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Sound Generated by a Pair of Axisymmetric Coaxial Vortex Rings
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The time-dependent acoustic field generated by the mutual interaction of a pair of coaxial viscous vortex rings
advecting along a common axis of symmetry is simulated using a two-step numerical procedure. In the first step,
the flowfield is predicted by solving the incompressible Navier–Stokes equations. In the second step, Powell’s vortex
sound theory is used to predict the far-field acoustic field associated with the flow unsteadiness. This study considers
the effect of the initial toroidal ring radii on the sound radiation. The acoustic predictions are compared with those
obtained using the method of matched asymptotic expansions. Our results indicate that the acoustic signature
for the Mach-number range simulated shows an axisymmetric lateral quadrupole pattern. In addition, the time
variation of the far-field acoustic signal displays significant effects caused by vortex dynamics associated with the
finite-sized cores and viscous diffusion. These effects are more pronounced for rings with a smaller initial toroidal
radius. The influence of Mach number on the far-field directivity (e.g., location of polar extinction angles) and the
multipole content of the acoustic signal is examined through a multipole decomposition of the predicted acoustic
fields.

I. Introduction

I N this study, Powell’s1 theory of vortex sound is used to predict
the far-field sound generated by the pairing of two axisymmetric

viscous vortex rings. Powell1 has hypothesized that at low Mach
numbers sound is a byproduct of the flow. Therefore, the sound
energy does not feed back toward the flowfield. Instead, the sound
waves are generated by the flow unsteadiness in the near field and
are subsequently propagated to the far field in an ambient medium.
The source of the acoustic fluctuations is attributed to the motion
as well as the change in strength of the vorticity field, that is, rota-
tional part in the near-field region. The validity of Powell’s1 vortex
sound theory has been confirmed by various investigators through
comparison with other prediction tools such as direct numerical
simulations2 and experimental results.3

Implementation-wise, the decoupling of the flow and acoustic
fields involves a two-step numerical approach toward obtaining the
acoustic solution. First, the incompressible flow is predicted by solv-
ing the incompressible Navier–Stokes equations. Next, the acoustic
quantities are obtained through solving the inhomogeneous wave
equation, with the acoustic source terms evaluated from the hydro-
dynamic velocity field. The numerical method used in this study
has been successfully adopted in an earlier investigation.4 There-
fore, the motivation behind this study is that it serves as a second
benchmarking study in the development of the two-step aeroacoustic
prediction method currently being developed by the Fluids Labora-
tory for Aeronautical and Industrial Research group.

From a historical perspective, thin vortex cores have been widely
used in theoretical aeroacoustics (for instance, Refs. 5 and 6) be-
cause of two important factors. First, by taking the approximation of
an infinitesimally thin vortex core (i.e., a potential flow vortex) and
an inviscid fluid, the hydrodynamic and acoustic solution can often
be obtained analytically. Second, for low-Mach-number flows, the
characteristic length scale of the flow is much smaller than the acous-
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tic wavelength allowing a mathematical separation into a near-field
hydrodynamic region and far-field acoustic region.

Under such idealized conditions, the leapfrogging cycle of a pair
of like-signed vortex rings would repeat itself indefinitely without
any core deformation.5−8 Using the method of matched asymptotic
expansions (MAE), Kambe and Minota6 predicted that the sound
field would assume an axisymmetric lateral quadrupole pattern. By
comparing the trajectories of the vortex rings with the time histories
of the acoustic pressure fluctuations, the latter was found to peak at
the instant when the radial distance between the vortex rings was a
maximum. In addition, owing to the symmetry of the motion, the fre-
quency of the acoustic oscillations is twice that of the leapfrogging
frequency.

The assumption of an infinitesimally thin ring is a mathematical
abstraction, as in reality vortex rings are finite. The acoustic radia-
tion from rings having a finite core has been considered by, among
others, Shariff et al.9 and Tang and Ko.10 The motion of these in-
viscid, finite-sized vortex rings was predicted using the method of
contour dynamics. In contrast to Kambe and Minota,6 Shariff et al.9

and Tang and Ko10 predicted the presence of an additional high-
frequency component superimposed on the one associated with the
leapfrogging motion. This was attributed by both authors to the dis-
tortion of the vortex core caused by the strain field imposed on each
core by the other during the leapfrogging motion.

Verzicco et al.11 considered the case of a pair of viscous vor-
tex rings by solving the incompressible flow equations, and subse-
quently, used the solution field to calculate the acoustic sources
based on Kambe’s12 analysis. They considered the effects of
Reynolds number, different vorticity profiles, and core thicknesses.
Results showed that sound generation is most intense when the vor-
ticity gradients of the core are sharp. Furthermore, they have argued
that the secondary acoustic source (associated with the nutation of
the vortex core) is not a major contribution to the sound radiation
from the pairing of a viscous vortex ring.

Another interesting feature of the acoustic radiation field is the
polar extinction angles, that is, the region where there is zero sound
emission. If we assume a perfectly axisymmetric quadrupole radi-
ation field, the polar angles of extinction would lie exactly at 54.7
and 125.3 deg. However, direct simulations by Mitchell et al.2 and
Eldredge et al.13 have revealed that the polar extinction angles from
an axisymmetric vortex ring pairing are biased toward the upstream
direction.

It is clear that several solution methods exist which can be used to
predict the aeroacoustic phenomena. The MAE technique is limited
to classical flow scenarios, and the solution field is only valid at
Ma → 0. Aeroacoustic theories such as Lighthill’s14 acoustic anal-
ogy and Powell’s1 vortex sound theory rely on the assumption of
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flow compactness and as such are restricted to low-Mach-number
situations. On the other hand, full compressible flow computations
are capable of computing the sound field and flowfield simultane-
ously without having to rely on those assumptions, but come at a
significant cost compared to the other two solution methods.

This study is not seeking to justify Powell’s theory of vortex
sound via a numerical approach. Rather, we are adopting Powell’s
acoustic theory as a tool for gaining further understanding into the
relationship between vorticity and sound generation in viscous flow
phenomena. This study considers the effect of the initially identical
toroidal ring radii on the acoustic radiation properties. The acous-
tic simulations are performed at a range of Mach numbers, which
implies different levels of compactness for the two flow aspect ra-
tios modeled. The simulations are compared with the predictions
obtained through the method of MAE. The results of this study
have indicated that the variations in the acoustic properties from the
MAE predictions are strongly influenced by the viscous dynamics
of the vortex core. An analysis of the effect of source compactness
(synonymous with the low-Mach-number assumption) is examined
through performing a decomposition of the predicted acoustic sig-
nals into a multipole expansion. Finally, the temporal behavior of
the mathematical acoustic sources based on Kambe12 is analyzed.

To be able to numerically predict the aerodynamic sound gener-
ation accurately, there are several issues that have to be considered.
These issues are caused by the disparities in the flow energy and the
acoustic energy and are rarely encountered in typical aerodynamic
computations. For detailed information on the numerical issues as-
sociated with computational aeroacoustics, the interested reader can
refer to, among others, Crighton,15 Wells and Renaut,16 and Tam.17

The numerical techniques developed in this study tackle some of
those issues in order to produce an acoustic solution without any
artificial dissipation or explicit filtering scheme being used. The
robustness of our two-step numerical procedure has been clearly
demonstrated in an earlier study on the sound generated by an iso-
lated corotating vortex pair.4

The layout of this paper is as follows. The numerical procedure of
the two-step aeroacoustic prediction method is detailed in Sec. II.
In Sec. III, the results of the flow simulations are presented fol-
lowed by the acoustic simulations. The acoustic quantities are com-
pared with the analytical predictions obtained using the method of
MAE. Next, further analysis is performed on the predicted acoustic
field. The procedure for the decomposition of the acoustic signals
into a multipole expansion is summarized in Sec. III. The far-field
directivity of the acoustic signals as the Mach number is varied
is also discussed. Finally, concluding remarks to this study are
offered.

II. Numerical Methodology
A. Flow Modeling Issues

The fluid is assumed to be incompressible and Newtonian,
whereas the motion of the rings is assumed to be axisymmetric with
no swirl component. A schematic of the flow problem is shown in
Fig. 1. The symbols L and T denote the initially leading and trail-
ing vortex cores. Both vortex rings have a toroidal ring radius y0

and are initially separated in the axial direction by a distance of z0.
The azimuthal vorticity distribution of the core of each ring ω(rc)

Fig. 1 Schematic of flow configuration of a pair of initially circular
coaxial vortex rings. The symbol y represents the radial axis while the
axial axis is represented by z.

Table 1 Spatial parameters of the flow
configuration for the two cases considered

Case e0/z0 e0/y0 z0/y0

1 0.075 0.0225 0.3
2 0.075 0.0375 0.5

a)

b)

Fig. 2 Typical meshes used in the a) flow simulation and b) acoustic
simulation. Note that the meshes have different scales. The vortex rings
are initially located at the center of both computational domains.

is represented by a Gaussian function as follows:

ω(rc) = 1.2495�0

πe2
0

exp

[
−1.25

(
rc

e0

)2
]

(1)

where rc is the polar radius from the center of the vortex core and e0 is
the thickness of the vortex core. This particular Gaussian distribution
is identical to the one used by Mitchell et al.2 and has been adopted
by the present authors in an earlier study.4 The Reynolds number
is based on the circulation of the vortex core �0 and is defined as
Re = ρ0�0/µ0 = 7500.

Two cases are considered in this study. The spatial parameters of
the flow configuration are reported in Table 1. As this study con-
siders the effect of the initial ring toroidal radii, the other vortex
ring parameters e0 and z0 are fixed. Therefore, the term (e0/z0),
which represents the ratio of the core thickness to initial axial sep-
aration of the vortex rings, is constant. It is clear from Table 1 that
both (e0/z0) and (e0/y0) are approximately one order of magnitude
smaller than (z0/y0). This implies that the core of the vortex ring is
“small” relative to its toroidal radius.

The incompressible Navier–Stokes equations, expressed in the
cylindrical coordinate system, are solved using the finite volume
method. Both spatial and temporal schemes are second-order accu-
rate. The computational-fluid dynamics (CFD) domain is discretized
into a structured mesh (shown in Fig. 2). It is clear that the grid is
concentrated particularly in the region where the vortex rings are
leap-frogging over each other as the entire vortex system is con-
vecting in the downstream direction. To prevent a “checkerboard”
pressure field, the velocity components and pressure are calculated
on a staggered grid. At y = 0, the spatial derivatives in the flow
equations are discretized without any special treatment owing to
the staggered grid and the axisymmetric assumption. With regard to
the boundary conditions, the axisymmetric condition is imposed at
y = 0, while the pressure outlet condition is applied to all of the other
boundaries. The solution field is initialized with the summation of
the velocity distributions of each vortex core.

It is clear from Fig. 2 that the CFD domain has a rectangular
shape that is biased toward the +ve z direction. The dimensions
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of the domain are as follows: {−5y0 : 10y0} axially and {0 : 5y0}
radially. The positive axial length at 10y0 is larger relative to the
other directions because the domain has to be extended in order
to capture the flow motion, that is, from leapfrogging to the final
coalesence/merger of the vortex rings. The other lengths at 5y0 is
deemed far away enough from the system that the motion of the
rings is not affected by any artificial blockage effects.

Spatial and temporal resolution studies were carried out in order
to ensure that the solution field is well resolved and the physics of
the flow are accurately captured. For instance, the spreading of the
vortex core must be a feature of the flow and not be accelerated
because of excessive numerical dissipation. The peak vorticity was
used to monitor flow convergence, and a tolerance level of 2% was
used as the criteria to deem that the solution field is converged.

In the near field, the grid spacing is �x/e0 = 0.1, which places
approximately 20 points across each vortex core. A linear stretching
function is used in the mesh. To ensure that the flow is well resolved,
that is, the spreading of the vortex core is caused by physical viscos-
ity and not numerical dissipation, different rates of stretching were
tested in the downstream direction. By comparing the peak vorticity,
it was found that a stretching rate of 1.2% accurately captured the
physics of the rings’ motion. In contrast to the gradual stretching
rate of 1.2% in the positive axial direction, the stretching applied
in the other directions was set at 5%. From the temporal resolu-
tion studies, we found that the time step of �tu0/y0 = 3.98 × 10−5

for z0/y0 = 0.3 and �tu0/y0 = 1.11 × 10−4 for z0/y0 = 0.5 satisfied
our convergence criteria.

B. Acoustic Modeling Issues
The governing equation for the far-field acoustic waves in an

ambient medium according to Powell1 (hereinafter known as the
acoustic-wave equation) is as follows:

∂2 p

∂t2
− c2

0∇2 p = ∇ · (ω × u) (2)

where p is the normalized acoustic pressure, c0 is the wave prop-
agation speed, and ∇ · (ω × u) is the acoustic forcing. As a matter
of interest, the sound source is confined to the rotational part of
the flow. The Mach number that is used in this study is defined as
Ma = u0/c0, where u0 = [�0/(4πy0)][log(8y0/e0) − 1

4 ] is the trans-
lational velocity of the vortex ring in isolation.18 The peak velocity
of the vortex core at rc = e0 is not used as a reference velocity scale
because the principal source of the acoustic radiation is from the
induced motion of the rings.

The acoustic-wave equation is solved using the finite difference
method. The spatial terms are discretized using the Taylor-series ex-
pansion, and the scheme is sixth-order accurate. A central-difference
stencil is used as upwind schemes have been shown to be un-
stable in modeling the propagation of waves. Temporal marching
of the acoustic-wave equation is performed using the fourth-order
Runge–Kutta scheme. The relatively high-order spatial and tempo-
ral schemes are essential in order to minimize any artificial dis-
persion and dissipation errors induced by the truncation errors of
lower-order schemes.

The radiation boundary condition of Bayliss and Turkel19 is im-
posed on all external boundaries of the domain. The spatial stencil
in the interior region consists of six nodes; hence, there are three
ghost points on each external boundary. At y = 0, similar to the
flow, periodicity of the acoustic field is also assumed. As such, the
reflecting boundary condition is implemented at y = 0.

The acoustic domain is of a square shape and extends two wave-
lengths away. Similar to the CFD domain, it is discretized into a
structured mesh (see Fig. 2). In the near-field region, the grid spac-
ing is �x/e0 = 0.45 while the far-field grid spacing is �x/λ = 0.05
(or k�x = 0.31), which places 20 points across the acoustic wave-
length. A nonuniform mesh is used in the domain as it would be too
expensive otherwise. A linear stretching function is used to stretch
the grid from the near field to the far field. A low grid-stretching rate
is essential to ensure that the waves propagate smoothly through-
out the domain without creating any spurious noise. Three different

stretching ratios (2, 3, and 4%) were tested on the acoustic sim-
ulation at the lowest Mach number. This is because the acoustic
signals at this particular Mach number are weakest and, hence, are
most susceptible to any possible noise sources arising from errors
induced as waves pass through the stretched grid or from initial tran-
sients. As the signal-to-noise ratio was good for both the two latter
stretching ratios, the 3% stretching ratio was used in all subsequent
acoustic simulations. To maintain a uniform rate of stretching at all
Mach numbers, the total number of grid points in the computational
aeroacoustics (CAA) domain are varied accordingly for each Mach
number simulated.

To calculate the acoustic forcing, the hydrodynamic velocity com-
ponents are interpolated in space and time from the CFD solution
field to the CAA grid. There are two important things to note. Firstly,
the distribution of the mesh points in both grids is different. Second,
the time step used to advance the acoustic simulations is typically
much smaller than that used in the flow simulations. This is because
the time step in the acoustic computations is scaled to the sound
speed c0.

A second-order polynomial function is used in the spatial interpo-
lation routine. This is because we want to maintain the same spatial
accuracy as the flow solver. As the acoustic wavelength corresponds
to the fundamental flow period, the spatial interpolation routine need
not be carried out at every flow time step. A preprocessing task of
determining the relevant number of frames per flow period that is
needed to resolve the acoustic forcing as a function of time was
conducted. Note that a fourth-order spline is used to interpolate the
local values of the hydrodynamic components at the acoustic time
step (which lies between the frames). The spline is relatively high
order as it has been found that periodic kinks in the acoustic solu-
tion field would occur had a low-order function been used instead.
The three different frames/period rates tested were 8, 16, and 24.
Preliminary results indicated that there was little difference in the
acoustic properties between the latter two frames/period rates. This
implies that the temporal evolution of the acoustic source is well
represented by a rate of 16 frames/flow period. It is clear that the
effect of the higher-frequency component (associated with the vor-
tex core deformation) would be filtered out when the nominated
frame/period rate is used. This will be discussed in greater detail in
Sec. III.B, where the acoustic results are reported.

Under the MAE framework, the vortex system is assumed to be
radiating sound from a stationary position. Thus, in order to be able
to compare our numerical results with the MAE-derived acoustic
predictions, the convective velocity component of the vortex sys-
tem must be removed prior to calculating the acoustic forcing. This
would effectively peg the vortex system into its original position.
As such, the acoustic source would be radiating sound from a fixed
spatial location. To remove the convective velocity term, the transla-
tional velocity of the mean position of the vortex system is subtracted
from the axial-velocity component. The instantaneous translational-
velocity component is obtained by first fitting a third-order polyno-
mial to the trajectory of the mean axial position of the vortex system
over the entire flow evolution, followed by differentiating the func-
tion with respect to time to obtain the expression for the velocity.
This procedure is carried out as a preprocessing step prior to the
execution of the acoustic solver.

In computational aeroacoustics simulations, it is common knowl-
edge that a poorly specified initial condition for the acoustic source
terms would result in transient waves being created. As these waves
propagate through the grid, high-frequency spurious waves are
formed. Therefore in order to remove these contaminating waves, fil-
tering schemes or artificial dissipation routines have to be used. Ini-
tial acoustic transient behavior has been observed in various aeroa-
coustic computations (for instance, see Lee and Koo20 and Mitchell
et al.2).

In this study, the effect of the initial transients on the acoustic
solution field is largely minimized by using a startup function that
introduces the acoustic source temporally. The acoustic forcing term
∇ · (ω × u) is multiplied by the startup function at every time step.
The startup function is zero when the solution is initialized and in-
creases gradually and smoothly to unity over a time interval tr . Thus,
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the purpose of the startup function is to prevent the initial transient
from creating spurious noise, as it is well known that high-frequency,
sharp transients would result in spurious grid-to-grid oscillations.

Through a series of tests with different tr values ranging
from zero to two periods, we found that a startup time inter-
val of tr u0/y0 = 0.0597 for z0/y0 = 0.3 and tr u0/y0 = 0.166 for
z0/y0 = 0.5 effectively resulted in an initial wave transient having
similar timescale and amplitude to the acoustic signals. The ramp-
ing function was chosen as a quintic polynomial in time with the
coefficients chosen to satisfy continuity of the function and the first
and second derivatives at the endpoints. This meant that during the
evolution, the transient could propagate out of the domain without
leaving a sizable remnant field from the effects of imperfect trans-
mission through the radiation boundary and passage through the
stretched grid.

III. Results and Discussion
A. Flow Dynamics

Throughout the flow computation, the total circulation of the flow
was constantly monitored and found to remain within 1% of its
initial value. This implies that both the total circulation and impulse
of the vortex system are conserved to numerical accuracy, that is,
there are no external forces acting on the vortex system, and energy
leakage from numerical inaccuracies is minimal. The circulation of
the vortex rings is positive, that is, the rotation associated with each
vortex core is anticlockwise. As such, the vortex system moves from
the left to the right. In this study, the spatial positions of the peak
vorticity are used to represent the centroids of the vortex cores. The
axial trajectories of the initially leading and trailing core centroids
are revealed in Figs. 3a and 3b. It is clear that the vortex system
advects a considerable distance axially. For z0/y0 = 0.3, there were
eight slip-through instants prior to the merging of the vortex rings.

a)

b)

Fig. 3 Time traces of the axial trajectories of the initially leading and
trailing core centroids. Here a) z0/y0 = 0.3 and b) z0/y0 = 0.5: ——, ini-
tially leading and – – –, initially trailing.

In contrast, there were seven slip-through instants for z0/y0 = 0.5.
Here, the slip-through instant is defined as the time instant when
both rings are furthest apart from each other radially. Thus, given
a particular Reynolds number, the number of possible slip-through
instants prior to the vortex rings merging is dependent on the aspect
ratio z0/y0. It is clear that the number of slip-through instants would
increase with a decreasing aspect ratio because the strength of the
mutual induction of the vortex rings is increasing at the decreasing
aspect ratio.

The period of the first leapfrogging cycle shown in Table 2 is
estimated from the trajectories of the core centroids. During the ini-
tial stage of the interaction, there is excellent agreement with the
predicted period from the analytical model. However, as the inter-
action continues, subsequent periods decrease as dissipation acts
to diffuse the vortex cores, thereby allowing a more complex fluid
dynamical interaction to occur. Figure 4a shows the change in the
magnitude of the peak vorticity for each vortex ring over the entire
flow evolution for the aspect ratio z0/y0 = 0.3. Between tu0/y0 = 0
and 0.13, representing a full period, there was a rapid decrease in
peak vorticity with a drop in magnitude over the period of approxi-
mately 73% as the vortex cores rapidly diffuse. For tu0/y0 > 0.13,
the rate of change of the peak vorticity becomes more gradual.
For the aspect ratio z0/y0 = 0.5, between tu0/y0 = 0 and 0.32 (ap-
proximately one corotation period), the drop in peak vorticity was
approximately 70% (Fig. 4b). The fact that the rate of vorticity dif-
fusion at z0/y0 = 0.5 is similar to z0/y0 = 0.3 is expected because

Table 2 Tabulation of the first slip-through period

z0/y0 0.3 0.5

T (u0/y0) 1.03 2.433
T (u0/y0)

a 0.997 2.129

aThe values designated with an asterisk refers to classical vortex
pairing interaction.

a)

b)

Fig. 4 Time traces of the peak vorticity of the initially leading- and
trailing-core centroids. Here, z0/y0 = a) 0.3 and b) 0.5.



330 LIOW, THOMPSON, AND HOURIGAN

the initial vorticity distribution of the vortex cores and the Reynolds
numbers are identical. Another point of interest is that the difference
in the peak vorticity between the rings is greatest at the slip-through
instant. Conversely, when the axial distance separating the vortex
cores is a maximum the peak vorticities of the two cores are virtually
identical. In the classical model, the interactions of the vortex rings
are “elastic.” While the initially leading vortex ring contracts and
accelerates axially toward the slip-through position, its counterpart,
being the initially trailing vortex ring, expands and decelerates axi-
ally. As soon as the slip-through position is reached, the roles of the
vortices are reversed. The interactions of the viscous rings simulated
in this study are expected to differ from the classical model.

For z0/y0 = 0.3, the interaction of the rings through the first half
of the leapfrogging cycle is shown through the series of vorticity
contours in Figs. 5. The contours are recorded between simulation
times of tu0/y0 = 0.13 and 0.194. The first snapshot shown in Fig. 5
corresponds approximately to the instant of maximum axial sepa-
ration. Note that the contours are not shown from the start of the
start of the flow simulation because during the initial stages there is
an adjustment as the flow evolves from the initially imposed veloc-
ity field. Figures 6 show the corresponding vorticity snapshots for
z0/y0 = 0.5 taken between tu0/y0 = 0.328 and 0.492. It is clear that
the distortion of the vortex rings increases with aspect ratio z0/y0.

Figures 7 and 8 shows the vorticity contours during the merging
process for the two aspect ratios. In contrast to the passage inter-
actions, the vortex merger process is characterized by large core
deformations. As the vortex core deforms and assumes an elliptical
shape, the tip starts to a form a fine-scale low-vorticity filament.
This is known as the filamentation process. It is also clear that the
spatially thin filament structures are not as well resolved as the ini-
tially circular vortex cores. The rings gradually wrap around each
other, and when they are sufficiently close to each other they become
intertwined. This occurs at approximately at the final slip-through
instant. The vortex merger/coalescence process occurs over a rela-
tively short time interval, about half that of the leapfrogging period.
Although the fine-scale structure of the vortex filaments are not the
dominant sound sources, it has been shown in many investigations
(for instance, Melander et al.21) to be crucial to the merging process.

B. Propagation and Decay of the Acoustic Waves
This section presents the results of the acoustic simulations of both

aspect ratio z0/y0 = 0.3 and 0.5. The simulations were performed
at three different Mach numbers: z0/y0 = 0.3, Ma = {1.4−2, 2.8−2,
and 5.6−2}, z0/y0 = 0.5, Ma = {1.3−2, 2.6−2, and 5.2−2}. Owing to
the symmetry of the flow motion, this implies that the acoustic wave-
length is defined as λ = c0T/2. At the Mach numbers considered,
the disparity in the acoustic wavelength and the flow characteris-
tic length scale is as follows: for z0/y0 = 0.3, λ/y0 = {6.5, 13, 26},
and for z0/y0 = 0.5, λ/y0 = {16.4, 32.8, 65.6}. The relatively large
spread of length-scale ratios enables us to access the applicability of
Powell’s1 theory of vortex sound as it rests on the crucial assump-
tion that flow is compact, that is, λ � y0. This will be discussed in
greater detail in the multipole analysis of the acoustic signals.

The time history of the pressure fluctuations at r = 0.5λ (where r
is the radial distance from the reference axes) is shown in Fig. 9. The
variations in pressure are shown against retarded time, represented
by the symbol t∗. It is clear that there is a significant difference in
the mean of the pressure fluctuations when compared to the MAE
theoretical predictions (which are shown in Fig. 10). This suggests
that at r = 0.5λ the pressure fluctuations are affected by the spatial
distribution of the acoustic source. However, it is expected that the
effect of the source distribution would reduce as the observation
position is moved further away. Our results show that the mean of
the pressure fluctuations decreases as a function of the radial distance
and converges to a constant state for points located at r ≥ 1.5λ. This
implies that at r ≥ 1.5λ the pressure fluctuations are effectively far-
field acoustic signals, as the fluctuations are caused primarily by the
temporal variation of the acoustic source rather than by its spatial
distribution. Because the pressure signals were virtually identical
in form at the different far-field positions, only the pressure–time
histories for r = 2λ are shown (see Fig. 11).

Fig. 5 Instantaneous contours of vorticity for z0/y0 = 0.3. From top to
bottom: tu0/y0 = 0, 0.13, 0.146, 0.162, 0.178, and 0.194. The contour levels
are ωmax/ω0 = 0.224 and ∆ω = 0.0025. Note that ω0 represents the peak
vorticity of core.
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Fig. 6 Instantaneous contours of vorticity for z0/y0 = 0.5. From top to
bottom: tu0/y0 = 0, 0.328, 0.368, 0.409, 0.451, and 0.492. The contour
levels are ωmax/ω0 = 0.305 and ∆ω = 0.003.

Fig. 7 Snapshots of vorticity prior to merging: z0/y0 = 0.3. From top
to bottom: tu0/y0 = 0.43, 0.462, and 0.486. The contour levels are
ωmax/ω0 = 0.204 and ∆ω = 0.002.

The acoustic signals recorded on the axial axis are out of phase
by 180 deg with those on the radial axis. The phase change of the
acoustic signal, or line of nodes, occurs along a radial line at a spe-
cific angle known as the polar extinction angle. Although the time
variation of the pressure trace from an isolated two-dimensional vor-
tex pair shows an approximately sinusoidal pattern,2,4 in the present
study the effect of axisymmetry means the acoustic oscillations con-
sist of a series of sharper peaks and broader troughs. Note that the
number of peaks found for each aspect ratio corresponds to the
number of slip-through instants. Figures 9 and 11 shows pressure
traces at different observation positions. The first part of the sig-
nal, for approximately half of a leap-frogging cycle, is affected by
the initial startup function. The gradual introduction of the acoustic
source through the use of the startup function coupled with only
gentle stretching of the grid meant that there were no obvious re-
flections as the initial transient propagated through the region of
grid stretching. As seen in Figs. 9 and 11, the initial transient and
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Fig. 8 Snapshots of vorticity prior to merging: z0/y0 = 0.5. From top
to bottom: tu0/y0 = 0.918, 0.995, and 1.06. The contour levels are
ωmax/ω0 = 0.204 and ∆ω = 0.002.

subsequent acoustic peaks have comparable amplitude. Reducing
the amplitude and increasing the timescale of the transient so that it
is of the same order as the true acoustic signal, amplitude is sufficient
to prevent the acoustic field at later times from being contaminated
with significant residual noise.

Correlating the time histories of the acoustic pressure fluctuations
with the trajectories of the core centroids, the occurrence of the
acoustic peaks was found to correspond to the slip-through instants.
This finding is consistent with the results of Kambe and Minota6 and
Tang and Ko.10 The acoustic signals displayed a gradual increase
in the amplitude and frequency of oscillations. This is because of
the increase in the induced angular velocity to conserve angular
momentum as the vortex rings start to move closer to each other.
Furthermore, the largest acoustic peak was found to occur at the
instant of the vortex merger.

Figure 12 shows the peak pressure associated with the second
slip-through instant and located at (r, θ) = (2λ, 0 deg) plotted as a
function of the Mach-number range simulated. We observe that the

a)

b)

Fig. 9 Predicted time histories of the far-field acoustic pressure fluc-
tuations at r = 0.5λ. Here, a) z0/y0 = 0.3, Ma = 0.014; and b) z0/y0 = 0.5,
Ma = 0.013. The angles are measured anticlockwise from the positive z
axis.

a)

b)

Fig. 10 Time histories of the acoustic pressure fluctuations (calcu-
lated using the MAE far-field expression) at r = 2λ. Here, a) z0/y0 = 0.3,
Ma = 0.014; and b) z0/y0 = 0.5, Ma = 0.013.
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a)

b)

Fig. 11 Predicted time histories of the far-field acoustic pressure fluc-
tuations at r = 2λ. Here, a) z0/y0 = 0.3, Ma = 0.014; and b) z0/y0 = 0.5,
Ma = 0.013. The angles are measured anticlockwise from the positive z
axis.

Fig. 12 Peak acoustic pressure (second slip-through) at (r, θ) = (2λ,
90 deg) at the three different Mach numbers simulated: ××, z0/y0 = 0.3
and +, z0/y0 = 0.5.

acoustic pressure is proportional to the square of the Mach number.
This relationship is in agreement with the MAE far-field expression.

Instantaneous pressure contours while the vortex system is still
engaged in the leapfrogging motion are shown in Figs. 13 and 14. It
is clear that the pairing of the vortex rings results in an axisymmetric
lateral quadrupole. Comparing the contours for the two aspect ra-
tios, it is also evident that at the lower aspect ratio the far field has a
slightly greater amplitude in the upstream direction. The application
of the MAE technique to the idealized axisymmetric point vortex
model leads to the prediction that the amplitude and frequency of
the acoustic signal remain constant as shown in Figs. 10. This is be-
cause the periodic leapfrogging motion repeats itself indefinitely. In

Fig. 13 Instantaneous contours of the acoustic pressure fluctuations at
t∗u0/y0 = 0.573. Here, (z0/y0) = 0.3 while Ma = 0.014. The contour levels
are pmin = −−2 ×× 10−7, pmax = 2 ×× 10−7 and ∆p = 2 ×× 10−8.

Fig. 14 Instantaneous contours of the acoustic pressure fluctuations at
t∗u0/y0 = 1.548. Here, (z0/y0) = 0.5 while Ma = 0.013. The contour levels
are pmin = −−0.5 ×× 10−9, pmax = 3 ×× 10−9 and ∆p = 0.35 ×× 10−9.

contrast, for the current model, Figs. 9 and 11 show that the signal is
neither periodic nor of constant amplitude. The effects of finite core
size, viscous diffusion, and vortex dynamics cause the amplitude
of the predicted pressure traces to be slightly lower, although there
is an increase in amplitude during the evolution, and the frequency
increases gradually prior to vortex merger. The smaller amplitude,
especially initially, can probably be attributed to the diffusion of the
vortex cores during the evolution. Counteracting this effect is the
increasing frequency as the vortices move toward merger, which in
turn is associated with a growing amplitude of the pressure signal
over a longer time span. Apart from the amplitude variation during
the evolution, it is also clear that there are differences in the wave-
form of the signals, particularly at the troughs. Furthermore, the
deviation from the analytical prediction increases with the aspect
ratio z0/y0, and as such is attributed to the distortion of the vortex
rings during the leapfrogging cycles.

One of the differences between our results and those of Shariff
et al.9 and Tang and Ko10 is that there were no wavy oscillations
found in our time histories of the acoustic pressure. Verzicco et al.11

have suggested that the secondary frequency is related to the nu-
tation of the vortex core. The nutation time is the time taken for a
particle located at the point of maximum tangential velocity to orbit
once around a vortex core. Because both cases have identical core
thicknesses, the secondary frequency is identical for both aspect ra-
tios. With the Gaussian vortex core model, the position of maximum
tangential velocity is located at the core radius e0. The secondary
frequency was calculated to be approximately three orders of mag-
nitude higher than the fundamental frequency. In this study, the
reconstruction of the acoustic forcing by interpolation from a small
number of samples and the arrangement of the grid points in the
acoustic domain are geared toward resolving the acoustic solution
at the fundamental frequency. As a result, the fact that no wavy os-
cillations were found in the present study should not be surprising.
This issue also highlights one of the potential difficulties of numer-
ically solving an acoustic problem with multiple sources at widely
different frequencies.
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C. Decomposition of the Acoustic Signals
One of the limitations of using the MAE technique to predict

vortex-pairing induced sound is that the validity of the analytical
far-field expression away from the asymptotic limit Ma → 0 is un-
clear. Hence, in this study the influence of finite, nonzero Mach
number on the far-field directivity is investigated through perform-
ing acoustic simulations for each aspect ratio z0/y0 at three different
Mach numbers. The predicted acoustic signals are then decomposed
into harmonic modes to quantify the contributions of each term. This
analysis has been used previously by Inoue and Hatakeyama,22 and
it is possible because the acoustic waves are linear. The acoustic
signal can be expressed as a sum of harmonic functions as follows:

p(z, y) = A0(r) +
∑

m

Bm(r) cos(mθ) (3)

a)

b)

c)

Fig. 15 Time histories of the amplitudes of A0 and mth-order cosine
modes. Here, the aspect ratio is (z0/y0) = 0.3. The three different Mach
numbers are a) Ma = 0.056, b) 0.028, and c) 0.014.

where m = 1, 2, 3, . . . . The first term A0 is the zeroth-order mode
while Bm = 1...∞ are the mth-order cosine modes. Note that there are
no sine modes present in the expansion because of the assumption
of axisymmetricity in the flow. The terms A0 and Bm are given as
follows:

A0(r) = 1

2π

∫ π

0

p(r, θ) dθ

Bm(r) = 1

π

∫ π

0

p(r, θ) cos(mθ) dθ

The amplitudes of the harmonic modes from m = 0 to 3 for both
cases are shown in Figs. 15a–15c and 16a–16c. Note that the con-
tributions from modes greater than m = 3 are too small to be of any
significance and as such are not included in the analysis. The values

a)

b)

c)

Fig. 16 Time histories of the amplitudes of A0 and mth-order cosine
modes. Here, the aspect ratio is (z0/y0) = 0.5. The three different Mach
numbers are a) Ma = 0.052, b) 0.026, and c) 0.013.
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of the harmonic modes were obtained by numerically integrating
the pressure fluctuations along a semicircle at r = 1.5λ. Because
the CAA grid is formed from quadrilateral cells, the bilinear method
was used to interpolate the nodal values from the grid onto radial
integration points. The integration method used was Simpson’s 1

3
rule with 50 increments over π . In the MAE analysis of a pair of
interacting inviscid coaxial vortex rings, the spatial dependence of
the far field is represented by the sum of a zeroth-order mode and a
second-order cosine mode. In contrast, it is clear from Figs. 15 and
16 that finite Mach numbers result in other modes being present.
In particular, as the source becomes less compact the amplitude of
the first-order mode becomes comparable to the zeroth-order mode.
This explains the shift in the polar extinction angles as a function of
Mach number as discussed next.

Once the amplitudes of the harmonic modes are calculated, the
contributions of the modes at the second slip-through instant can
be used to determine the polar extinction angles. The acoustic pres-
sure located at the polar extinction angles remains zero and is time
invariant. To calculate the polar extinction angle, the sum of the
harmonic modes is equated to zero, and the harmonic expression is
then iterated numerically.

Table 3 Polar angles of extinction as a function
of Mach number for both aspect ratiosa

z0/y0 Ma(10−2) 1st deg 2nd deg

0.3 5.6 72.5 107.5
0.3 2.8 63.9 116.1
0.3 1.4 59.9 120.1
0.5 5.2 64.1 115.9
0.5 2.6 60.3 119.7
0.5 1.3 60.1 119.9

aThe angles were calculated at the second slip-through instant.

a)

b)

c)

d)

Fig. 17 Sample time trace of the four source terms as presented by Tang and Ko.10 Term 1 is
∑

[I(∂3z/∂t3)], term 2 is 3(∆z̈)İl, term 3 is 3(∆ż)Ïl,
and term 4 is (∆z)(∂3Il/∂t3). The aspect ratio is z0/y0 = 0.3 for panels a and b and 0.5 for panels c and d. Here, panels a and c represent the classical
model results, whereas panels b and d represent the results from the simulations.

The first and second polar angles of extinction, calculated at the
second slip-through instant, are shown in Table 3. It is clear that
as the Mach number is decreased the polar extinction angles ap-
proach the theoretical values for axisymmetric point quadrupoles of
54.7 and 125.3 deg. For aspect ratio z0/y0 = 0.5, there is very little
variation in the polar extinction angles between Ma = 0.013 and
0.026, suggesting that the compact-source assumption is well sat-
isfied. The “converged” numerical polar extinction angles deviate
from the theoretical values by ≈10%. Plausible explanations for the
cause of the deviation might be the effects of finite-core thickness
and/or dynamics of the viscous core. This subject is currently being
investigated by the authors of the present study.

In contrast to the larger aspect ratio, for aspect ratio z0/y0 = 0.3
there is still a significant change in the the polar extinction angles
of the three Mach numbers modeled. Hence, it is not clear that the
compact-source assumption have been fully met. This implies that
further simulations would have to be performed at even lower Mach
numbers in order to determine the threshold Mach number where
the application of Powell’s vortex sound theory is justified. This
highlights one of the limitations of Powell’s vortex sound theory.
It is also clear that full direct numerical simulations would have
to be used for scenarios, where the flow length scale and acoustic
wavelength are comparable.

D. Analysis of the Quadrupole and Monopole Sound Sources
Kambe and Minota6 and Kambe12 used the MAE technique to

study the acoustic radiation of axisymmetric flows with zero swirl
component asymptotic expansions. They showed that the far-field
acoustic signal is defined as follows:

p(z, y, t∗) = ρ0

4c2
0

√
(z2 + y2)

∂3 Q

∂t3

(
cos2 θ − 1

3

)
+

(
5 − 3γ

3

)
∂2 K

∂t2

(4)
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where ∂3 Q/∂t3 is classified as a quadrupole source term and
∂2 K/∂t2 is described as a monopole source because of its respec-
tive far-field directivities. When the motion of the interacting vortex
rings is derived using Dyson’s23 model, the quadrupole sound source
has been shown by Kambe and Minota6 to be related to the rate of
change of the mean axial position of the vortex system. To further
relate the quadrupole source mechanism in terms of the dynamics of
the vortex rings, Tang and Ko10 expanded on Kambe and Minota’s6

analysis and derived a formula for the quadrupole term as follows:

∂3 Q

∂t3
=

∑(
I
∂3z

∂t3

)
+ 3(�z̈) İL + 3(�ż) ÏL + (�z)

∂3 IL

∂t3
(5)

Here the symbol � in the preceding equation represents the differ-
ence operator. The quadrupole term as defined by Tang and Ko10

relates acoustic fluctuations in terms of the positions, velocities,
and accelerations of the vortex cores in the axial direction and the
impulses of the initially leading- and trailing-core centroids.

Comparison is made of the source terms as presented by Tang and
Ko,10 calculated using the classical model and the simulation data.
Figure 17 shows a sample time trace of the four source terms. The
time trace is representative of the leapfrogging motion prior to vortex
merger because the trajectories of the core centroids are largely
repeatable with only small changes caused by viscous dissipation.
The source terms evaluated from the simulation data are compared
with those calculated using the classical model of Dyson.23 It is
clear that the term 3(�ż) Ïl is the dominant term at the slip-through
instant. This finding in consistent with Tang and Ko.10 Also note that
the kinks observed in Figs. 17b and 17d do not imply the presence
of the secondary acoustic component. It is thought to be caused by
the near-field grid spacing in the flow simulation leading to slight
underresolution of high-order derivative terms such as the third-
order time derivatives of the impulse and axial trajectory of the
vortex cores. This is particularly true for the case with the larger
aspect ratio, that is, smaller rings. The monopole source was also
calculated along with the quadrupole sound source and was found
to be approximately two orders of magnitude smaller than the latter.
This is consistent with the findings of Verzicco et al.11

IV. Conclusions
A numerical study into the sound radiation from the mutual in-

teraction of a pair of viscous axisymmetric coaxial vortex rings was
performed. In particular, the effect of the initial toroidal ring radii
was considered. Powell’s1 theory of vortex sound was used as the
acoustic prediction tool. The secondary component (owing to the
nutation of the vortex core) was not considered as it has been shown
to be relatively insignificant compared to the fundamental compo-
nent (leapfrogging cycle).

The results are in broad agreement with that of other investiga-
tors, that is, 1) that the far-field pressure signal is strongly associated
with the leapfrogging motion of the vortex rings, 2) the amplitude
and frequency of the acoustic signal increase gradually over suc-
cessive leapfrogging cycles, and 3) the acoustic fluctuations reach
a maximum at the instant of the merging of the vortices and decay
rapidly thereafter.

Comparison of the numerical results with the matched asymp-
totic expansion (MAE) predictions yielded some interesting obser-
vations. First, the slight difference in the amplitude of the acoustic
signal is attributed to the strong diffusion of the core vorticity, which
occured during the initial stages of the flow. Second, the difference in
the time variation of the acoustic signals (particularly at the troughs)
is related to the distortion of the vortex cores caused by the inclu-
sion of viscous effects and vortex dynamics of finite sized vortex
cores. As the ratio z0/y0 is increased, the core distortion intensified
leading to a greater deviation from the MAE predictions.

The effect of a finite Mach number was analyzed through a multi-
pole expansion of the predicted acoustic field. Using the expansion
relation, the location of the polar angles of extinction can be deter-
mined. We found that the numerical polar extinction angles deviated
from the theoretical values by about 10%. This shift, which is sus-
pected to be caused by the deformation of the core, is currently being
investigated by the present authors.

The flow simulation data were to predict the quadrupole and
monopole source terms. The method of analysis method is based
on Kambe and Minota6 and Kambe.12 The dominant sound source
was found to be the quadrupole. In contrast, the monopole caused by
presence of viscosity was at least two orders of magnitude smaller.
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