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Abstract. A multiblock method is presented for the solution of a three di-
mensional model of aeroelasticity in a turbomachine blade row. The method
employs a fully coupled approach and the structural model involves modal
reduction. Transfinite interpolation is used to adapt the fluid grid to the
moving structure.

1. Introduction

As designers in the turbomachinery industry strive to design machines that
are lighter, more powerful and more efficient, blade flutter has become one
of the most important limiting factors on the design process. The aeroelastic
response is a complex phenomenon that is not well modeled or predicted by
current design techniques. Codes that implement 2-dimensional models can
simulate this behaviour in a meridional plane, however the flow structures
found in blade passages are generally three dimensional and such models
provide a qualitative rather than quantitative analysis. Furthermore, im-
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portant flow phenomena are not modeled including hub and casing vortices
and tip effects.

A structured 3-dimensional Navier-Stokes code is developed to solve the
unsteady governing equations. These are solved using an explicit Runge-
Kutta scheme, implementing residual averaging and multigrid. The problem
is then solved in a time accurate manner through a fully implicit scheme
as proposed by Jameson [8]. This scheme has already been used in a 2-
dimensional model of aeroelasticity in turbomachinery [17, 9]. The devel-
opment of the present code is an extension of the previous 2-dimensional
method to 3 dimensions. Similar algorithms have been successfully imple-
mented in a 3-dimensional Navier-Stokes external solver that models flow
over a flexible wing [18, 10].

2. Fluid Model

The present 3 dimensional multiblock and parallel code has been developed
from a proven steady solver designed to model turbomachinery cascade
flow [12, 11, 14, 19, 15, 16]. The governing equations for the unsteady fluid
problem in a Eulerian reference frame with a moving mesh.

∂
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The time dependent and semi-discrete form of the governing equations may
be written as

dw

dt
+R(w) = 0 (4)

A dual time stepping scheme [8] is used to calculate the unsteady flow
problem. A second order accurate, fully implicit scheme is used to integrate
Equation (4) to evolve the unsteady problem in a time accurate manner.
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The discrete form of (4) is

3wn+1 − 4wn + wn−1

2∆t
+R(wn+1) = 0 (5)

This equation may be recast into

dw

dt∗
+R∗(w) = 0 (6)

where

R∗(w) =
3w

2∆t
+R(w)− 2

∆t
wn +

1

2∆t
wn−1 (7)

The steady state solution w in equation (6) is then equivalent to the time
accurate solution wn+1 to equation (5). Any efficient algorithm may be used
to obtain the steady-state solution to (6). In this paper, the above men-
tioned Runge-Kutta type scheme with multigrid is used. Minimum modifi-
cation of the steady solver to make it time accurate in the above manner.

3. Structural Model

Modal decomposition, otherwise known as the Rayleigh Ritz approach re-
duces the structural problem to a series of uncoupled, second order dif-
ferential equations. These are reduced to first order differential equations
and solved by the same dual time stepping method as that for the flow
equations. The problem is first solved in pseudo time using a Runge-Kutta
scheme, then advanced it time through an implicit time accurate formula-
tion [1, 2].

The generalized form of the structural equations are reduced through
modal reduction through

q̈i + 2ζiωiq̇i + ω2
i qi = Qi (8)

where qi is the generalized normal mode displacement, ζi is the modal
damping, ωi is the modal frequency, and Qi is the generalized aerodynamic
force. The structural displacement vector is written as a summation of N
modal shapes extracted from a finite element analysis of the structure.

us =
N∑

i=1

qihi (9)

where hi are the modal shapes.
Equation (8) is further reduced to a first order system of equations

for each i and integrated in time by a second-order fully implicit scheme.
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Following Alonso and Jameson, we assume

x1i = qi

ẋ1i = x2i (10)

ẋ2i = Qi − 2ζiωix2i − ω2
i x1i

for each of the modal equations. Thus in matrix form:

{Ẋi} = [Ai]Xi + {Fi}, i = 1, 2 (11)

where {Ẋi} =

{
x1i

x2i

}
, [A] =

[
0 1
−ω2

i −2ωiζi

]
and {Fi} =

{
0
Qi

}
. After

proper diagonalization, the above equation can be decoupled.
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√
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In these equations, the time derivative operator is discretized by a second
order accurate scheme for each mode
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The above equations are coupled with the time-marching of the Navier-
Stokes equations and solved by a dual time stepping algorithm similar to
that used for the fluid solver.

4. Multiblock and Parallel Implementation

A method using multiple blocks of structured grids is used to maximize
the use of computational resources and to allow the generation of grids
for complex geometries. While each block consists of a structured grid, the
blocks can be connected to each other in an unstructured manner provided
the mesh geometry is matched at the block interfaces.

The method of code parallelization is not a trivial one as it adds an-
other level to code complexity. There are many different standards and
implementations that may be used, however the Message Passing Interface
(MPI) has become one of the most popular. The majority of large, parallel
computers support this standard, as do the more economical PC based Be-
owulf clusters. Open MP is another standard, that makes use of compiler
directives to parallize loops.
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Figure 1. Schematic of multigrid and multiblock communication

Although Open MP may provide an easy method to implement a par-
allel code, its use is restricted to large shared memory symmetric multiple
processor (SMP) machines. There are super computers that use shared
memory that is only accessed by a limited number of nodes. Thus it is
not guaranteed even on the large super computer that Open MP alone is
adequate for efficient parallelization.

It was decided early in the development of the code to make use of MPI
and some of the high level programming constructs available in Fortran90.
A number of different objects were created in the code data structure to
facilitate the parallel calculation of the fluid problem.

Each fluid block is treated as a single object or entity. A schematic of
the multiblock data structure is shown in Figure 1. A processor may be
allocated more than one fine grid block and each fine grid block will have
associated a number of coarser, multiblock grids. The machine calculates for
each multigrid level simultaneously, then copies the solution or interpolates
the residual to the next multigrid level.

A subface is defined as another object. This is used for the interface
between the present block and another block, or a region to which a sin-
gle boundary condition is to be applied. These objects are cycled through
each time the boundary of the blocks are to be updated, upon which com-
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Figure 2. Speed Performance of multiblock code

munication is effected or a boundary condition is applied. So that separate
boundary conditions are not required for each coordinate direction, subface
objects are transformed into a single coordinate system. This increases code
complexity marginally. However it maintains that the code that is relatively
compact.

The structured cell numbering within each block is unimportant as
transformations are used to reorient the face so that the numbering matches
with the neighboring face. For example for a C-grid where a single block
is wrapped around the blade, at the interface downstream of the trailing
edge the cell numbering will be different on the upper and lower blocks,
thus requiring reorientation of the 2-dimensional arrays.

In keeping with the use of high levels of Fortran90 code, the communica-
tion module also exploits some of the more sophisticated MPI routines. The
use of MPI derived types allows the direct access of memory for the transfer
of data, reducing the number of copies required during the communication
of ghost cells. Due to the repetitive nature of the CFD computation, the
“pipe-lining” of message passing calls is also implemented. The performance
of the implementation was tested on a nine node Linux Beowulf cluster and
the speed performance of the code is shown in Figure 2. A steady Euler
calculation was used for the test using a mesh of 10240 cells.

5. The Moving Grid

The movement of the fluid boundary requires the fluid grid to be regener-
ated over the entire flow domain. Thus in the multiple block code, given
that the grid for each structured block is regenerated independently, the
position of the corner points of each block must be somehow defined. This
is effected by using a spring network analogy as proposed by Batina [3] to



NS CODE FOR AEROELASTICITY IN TURBOMACHINERY 7

Figure 3. Plot of entropy contours for unsteady cylinder

maintain grid regularity. Grid regularity is particularly important where
Navier-Stoke calculations are performed.

The network is formulated by connecting each block corner with hypo-
thetical springs and corner positions are determined by a solution of the
static equations. This simple and efficient calculation is performed on a
single processor. Initially an unstructured grid network is constructed on
the root processor. This contains nodal locations for each block corner and
the connecting node information. New nodal positions are determined for
free nodes through a predictor corrector scheme. These are distributed to
the respective processors, where transfinite interpolation is performed to
interpolate the local grid at the previous time step to the new position.
The details of this method may be found in Wong [18].

6. Model Validation and Results

6.1. UNSTEADY CYLINDER

The low Reynolds number, unsteady cylinder is a well documented case in
both experimental and numerical fields. In this case it was used to check
the time accuracy of the unsteady implementation. A single block O-grid
was generated with the farfield boundary approximately 50 chords from the
cylinder surface. The code may only calculate for 3-dimensional mesh ge-
ometries, so 2 cells were used in the spanwise direction. The Mach number
of the compressible solver was set at 0.2 as at this Mach number, the effects
of compressibility are assumed to be negligible. The Strouhal number for a
grid of 196 x 96 x 3 was calculated as 0.181, which is close to the experi-
mental value of 0.182. A grid resolution study was performed, the results of
which are beyond the focus of this paper. The shedding behind the cylinder
may be observed in Figure 3.
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Figure 4. Comparison of unsteady NACA64A010 results with experiment

6.2. FORCED AIRFOIL OSCILLATION

To demonstrate the validity of the moving mesh, multiblock and unsteady
implementation, the NACA64A010 case is presented. Computational re-
sults are compared in Figure 4 for different configurations and with experi-
ment. An unsteady Euler calculation is performed in the flow solver. In the
first case, a single block O-grid is used in combination with TFI to deform
the grid to the oscillating airfoil. The far field boundary remains rigid. The
second case involves a mesh that is not deformed, but rotates rigidly with
the displacement of the airfoil surface. For the third calculation, the same
grid as used for the single block cases is divided into 32 equal blocks, with 4
blocks in the radial direction and 8 in the circumferential direction. In this
case the block corners were located using the spring analogy. The results for
inviscid flow compare similarly with results presented elsewhere [13, 1] and
there is little difference between the results for the different configurations.

6.3. COUPLED AIRFOIL OSCILLATION

The modeling of aeroelasticity requires the simulation of the interaction
of elastic member with an unsteady flow. One of the simplest examples is
Isogai’s wing model [6, 7], a 2-dimensional NACA64A010 airfoil that has
been studied numerically by a number of authors [1, 10]. Experimental un-
steady flow measurements are available for the airfoil for forced oscillation
and these results may be used to validate the unsteady flow model.

A qualitative study was performed for the neutrally stable, unstable
and damped configurations and results are shown in Figures 5 to 7. These
results are similar to those found by other authors [10], providing confidence
in the implementation of the structural model and the numerical algorithm
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Figure 5. Stable case; M∞ = 0.825,
Vf = 0.630
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Vf = 0.530
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Figure 7. Diverging case; M∞ = 0.825, Vf = 0.725

for coupling the fluid flow and structural dynamics solutions.

6.4. UNSTEADY CASCADE RESULTS

Simulations of forced oscillation in a turbomachinery cascade can provide
useful insights into the influence of the flow on the aeroelastic stability of
the turbine blade. A study was undertaken by Bell and He [5, 4] into the
linearity of the unsteady flow features for a turbine blade. This involved a
blade mounted in a single passage with the upper and lower tunnel surfaces
contoured to the blade shape and inlet and outlet flow angles. The blade
was pivoted about its root and forced to oscillate rigidly in the bending
mode.

The surface pressure coefficient was obtained for bending amplitudes at
the blade tip of 5.5 % and 2.75 % of chord, at a reduced frequency of 0.5.
Due to the fact that the fluid solver implements the compressible form of the
Navier-Stokes equations, the simulations were at a higher Mach number of
0.2 compared with 0.1 in the experiment. Although Mach number similarity
was not maintained, the velocity or time scale was preserved by ensuring a
constant reduced frequency.
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Figure 8. Cascade steady solution compared with experiment
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Figure 9. Comparison of magnitude of first harmonic of unsteady pressure coefficient
with experiment for Suction Surface, Kc = 0.5

Figure 8 shows the pressure coefficient distribution on the blade surface
when the blade is stationary. Except for some oscillations near the leading
and trailing edges, the numerical result compares well with the experimental
data. Figures 9 and 10 shows the magnitude of the first harmonic pressure
distribution on the blade suction and pressure surfaces and 10%, 50% and
90% spanwise locations. Although the computational results show the same
trend as the experimental data, the computed magnitude is lower.

Figure 11 shows the phase angle distribution of the first harmonic un-
steady pressure coefficient. The computational result agrees well with the
experimental data except near the trailing edge. The results for the first
harmonic pressure coefficient are extremely close between the two different
amplitudes of oscillation. This confirms the findings by Bell and He that
the flow is essentially linear for these conditions.
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Figure 10. Comparison of magnitude of first harmonic of unsteady pressure coefficient
with experiment for Pressure Surface, Kc = 0.5

0 0.2 0.4 0.6 0.8 1

Chordwise Position x/C

0

100

200

300

φ

Experiment 10%
Experiment 50%
Experiment 90%
Prediction 10%
Prediction 50%
Prediction 90%

B
c
=0.055

0 0.2 0.4 0.6 0.8 1

Chordwise Position x/C

0

100

200

300

φ

Experiment 10%
Experiment 50%
Experiment 90%
Prediction 10%
Prediction 50%
Prediction 90%

B
c
=0.0275

Figure 11. Comparison of phase of first harmonic of unsteady pressure coefficient with
experiment, Kc = 0.5

7. Concluding Remarks

A novel multiblock and parallel, integrated structural and fluid solver has
been presented. The implementation is general and is not limited to par-
ticular geometries and thus is flexible in that it may be applied to a broad
range of problems. The moving mesh and structural model allow for the
coupled solution of aeroelastic problems.

A number of different cases have been presented that compare computed
results with experiment or other numerical results. Navier-Stokes solution
of the flow past a circular cylinder compares well with experimental data.
The code is also validated for the unsteady flow around a pitching airfoil
with either a rigid grid or a deforming grid generated by a multiblock
TFI method. Coupled flow and structure solution for an airfoil with two-
degrees of freedom demonstrate the ability of the code to simulate damped,
neutral and diverging motions of the system. Finally, the 3-dimensional
flow through a turbine model with a blade performing bending motion is
calculated. The computed first harmonic pressure coefficient on the blade
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agrees well with experimental data in phase but is smaller in magnitude.
Work is needed to further validate the code for the coupled simulation

of three-dimensional fluid-structure systems.
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