proportional gain values K∗p =
0.5, 1, 2 and 4. Radius shows (a) A∗, (b) f ∗, (c) Cy and (d) φtotal. In (a–d) (u) K∗p = 4,
(p) K∗p = 2, (q) K∗p = 1, (f) K∗p = 0.5. (e, f ) PSD contour plots of f ∗ and f ∗Cy

, respectively,
for K∗p = 2. The spectral power is normalised by the maximum value at each U∗ and is
presented on a log10 scale. The black dashed line represents the natural response.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

27
 F

eb
 2

02
0 

at
 0

5:
53

:1
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
47

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.47


Feedback control of FIV of a sphere 889 A30-25

regime. However, there are marked differences in total phase, perhaps unsurprisingly
given the variation in total phase between the two regimes for the natural response.
Here, total phase remains close to the natural response, φtotal ≈ 170◦, over 210◦ .
φrot . 345◦, and is reduced elsewhere with short transition regions (∼30◦) for large
proportional gains.

Figure 18(e) reveals a similar trend in vibration frequency to that seen in the
mode II regime for K∗p = 4, although with an increased spread in spectral power
where the vibration is suppressed. Once more, as for the mode II regime, there is a
distinct lack of spectral power at f ∗Cy

= 1 where vibration is suppressed, and peaks in
spectral power evident close to f ∗Cy

= 2 and f ∗Cy
= 3 over much of the region where

the vibration is amplified.

3.4. Wake structures
As first illustrated by Govardhan & Williamson (2005), and recently elucidated in
great detail by Eshbal et al. (2019), the vibration of an elastically mounted sphere
is primarily a result of the formation of two counter-rotating streamwise vortices.
Several studies employing extensive PIV measurements of tethered spheres have
further revealed the intricate aspects of fluid motion that lead to sustained vibration. In
particular, the influence of the separating shear layer and weaker secondary vortices, in
conjunction with sphere motion, on the overall wake structure has been detailed (van
Hout, Krakovich & Gottlieb 2010; Eshbal, Krakovich & van Hout 2012; Krakovich,
Eshbal & van Hout 2013; van Hout, Katz & Greenblatt 2013b). In the regime
where large-amplitude vibration occurs, interaction between near wake vortices, the
sphere, and the separating shear layer was found to lead to pinch-off of the dominant
streamwise vortex structures. Krakovich et al. (2013) estimated the fluid force acting
on the sphere using the analogy between the two counter-rotating streamwise vortices
seen here and wing-tip vortices in the wake of an aircraft. Comparable results were
obtained, highlighting the importance of these dominant structures in sustaining
vibration. Whilst evidently, the problem is strongly three-dimensional and dynamic
in nature, here, phase-averaged PIV has been employed in the transverse (y–z) and
equatorial (x–y) planes to reveal the effect of the imposed rotation on the timing of
the dominant streamwise vortex structures that have been shown to be the primary
contributor to sustained vibration. PIV in the transverse plane, located at x/D = 1.5,
reveals the development of streamwise vorticity over a vibration cycle. PIV in the
equatorial plane offers further insight into how the imposed rotation alters the position
of the wake structures in relation to the sphere.

When the imposed rotation nearly completely suppresses vibration, the wake
resembles that of a fixed sphere, which over the Reynolds number range tested in
this study (3900 . Re . 25 800), consists of vortices that shed at random azimuth
angles each shedding cycle (Sakamoto & Haniu 1990) (note that due to the presence
of the mounting rod, there will be a bias to vortex shedding at particular azimuths as
discussed in § 2.2). As a result, the phase-averaged PIV acquired in the y–z plane in
this study does not reveal the streamwise vortex structures for significantly suppressed
vibration. Therefore, in this section, representative cases in the mode II and mode III
transition regimes, where sufficient vibration exists to reveal the streamwise vortex
structures, are examined to highlight changes in wake structure due to the imposed
rotation.

Figure 19 shows streamwise vorticity in the mode II regime with no imposed
rotation, and two representative cases of imposed rotation at φrot = 0◦ and φrot = 180◦,
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FIGURE 19. Streamwise vorticity shown in the cross-stream plane at x/D = 1.5 in the
mode II regime (U∗ = 10). (a,d,g) K∗p = 0. (b,e,h) K∗p = 4, φrot = 0◦. (c, f,i) K∗p = 4,
φrot = 180◦. From top to bottom, each plot is separated by approximately a quarter
period. The vertical black dashed lines show the extremities of sphere displacement. The
black dashed circle shows the sphere location. The black arrows indicate the direction of
motion. Blue and red contours show clockwise and anti-clockwise vorticity respectively.
The normalised vorticity, ω∗ = ωD/U, is depicted by the colour map over eight steps in
the range ω∗ ∈ [−2, 2].

with K∗p = 4. The sphere location, which has been approximately adjusted allowing
for the time for the streamwise vortex structures to convect to the imaging plane,
is depicted by a dashed black circle outline. The extremities of sphere motion are
depicted by vertical black dashed lines. For K∗p = 4 and φrot = 180◦, vorticity has not
been presented at the extremity of sphere displacement due to the minimal vorticity
seen at these locations. Positions highlighting maximum vorticity were chosen instead.
In these instances, the black arrows depict the direction of sphere motion. For the
three cases illustrated in figure 19, it can be observed that with imposed rotation the
wake still primarily consists of the counter-rotating vortex pair seen for the natural
response. There are, however, changes to the spatial position and timing of these
vortices.

It is difficult to make detailed observations about the strength and shape of vortex
structures due to the phase-averaging process. Increasing vibration amplitude results in
vorticity been averaged over a greater range of sphere displacement values. As a result
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FIGURE 20. Streamwise vorticity shown in the cross-stream plane at x/D = 1.5 past
the peak of the mode II regime (U∗ = 14). (a,d,g) K∗p = 0. (b,e,h) K∗p = 1, φrot = 180◦.
(c, f,i) K∗p = 4, φrot = 180◦. Refer to figure 19 for further details.

of this averaging, with increased vibration, the bounds of the vortex pair stretches in
the y-direction, causing the depiction of the vortex structure to morph from a circular
to an elliptical shape as sphere motion increases and for the strength of the vortex
structure to appear diminished.

We can observe, however, that imposed rotation with K∗p = 4 and φrot= 180◦ results
in a significant change in the timing of vortex formation, conforming with the results
analysed in § 3.2, where it was reported that φtotal= 10◦. The wake structures observed
for K∗p =4 and φrot=180◦ resemble that presented by Govardhan & Williamson (2005)
for the mode I regime where φtotal ≈ 40◦.

For K∗p =4 and φrot=0◦, no appreciable change to the timing of the vortex structures
is evident. It can be observed, however, that the imposed rotation alters the extent of
the transverse motion of the vortex structures. For the natural response, the vortex
structures predominately lie inside the extremities of sphere motion depicted by the
vertical black dashed lines. For K∗p = 4 and φrot = 0◦, however, the vortex structures
predominately lie outside the extremities.

Due to the large displacements observed in the mode III transition regime, and
limitations of the PIV set-up, figure 20 shows the streamwise vorticity component
in the transverse plane over only half the vibration cycle in the mode III transition
regime (U∗ = 14). For K∗p = 0, K∗p = 1 at φrot = 180◦, and K∗p = 4 at φrot = 180◦, as
presented in § 3.2, the total phase was found to be 170◦, 108◦ and 49◦, respectively.
These changes in timing of the fluid force on the sphere are manifested in figure 20
as alterations to the timing of the streamwise vortex structures. From figure 20 it can
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FIGURE 21. Equatorial vorticity in the mode III transition regime (U∗= 14). (a,d,g) K∗p =
0. (b,e,h) K∗p = 4, φrot = 0◦. (c, f,i) K∗p = 4, φrot = 180◦. From top to bottom, each plot is
separated by a quarter period. The grey line shows the extremities of sphere displacement.
The black circle shows sphere location. The black line depicts the approximate centre
of the wake in the x–y plane. Blue and red contours show clockwise and anti-clockwise
vorticity respectively. The normalised vorticity, ω∗=ωD/U, is depicted by the colour map
over eight steps in the range ω∗ ∈ [−1, 1].

be observed that increasing the proportional gain at φrot = 180◦ results in increased
vorticity as the sphere moves past y/D= 0, and decreased vorticity at the extremities
of sphere displacement.

Whilst it is beneficial to examine vorticity in the y–z plane to observe the effect
of rotation on the streamwise vortex structures, PIV in the equatorial plane highlights
the deflection of the wake due to sphere vibration and imposed rotation. The effect
of the imposed rotation is clearly visible in figure 21. It is evident that past the peak
of mode II, where the rotation-induced vibration response is observed, the rotation
alters the deflection of the wake. In comparison to the natural response, rotation at
φrot = 180◦ results in a wake deflection towards the trailing side of the sphere (in the
transverse sense), whilst conversely, rotation at φrot= 0◦ results in a deflection towards
the advancing side.

4. Conclusions
A systematic investigation into the FIV response of a sphere with imposed feedback

control has been conducted. Transverse rotation of the sphere in proportion to
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its transverse displacement was implemented over a broad parameter space of
reduced velocity, 0 6 U∗ 6 20, proportional gain, 0 6 K∗p 6 4, and rotation phase,
0◦ 6 φrot 6 360◦.

The imposed feedback control resulted in significant variation to the vibration
response of the sphere. For rotation at φrot= 0◦, the vibration was found to commence
at a lower reduced velocity than observed for the natural response and the subsequent
maximum vibration amplitude was reduced. A similar trend to the natural response
was found where total phase transitions from close to 0◦ to close to 180◦ as reduced
velocity is increased, although this transition occurred progressively earlier with
increasing K∗p . A loosely inverse vibration response was seen for imposed rotation at
φrot = 180◦, where an attenuation of vibration in the mode I regime, and subsequent
significant amplification of the vibration in the mode III transition regime was found.
From just prior to where the peak of the mode II regime was observed for the natural
response (U∗≈ 9), for K∗p > 1 a rotation-induced vibration regime was found. For the
largest proportional gain tested, K∗p = 4, at U∗= 20, an increase in vibration amplitude
of 368 % was observed.

To determine the effect of rotation phase on the vibration response, a control
law allowing rotation phase to be varied, was implemented in 15◦ increments over
the range 0◦ 6 φrot 6 360◦, at three reduced velocities representative of the mode I,
mode II and mode III transition regimes for the natural response. It was found that
rotation phase greatly impacted the response of the sphere, and that by optimising
rotation phase, vibrations could be suppressed by up to 97 %. The maximum increase
in amplitude response remained that seen at φrot = 180◦.

PIV measurements in the wake revealed that the primary wake structures observed
for the natural response, namely, two counter-rotating streamwise vortices, remained
dominant across the parameter space investigated. There were, however, visible
alterations to the spatial position and timing of these structures. In the rotation-induced
vibration regime, significant wake deflection was observed in the equatorial plane
consistent with that expected due to the Magnus effect.

As evident from our findings, there are significant benefits of closed-loop feedback
control over open-loop control to either suppress or amplify the vibration response
of elastically mounted three-dimensional bluff bodies. From a feedback control
perspective, the control laws implemented in this study are rather simple, even if the
response of the sphere was far from simple over significant portions of the parameter
space. Thus, it would be of further interest to investigate the implementation of more
sophisticated control laws to determine the extent to which the vibration response
can be manipulated as required.
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