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a b s t r a c t

This paper studies the fluid–structure interaction of an elastically mounted square cross-

section cylinder immersed in a free stream. The cross-section is mounted such that its

sides are at 451 to the free stream direction, in a ‘‘diamond’’ configuration, and its motion

is constrained to the transverse direction relative to the flow direction. Apart from the

cross-section, this setup is the same as the majority of single-degree-of-freedom vortex-

induced vibration studies of cylinders. Two-dimensional direct numerical simulations of

this system have been performed. The Reynolds number based on the point-to-point

distance of the cross-section has been fixed at Re¼200). Simulations at this Reynolds

number allow a direct comparison with previous results from circular cylinders, and

therefore focus directly on the impact of the geometry.

The sensitivity of the flow, and therefore the motion of the cylinder, to geometrical

effects is considered. This is done by rounding the two side corners (those pointing across

the flow) at a given radius. For well-rounded corners, the flow behaviour resembles that

of a circular cylinder undergoing vortex-induced vibration. However, below a critical

radius, the dynamics are considerably altered. Highly disordered and irregular wakes and

body motions are observed, as well as a synchronized, periodic PþS wake mode

(Williamson and Roshko, 1988), which consists of a pair of vortices on one side, and a

single vortex on the other side, shed per oscillation cycle, which results in a non-zero

mean lift force. A period-doubled version of this PþS wake is also presented. The spatial

structure, and the spatio-temporal symmetries of each of these modes is reported. The

results show that even though the spatio-temporal symmetry of the flow is unaffected by

the geometry when the body is rigidly mounted (the flow always saturating to a Kármán

vortex street) geometric features such as sharp corners can induce a number of

spontaneous symmetry breaking bifurcations when the body is elastically mounted.

Which of these various modes is observed is shown to be a function of both the corner

radius and the spring stiffness, expressed through the reduced velocity.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Vortex-induced vibration (VIV) is a canonical problem of fluid–structure interaction. Bluff bodies that are long in one
direction perpendicular to a freestream (such as a cylinder) are susceptible to this phenomenon. It is essentially a coupling
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between the body motion, and the periodic shedding of vortices that occurs in the wake of such bodies, known as the von
Kármán vortex street. If the body has some ability to elastically move or deform (which is true of nearly every practical
structure, natural or engineered), there is the possibility of the periodic vortex shedding exciting a resonant frequency,
resulting in large oscillations of the structure.

Typically, large oscillations occur in the cross-stream direction. Because of this, the classic experiment on VIV is that of
a circular cylinder, elastically mounted, yet constrained to move only in the cross-stream direction, immersed in a free
stream. This ‘‘classic’’ setup has been extensively researched, both experimentally and numerically. Many of the pertinent
results can be found in a series of review papers (Bearman, 1984; Sarpkaya, 2004; Williamson and Govardhan, 2004).
While these studies present results using a series of different parameters, there are only four independent parameters
required to define the problem, assuming that the flow is incompressible and Newtonian, and the structure can be
modeled as a damped linear oscillator. These are the Reynolds number Re¼UD=n, the mass ratio m� ¼m=mf , the non-
dimensional spring stiffness k� ¼ kD2=mU2 and the non-dimensional structural damping constant c� ¼ cD=mU. Here, U is
the free stream velocity, D is the length scale of the body (the diameter for a circular cylinder), n is the kinematic viscosity,
m is the sprung mass of the body, mf ¼ rpD2=4 is the mass of fluid displaced by the body, where r is the fluid density, and
k is the spring stiffness. For this paper, the geometry of the body can also be considered as a parameter, in this case
characterized by the corner radius. This is, of course, only one way to modify the basic VIV problem. Others such as
allowing the cylinder to oscillate in the transverse and streamwise direction (Lee et al., 2013), using a flexible cylinder
(Bourguet et al., in press), or adding momentum to the boundary layer (Korkischko and Meneghini, 2012) have all recently
been investigated.

Of interest to this study are the results for very low values of damping, and mass ratios m� ¼Oð1Þ. The dynamics are a
strong function of the spring stiffness, usually expressed through the non-dimensional reduced velocity,
Un
¼U=f nD¼ 1=

ffiffiffiffiffiffiffiffi
ðk�Þ

p
, where f n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk=mÞ

p
is the natural structural frequency. For Reynolds numbers Re¼Oð104

Þ, a
number of regimes have been identified for circular cylinders (Govardhan and Williamson, 2000; Khalak and Williamson,
1999). With increasing Un, the first regime is the ‘‘initial branch’’, characterized by the oscillation amplitude rapidly
increasing with increasing Un, and where the response of the body and the wake are essentially periodic, at a frequency
close to the vortex shedding frequency from a rigid cylinder. Further increasing Un sees the onset of the ‘‘upper branch’’,
characterized by large peak amplitude oscillations, at a frequency closer to the natural structural frequency. These
oscillations also appear to be unstable, and essentially chaotic (Hover et al., 1998; Khalak and Williamson, 1999). In fact,
the recent in-depth controlled oscillation experiments from Morse and Williamson (2010) have confirmed that purely
periodic oscillations at the amplitude and frequency that characterize the upper branch are not stable. Further increasing
Un sees the onset of the ‘‘lower branch’’, characterized by large amplitude, synchronized oscillations of the body motion
and vortex shedding, that appear periodic and very stable. The frequency of the oscillation is closer to the natural
structural frequency (especially if the impact of a negative added mass is incorporated Govardhan and Williamson, 2000).

At lower Re, where the vortex shedding is laminar and purely two-dimensional (essentially Rer200), similar response
regimes for circular cylinders have been identified. Blackburn and Henderson (1996) and Leontini et al. (2006a) have
shown initial, chaotic, and periodic synchronized regimes exist for the low-Re case, indicating that the dynamics are
similar in the two cases. One significant difference between the low- and high-Re cases, however, is the mode of vortex
shedding associated with each regime. For the high-Re cases, variants of the ‘‘2P’’ wake mode, consisting of two pairs of
vortices per oscillation cycle, are observed in the upper and lower branches. For the low-Re cases, ‘‘2S’’ wake modes are
observed, consisting of two single vortices shed per oscillation cycle (similar to the classic Kármán vortex street shed from
a rigid cylinder). The naming of these modes follows the nomenclature of the controlled oscillation study of Williamson
and Roshko (1988). Govardhan and Williamson (2000) presented results that show that the 2P mode is formed by
stretching and splitting of the forming vortex structures in the near wake. It appears that the strain in the near wake in the
low-Re case is not enough to cause this split, hence the difference in wake mode.

Interestingly, in the related problem of a controlled transversely oscillating cylinder (where the body motion is
decoupled from the flow, and externally controlled to be perfectly sinusoidal), the 2P mode still cannot be recovered for
the low-Re, two-dimensional case. This is in spite of the use of very large amplitudes, that induce a large strain in the wake.
Instead, an asymmetric ‘‘PþS’’ mode, consisting of a pair of vortices on one side, and a single vortex on the other side of the
wake, is formed. This is an example of a spontaneous symmetry breaking bifurcation, where the spatio-temporal
symmetry of the flow is different from that of the forcing. Leontini et al. (2006b) showed that in this externally controlled
case, it was possible for this asymmetric mode to lead to positive energy transfer (from the fluid to the structure),
indicating VIV can be supported by this mode. This result supports the VIV simulations of Singh and Mittal (2005), that
showed VIV occurring with a PþS wake mode, but only at values of ReC300, past the threshold where this wake mode is
expected to become three-dimensional (Leontini et al., 2007). However, these results indicate that if the strain in the near
wake is increased, these multi-vortex and asymmetric wake modes resulting from spontaneous symmetry breaking can be
encountered. As the results of this paper attest, this can occur through changes to the geometry as well as changes to Re.

This last point, i.e., the influence of the geometry of the oscillating body, is one that has received little attention with
regard to VIV. Bearman et al. (1987) performed wind-tunnel experiments of an elastically mounted square-section
cylinder, investigating the VIV response, as well as the galloping response at high values of Un. Bokaian and Geoola (1984)
did similar experiments, including experiments using square-section cylinders with rounded corners. These results
indicated that the largest responses were due to galloping (a fluid–elastic instability). However, VIV was present, and the
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amplitude and frequency of response was found to be quite sensitive to the corner radius of the rounded-corner square
section. Recently, water channel experiments of a square cross-section at varying angles of attack were performed by Zhao
et al. (2010) and Nemes et al. (2012). These reported similar VIV results for the square cross-section at 451 (essentially a
diamond cross-section) as for the circular cylinder. However, high-amplitude VIV-type responses, at frequencies half that
of regular VIV, were reported for angles around 201.

A numerical study from Sánchez-Sanz and Velazquez (2009) of a free-floating (with no restoring spring force) square-
section cylinder in a confined channel identified two regimes of response as a function of the mass ratio m�, one essentially
periodic (for high m�), and another essentially chaotic (for low m�). This case is intriguing, as it can be interpreted as being
at Un-1. The highly successful theory of galloping from Parkinson and Smith (1964) predicts that such a case should
oscillate with unbounded amplitude (which could practically manifest as a persistent cross-stream drift in one direction);
however, the effect of the channel walls in the simulations of Sánchez-Sanz and Velazquez (2009) works to limit this
amplitude, in both the high- and low-m� regimes.

More common than VIV studies are externally controlled oscillation studies of non-circular bodies. For example, Deniz
and Staubli (1997) performed controlled oscillation experiments of rectangular- and octagonal-section cylinders. This
study highlighted the importance of timing of the vortex shedding from the trailing edge of these structures to the
direction of energy transfer (energy transfer must be from fluid to structure for VIV to be possible). A recent paper from
Ajith Kumar et al. (2009), which included a thorough literature review, looked specifically at the effect on the flow of
rounding the corners of a square cylinder undergoing controlled oscillations. They found that sharper corners led to
disordered vortex shedding, essentially destroying the synchronization between the oscillation and vortex shedding.

A number of other studies do exist that investigate the impact of corner geometry and other geometrical modifications
on rectangular section cylinders, both rigidly mounted and oscillating. Tamura et al. (1998), in a combined numerical and
experimental study, found either rounding or chamfering the corners of a square-section cylinder led to a significant
decrease in the drag on the rigidly fixed body. A similar conclusion was drawn from the numerical study of Dalton (2003),
for both a square section and a square section at 451, in a ‘‘diamond’’ configuration. Sheard et al. (2009) looked at squares
of various angles of incidence, and found that for the sharp corner diamond case, a symmetry-breaking bifurcation arose,
that could be suppressed simply by rounding the rear corner of the body. This result in particular indicates that even
completely passive geometrical features, that do not modify the symmetry of the system (which includes the geometry
and the domain boundary conditions), can have an impact on the symmetry features of the flow. The controlled oscillation
experiments of Deniz and Staubli (1997) highlighted the impact that corner geometry could have by changing the length of
the afterbody (the body downstream of the separation points of the shear layers), especially on the lift force experienced
by the body, a critical parameter in the excitation of VIV. They also highlighted the importance of identifying whether the
vortex shedding occurred from the leading or trailing edges of the body, a feature that is completely removed when
considering a circular cylinder.

The apparently destabilizing nature of sharp corners makes it difficult to derive phenomenological models of VIV for
these bodies. Typically, these models rely on measuring aerodynamic forces during controlled oscillations, such as the
model from Hartlen and Currie (1970), and that from Staubli (1983). Corless and Parkinson (1988) had some success
applying the model from Hartlen and Currie (1970) to square section cylinder VIV, after combining it with the model for
galloping developed by Parkinson and Smith (1964). This was later extended and improved by Corless and Parkinson
(1993). However, developing such a model is a formidable task, due not only to the coupling between pure VIV features
and fluid–elastic galloping, but also to the fluctuating, and at times chaotic, flow that can occur from controlled
oscillations, which make the reliable measurement of aerodynamic forces very difficult.

This paper shows that the sharpness of the side corners of a diamond (those from which the forming shear layers
separate) has a major impact on the oscillation amplitude, induced forces, and temporal character of the elastically
mounted system. A study of fixed bodies, with various corner radii is presented in Section 2.3, which shows that while the
magnitude of lift and drag forces can be influenced by the corner sharpness, the flow remains periodic. However, the
results for the elastically mounted cylinder, presented in Section 3, show that the corner sharpness can completely change
the type of flow response. Seven modes of shedding and cylinder response are identified. Each of these modes is
characterized by its temporal behaviour and wake mode, which are outlined. The extent of each of these modes, in terms
of corner radius rc and reduced velocity Un is also presented.
2. Methodology and problem setup

2.1. Equations of motion, system parameters and computational method

The problem studied was that of a body, of mass m, mounted on linear springs of stiffness k, immersed in a free stream
of a viscous incompressible fluid. The body was constrained to oscillate only in the cross-stream direction. As such, the
flow was governed by the incompressible Navier–Stokes equations, and the body motion by the equation of motion for a
linear oscillator. To account for the body motion, the Navier–Stokes equations were solved in the frame of reference
attached to the body, and an extra term was added to account for the acceleration of this frame (which was the
acceleration of the body, €y). This method avoids the need for any mesh deformation, resulting in a computation with
Please cite this article as: Leontini, J.S., Thompson, M.C., Vortex-induced vibrations of a diamond cross-section:
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consistent spatial resolution over time. The final non-dimensional system of equations to be solved was

@u

@t ¼�ðu � rÞu�rPþ
1

Re
r

2u� €y,

€y ¼�k�yþ
1

m�
Cl, ð1Þ

where Cl ¼ F l=0:5rU2D is the lift coefficient for the two-dimensional flow. Here, D is the point-to-point distance of the
body. This choice of the length scale D is further explained in Section 2.2.

Note that no mechanical damping is included in the equations of motion. The Reynolds number was held constant at
Re¼200, and the mass ratio was set to m� ¼ 2 for all of the simulations conducted. This value of m� was chosen so that the
body would be light and therefore expected to oscillate with significant amplitude, but not so light as to be near any
critical mass (Govardhan and Williamson, 2002; Ryan et al., 2005), below which the dynamics may not be generic. The
value of Re was chosen to be in the vicinity of the upper limit for two-dimensional flow for a circular cylinder. The Floquet
stability analysis of Sheard et al. (2009) indicates that the wake of the sharp corner diamond becomes three-dimensional
at lower Re than this. However, it is expected that the transverse oscillation will be stabilizing with regard to three-
dimensional perturbations, and keeping Re constant at this value allows the focus of this study to remain on the impact of
the geometry only.

The system parameter that has been varied was that of the spring stiffness, k�. However, following the convention of
other VIV studies, the stiffness has been expressed through the reduced velocity, Un. Previous studies of VIV of circular
cylinders (Govardhan and Williamson, 2000; Khalak and Williamson, 1999) have ‘‘corrected’’ the reduced velocity by
including an added mass term in the calculation of the natural frequency, to account for the inertia of the fluid that needs
to be moved, derived from the inviscid added mass. However, for non-circular bodies, it is not obvious that the inviscid
added mass will be as applicable due to the variation in the effective angle of attack of the body as it oscillates. Therefore,
Un has been formed without this added mass correction.

The equations have been solved using a spectral-element method, employing seventh-order tensor-product Lagrange
polynomials as shape functions for the spatial discretization. Temporal discretization has been done via a three-way time-
splitting scheme. This scheme results in separate sub-step equations for the advection and body acceleration terms, the
pressure term, and the diffusion term. Further, by enforcing continuity at the end of the pressure sub-step, a Poisson
equation is formed that can be solved for the pressure field. The advection sub-step equation was solved using a second-
order semi-implicit predictor–corrector method, whereas the diffusion sub-step equation was solved using a second-order
Crank–Nicholson scheme. Details of the spectral-element and time-splitting schemes can be found in Karniadakis and
Sherwin (2005). This code has been used and extensively validated for similar problems, such as three-dimensional
cylinder flows (Thompson et al., 1996), controlled transverse-, rotational- and streamwise-oscillating cylinder wakes
(Leontini et al., 2006b; Lo Jacono et al., 2010; Leontini et al., 2011), and cylinder VIV studies (Leontini et al., 2006a).

The boundary conditions applied in the accelerating frame of reference were a no-slip condition at the body surface, a
free stream condition at the inlet and sides of the domain (a constant streamwise component with a transverse component
equal to the negative of the body velocity), and a Neumann boundary condition for the velocity, with fixed pressure,
applied at the domain outflow. A Neumann boundary condition, with the value of the normal gradient calculated directly
from the Navier–Stokes equations, was used for the pressure at the body surface and free stream domain boundaries.
The domain extended 7.07D upstream, 18.38D to either side, and 28.99D downstream of the body centre position.
All simulations used an initial condition of the flow and body at rest, with the flow impulsively started.

2.2. Geometry and choice of length scale

The nominal geometry tested was that of a square cross-section, inclined at 451 to the incoming flow, in a ‘‘diamond’’
configuration. This configuration presents two possible length scales; the side length of the square, or the distance from
point-to-point, which is the frontal width seen by the flow. For all the results presented here, the length scale, D, is the
point-to-point distance (for Re and Un). Note that the square side length is simply D=

ffiffiffi
2
p

.
Formally, D has been defined as the distance from front to back of the diamond. This is due to the fact that the side

corners have been progressively rounded, to investigate the impact of fixing the separation points of the developing shear
layers. Therefore, a geometric parameter, the corner radius, has been introduced. Throughout this paper, the corner radius
is presented as a percentage of the side length, rather than the point-to-point distance, rc ¼

ffiffiffi
2
p

r=D, where r is the corner
radius. Using this definition, rc ¼ 0 represents the limiting sharp corner case, and rc ¼ 0:5 represents the case where the
foci of each of the curved corners is the exact centre of the cross-section. Values in the range 0rrc r0:2 have been tested.
The definition of D and rc are shown schematically in Fig. 1.

2.3. Validation and fixed body simulations

This section presents results from a series of simulations for the rigidly mounted, non-oscillating case, to assess the
impact of rounding the corners of the geometry on this limiting case. As mentioned in Section 2.1, the code employed has
been extensively validated in previous studies of bluff body flows, including vortex-induced vibration. However, due to the
Please cite this article as: Leontini, J.S., Thompson, M.C., Vortex-induced vibrations of a diamond cross-section:
Sensitivity to corner sharpness. Journal of Fluids and Structures (2013), http://dx.doi.org/10.1016/
j.jfluidstructs.2013.01.002i

http://dx.doi.org/10.1016/j.jfluidstructs.2013.01.002
http://dx.doi.org/10.1016/j.jfluidstructs.2013.01.002
http://dx.doi.org/10.1016/j.jfluidstructs.2013.01.002
http://dx.doi.org/10.1016/j.jfluidstructs.2013.01.002


Fig. 1. The geometry of the body tested. The corner radius rc ¼
ffiffiffi
2
p

r=D (the radius as a fraction of side length) varies from rc ¼ 0 (the sharp corner limiting

case) to rc ¼ 0:2. D is defined as the distance from the front to back corner.
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small geometric length scales involved in this study (especially for finite, but small corner radii), a resolution test has been
carried out to ensure the accuracy of the results.
2.3.1. Fixed body simulations

As a primary aim of this paper is to establish the impact of the sharp corners, simulations of rounded corner, rigidly
mounted bodies have been performed. The quantities of these simulations that are reported here are those most pertinent
to vortex-induced vibration, namely the Strouhal number, and the peak lift force coefficient. For completeness, the mean
drag coefficient is also reported.

Two sets of simulations have been performed; one set with a Reynolds number based on D, the streamwise length as
shown in Fig. 1, fixed at Re¼200 and a second set with Retrans ¼ 200, based on the cross-stream length, where
Retrans ¼UðD�rcð2

ffiffiffi
2
p
�1ÞÞ=n. Therefore, for this second set of simulations, Re increases linearly with rc . For the largest

corner radius of this study, rc ¼ 0:20, Re¼226.5 when Retrans ¼ 200.
Fig. 2 shows the results for both these sets of simulations. For all of these fixed body simulations, the flow settled to a

purely periodic, classic von Kármán vortex street. The Strouhal number representing the frequency of this vortex street is
shown in Fig. 2a. It is shown to be weakly dependent on the corner radius. Some Reynolds number dependence is shown
by the difference between the two sets of simulations. However, at rc ¼ 0:20, where the difference in Re for the two sets is
larger than 10%, the difference in Strouhal number is less than 2.5%. The peak lift coefficient shows a similar behaviour in
Fig. 2b, in that the Reynolds number dependence is relatively weak. However, the dependence on rc is reasonably strong,
confirming that the sharp corners have a significant impact on the shear layer separation and wake vortex formation. For
similar reasons, the mean drag is shown in Fig. 2c to be strongly dependent on the rc , while only weakly dependent on Re.

These results validate the choice to keep Re constant, based on the point-to-point distance D, as it seems the geometric
parameter rc has a larger impact than any ‘‘error’’ induced by a varying length scale. Also, the smooth variation of all the
parameters plotted in Fig. 2 gives a high degree of confidence in the results at small corner radii, indicating that the
simulations are adequately resolved to capture the effect of the small geometrical change. A more complete resolution
study is presented in Section 2.3.2.
2.3.2. Resolution tests for small corner radii

The body motion, especially for the bodies with small corner radii, can be very complex, even chaotic as is described in
Section 3.3. For this reason, it is important to establish that this complex motion is due to the geometrical effect of the
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Fig. 3. Lissajou plots, of lift against displacement, for six different spatial resolutions, with resolution increasing from left to right, top to bottom. The data

are from a simulation with rc ¼ 0:01, Un
¼ 4:95. The plots show that the response is qualitatively similar for p46.

Table 1
Maximum body displacement, yp, maximum lift coefficient, ClMAX

, and maximum drag coefficient, CdMAX
, as functions of the

order of the polynomial shape functions, p, from a simulation for a body of rc ¼ 0:01 and Un
¼ 4:95. These peak values vary

little with the change in polynomial order, indicating that p¼7 is adequate to capture the physics of the problem.

p yp ClMAX
CdMAX

4 0.68599 0.86168 4.08687

5 0.70205 1.02799 4.14989

6 0.70534 1.02140 4.15620

7 0.69378 1.01586 4.16968

8 0.69383 1.01498 4.14920

9 0.70539 0.94421 4.11450

J.S. Leontini, M.C. Thompson / Journal of Fluids and Structures ] (]]]]) ]]]–]]]6
sharp corner, and not some residual effect of under-resolution. Therefore, a resolution test for a case with rc ¼ 0:01, and
Un
¼ 4:95, has been carried out.
Fig. 3 shows Lissajou plots, of lift coefficient against body displacement, for six different spatial resolutions. To vary the

spatial resolution, the macro-element mesh was kept the same, and the order of the polynomial shape functions was
increased, a process known as p-refinement. The plots show that for p46, the responses are qualitatively similar, covering
a bounded region in the Lissajou plot, but never quite repeating, indicative of a chaotic response. These plots also show
that, for p46, there is a quantitative agreement between the peak lift and displacement values.

Table 1 shows values of peak body displacement, lift and drag coefficients for the same simulations. The table shows
that the changes in these peak quantities with a change in polynomial order are relatively minor, typically less than 1%
compared with the results at p¼7.

These results indicate that the simulations are adequately resolved at p¼7, and it is this resolution that has been used
for the simulations that have generated the results of the current study.

3. Elastically mounted simulations

3.1. Peak amplitudes

The traditional measure of VIV response has been the peak amplitude of oscillation. There are two primary reasons for
this. The first is the importance in engineering applications to identify the deflections, and therefore stresses, encountered
by a structure undergoing VIV. The second is that the traditional model of VIV has been of a lightly damped harmonic
oscillator (the body) undergoing a periodic forcing from the vortex shedding. This model admits only harmonic body
oscillations, meaning that only the peak amplitude and frequency of oscillation are required to completely describe the
motion.

This simple model ignores the coupling between the body motion and the flow. This is not a problem during fully
synchronized VIV, such as occurs during ‘‘lower branch’’ oscillations, or during VIV of very light structures (Govardhan and
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Williamson, 2000, 2002). During these synchronized motions, the motion and the transverse fluid force is almost purely
sinusoidal, and the assumptions made in the model are valid. However, the picture is not as clear when the flow is not
completely synchronized to the body motion. Typical ‘‘upper branch’’ oscillations occur with the flow intermittently
switching between two apparently periodic states, neither of which are stable. Hover et al. (1998) reported chaotic
oscillations at values of Un corresponding to the upper branch. Leontini et al. (2006a) and Blackburn and Henderson (1996)
have also reported chaotic oscillations during VIV from two-dimensional simulations for Reo200.

Fig. 4a presents a measure of the peak amplitude of oscillation for all of the geometries considered. Also presented on
the plot is the peak amplitude of oscillation of a circular cylinder at the same Re and m�. The data presented is the
maximum deviation from the mean position of the body. For symmetric oscillations about y¼0, this is the same as the
peak amplitude, and provides a more meaningful measure of magnitude for asymmetric oscillations. Fig. 4b presents the
absolute value of the mean body position. This gives a direct indication of when the body oscillates asymmetrically.

There are a number of features of Fig. 4 that warrant some explanation. It is clear that the magnitude and symmetry of
the oscillations is a function of both the corner radius and Un.

In one sense, the trend of maximum deviation with Un is similar to that of a circular cylinder. For very low Un, there is
essentially no response. Then over a range of Un beginning with UnC3:5, there is a significant oscillation amplitude. In the
case of a circular cylinder, this significant response is driven by a synchronization between the body oscillation and vortex
shedding frequencies, and occurs when the natural frequency of the structure is in the vicinity of the vortex shedding
frequency from a stationary body. As expected, it appears that similar dynamics occur for the non-circular geometries.
(a) (b)

Fig. 4. (a) Maximum deviation from the mean body position as a function of Un , for all the corner radii and a circular cylinder. Cylinder data is presented

in the top graph (�), with diamond geometries of decreasing corner radius presented below (B), finishing with the sharp corner case (~). (b) The mean

body position for the same bodies as a function of Un .
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For Un412:5, the response amplitude decreases again, as the resonance-type effect between the vortex shedding and
natural structural frequencies is lost. Three broad response regimes can therefore be defined from the data of Fig. 4a: a
low-Un regime, where the body remains essentially stationary; a moderate-Un regime, where there is significant body
motion; and a high-Un regime, where the body oscillates with a lower, but still significant amplitude. In this high-Un

regime, the amplitude of oscillation approaches a constant value with increasing Un that is an inverse function of rc.
Of particular interest is the behaviour in the moderate-Un regime. The peak amplitude and mean body displacement, in

this regime, are strong functions of rc. Fig. 4 indicates that there is a number of unique response types within this regime.
The nature of these difference responses is explained in Sections 3.3 and 3.4.

3.2. Frequency spectra

The variation of the peak amplitude and the mean body displacement with Un, particularly for the bodies with rc r0:05,
indicates that the peak amplitude does not fully characterize the response, and other information is required. Of interest is the
frequency response of the system. For this reason, frequency spectra covering a range of Un and rc are presented in this section.
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Fig. 5. Frequency content as a function of Un for (a) the circular cylinder, and for the diamond geometries with decreasing corner radii of (b) 0.20,

(c) 0.15, (d) 0.10, (e) 0.05, (f) 0.02, (g) 0.01, (h) 0.0 (the sharp corner case). The dashed line represents the natural frequency, f n, the solid horizontal line

represents the Strouhal frequency for the rigidly mounted body. The chaotic regime is represented by broadband noise, normal periodic shedding by a

single concentrated value, and the abnormal periodic regime by distinct, but multiple frequencies. With decreasing radius, the emergence of first the

abnormal periodic regime, and then the chaotic regime, is clear.
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Each plot of Fig. 5 shows the frequency content (where frequency has been non-dimensionalized by D=U) of the body
oscillation for a given value of rc , as a function of Un. These plots were constructed by taking the frequency spectrum (using
a Fourier transform) for a given value of Un, and then stacking the spectra for all the values of Un next to each other. To
make the dominant frequencies clearly visible, each individual spectrum (for a single value of Un) was normalized by the
amplitude of the dominant component, so that the levels varied from 0 to 1. While this means that the level at a particular
frequency as a function of Un cannot be ascertained directly, a very clear picture of the variation of the dominant
frequencies is presented.

Fig. 5a shows the progression of the frequency content of the body oscillation for a circular cylinder. there is a small
band, 3:0rUnr3:3, which corresponds to chaotic oscillations. This is represented in Fig. 5a as the dark region in the
frequency range 0:17r f r0:22, the chaotic oscillations requiring this band of frequencies for their description. This small
band of chaotic oscillation is important as it is within this band that the highest peak oscillations occur. With the onset of
synchronized periodic shedding at Un

¼ 3:3, this broadband character disappears, and only a single frequency component
remains. In this synchronized regime, the frequency of oscillation approaches a frequency similar to the natural structural
frequency of the body with increasing Un. Finally, when synchronization is lost for Un48:4, the response is dominated by a
single frequency close to the Strouhal frequency (the frequency of vortex shedding from a fixed cylinder).

The picture is similar for the frequency response of the diamond geometry with the most rounded corners, rc ¼ 0:20,
presented in Fig. 5b. Again, the onset of significant amplitude oscillations, around Un

¼ 3:5, sees the frequency response
dominated by a single frequency somewhere near the natural structural frequency. This continues until UnC7:0. From
thereon, the single frequency of response stays close to the Strouhal frequency for the fixed body.

Fig. 5c and d shows the frequency response for the bodies with rc ¼ 0:15 and rc ¼ 0:10, respectively. These plots are
similar to the case at rc ¼ 0:20, except for one important difference; the addition of significant energy at a frequency half of
the primary frequency over a small band of Un near Un

¼ 5:6. This is particularly clear for the rc ¼ 0:10 case, over the range
5:6rUnr7:8. This range coincides with that where the mean body position umeana0, in Fig. 4b. The combined
observations indicate that the oscillation in this range is periodic, but over a period close to half of the natural structural
frequency, as well as being asymmetric.

Further reduction of the corner radius to rc ¼ 0:05 sees the frequency response become even more complicated,
represented in Fig. 5e. As well as an extended asymmetric shedding range, the frequency response over the range
2:8rUnr6:4 is more broadband, indicating the onset of chaotic, or at least temporally complex, oscillations.

In fact, for corner radius rc-0, this appears to be the general case. With increasing Un, first a regime of temporally
complex oscillations exists, followed by a regime of periodic, yet asymmetric oscillations, finally followed by a regime of
smaller amplitude, yet apparently periodic oscillations, at a frequency close to the Strouhal frequency of the fixed body.
Fig. 5f, g, h, shows this behaviour reflected in the frequency response for corner radii rc ¼ 0:02, rc ¼ 0:01, and the limiting
sharp-corner case rc ¼ 0:00, respectively. These plots show that as the corner radius is decreased, the range of Un over
which the temporally complex oscillations exist extends. Similar to the circular cylinder, comparison of the frequency
response plots with Fig. 4a shows that the largest peak oscillation amplitudes are achieved in this complex oscillation
regime.

Combining the information presented in Figs. 4 and 5 leads to defining three broad categories of response, as a function
of the corner radius, rc . First, for large corner radii, approximately rc 40:15, the flow response is similar to that of the
circular cylinder. This cylinder-like response is perhaps not surprising, as the rounded corners do not fix the separation
points of the shear layers, and therefore the vortex formation process is not markedly different from that of a circular
cylinder, in spite of the sharp leading and trailing edges.

At the other extreme, for the limiting case rc ¼ 0, the response is markedly different. This ‘‘diamond-like’’ response has
significant ranges of Un resulting in temporally complex and asymmetric shedding. Due to the fact that these complex
oscillations also lead to the largest peak amplitudes of oscillation, they warrant closer inspection, and are therefore the
subject of Section 3.3.

Between these two extremes, the response varies from ‘‘diamond-like’’ to ‘‘cylinder-like’’. With increasing rc , the ranges
of Un for the temporally complex oscillations, and the asymmetric oscillations, reduce. The complex oscillations appear to
completely disappear at a smaller value of rc than the asymmetric oscillations.

3.3. Further investigation of the temporally complex oscillations and flow regimes of the sharp corner case

The information presented in Figs. 4 and 5 indicate that a number of flow regimes exist. The spectra of Fig. 5 show that
for small corner radii (including the limiting sharp-corner case rc ¼ 0:0), there is a region of temporally complex
oscillations that encompass the range of Un where the largest peak oscillations occur. In fact, this region encompasses a
series of flow subregimes, which are expanded upon in this section. The sharp corner case appears to generate almost all of
the flow regimes observed, and so it is used as an example case wherever possible in this section, allowing the flow
regimes observed to be presented as a function of Un.

For very low Un, the flow is essentially periodic, with a frequency close to the Strouhal frequency for the fixed body.
This is to be expected, for as Un-0, the spring stiffness k�-1, and the system approaches the rigid case. The vortex
shedding is in the classic von Kármán mode, or a 2S configuration, consisting of a single vortex on each side of the wake in
each cycle. This regime is therefore designated mode I.
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By Un
¼ 2:8, the flow has gone through a symmetry-breaking bifurcation, as evidenced by the non-zero mean

displacement shown in Fig. 4b. This symmetry breaking can correspond to a change in shedding mode, to a PþS type
mode, consisting of a pair of vortices on one side of the wake, and a single vortex on the other, each cycle of oscillation, or
even modes that are essentially asymmetric 2P modes, consisting of two pairs of vortices per cycle. This mode has been
designated mode II.

Increasing Un beyond Un
¼ 3:1 sees this mode II become unstable, and the onset of temporally complex oscillations.

A number of subregimes are present in this regime, and to further investigate this region, Lissajou plots of the body
displacement against the lift force on the body have been produced. Examples of these plots for the sharp-corner case
rc ¼ 0:0 are shown in Fig. 6 for simulations covering the range 2:8rUnr8:5. To accompany these plots, the individual
frequency spectra for these simulations are presented in Fig. 7. These plots contain the same information as that used to
produce Fig. 5b, but give a finer-scale picture of the variation of the frequency content in the complex oscillation regime.

Fig. 6a shows the Lissajou plot for Un
¼ 2:8, just before the onset of complex oscillations. The closed curve, that is

slightly offset from the centre of the plot, is indicative of the periodic, but asymmetric nature of mode II. The frequency
spectrum for this case in Fig. 7a shows that almost all of the energy is contained in the component at the primary
frequency of oscillation (except for a small component at three times the primary frequency, a common occurrence
during VIV).

The loss of stability of mode II sees this periodicity disappear. For Un
¼ 3:5, the curve traced out in the Lissajou plot of

Fig. 6b is more disordered, but not completely chaotic. Rather the flow is close to periodic, with a slight drift, or essentially
quasiperiodic. The frequency spectrum of the motion shown in Fig. 7b is noisier than the purely periodic case, but most of
the energy is still concentrated in the primary frequency of oscillation. This is not the classic signature of quasiperiodicity
(which would be a series of well-defined peaks), but shows that the flow is not ‘‘very’’ disordered, in some sense. This
mode has been designated mode III.

Further increasing Un to Un
¼ 4:2 sees the level of disorder increase, and the trace in the Lissajou plot of Fig. 6c follows a

highly irregular trajectory. This, coupled with the increasingly broadband signature of the frequency spectrum of Fig. 7c,
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Lissajou plots, of the lift force against the body displacement, for the sharp corner rc ¼ 0 case, with increasing Un . The portion of the time history

670rtr707 has been used. (a) Un
¼ 2:8; (b) Un

¼ 3:5; (c) Un
¼ 4:2; (d) Un

¼ 4:9; (e) Un
¼ 5:7; (f) Un

¼ 6:4; (g) Un
¼ 7:1; (h) Un

¼ 7:8; (i) Un
¼ 8:5.
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Fig. 7. Spectra of body displacement for the sharp-corner rc ¼ 0 case. (a) Un
¼ 2:8; (b) Un

¼ 3:5; (c) Un
¼ 4:2; (d) Un

¼ 4:9; (e) Un
¼ 5:7; (f) Un

¼ 6:4;

(g) Un
¼ 7:1; (h) Un

¼ 7:8; (i) Un
¼ 8:5. The dashed line represents the natural frequency, f n, the solid horizontal line represents the Strouhal frequency for

the rigidly mounted body. Note that these are the same cases as the Lissajou plots presented in Fig. 6.
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indicates that the oscillations at this Un are indeed chaotic. The Lissajou plots show some oscillations similar to the
quasiperiodic mode III, and some more similar to the quasiperiodic mode IV (outlined below). Therefore, it seems that this
chaos is generated through mode competition between these two states (in fact due to the asymmetry of both of these
modes, this mode competition could be between four modes; mode III biased to either side, and mode IV biased to
either side).

At Un
¼ 4:9, an interesting phenomenon arises; the flow apparently reorganizes, and the oscillations once again become

periodic. However, the period is around twice as long as the period of the initial periodic regime encountered at Un
¼ 2:8,

and appears to be a sort of period-doubled mode of oscillation. This can be confirmed from two measurements. First the
Lissajou plot of Fig. 6d shows a closed curve, indicating periodicity, that makes two distinct loops. This indicates that there
is a primary frequency of oscillation, at which the body oscillates up and down, however two of these up-and-down
oscillations need to be conducted before the process repeats exactly. Second, the spectrum of Fig. 7 shows a primary
frequency similar to that of the initial periodic regime, corresponding to the frequency of one up-and-down oscillation,
with a significant second component at half of the primary frequency, corresponding to the frequency of repetition. This
mode, designated mode V, reappears for Un47:8.
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This organization is only maintained over a very small range of Un, as simulations at Un
¼ 4:8 and Un

¼ 5:2 both result in
chaotic oscillations. The example at Un

¼ 5:7 clearly shows the return to a chaotic state, and an irregular trajectory being
traced in the Lissajou plot of Fig. 6e. The spectrum of Fig. 7e also shows a broadband signature. This appears to be the same
mode competition as encountered at Un

¼ 4:2.
Further increases in Un see the flow gradually become more ordered. Focusing first on the Lissajou plots, as Un progresses

from Un
¼ 6:4, to Un

¼ 7:1, to Un
¼ 7:8 (Fig. 6f–h), the area covered by the trace appears to reduce, with subsequent loops

almost retracing the path of the previous loop. The spectra of Fig. 7f–h also reflect this, becoming more ‘‘spiky’’ than broadband,
indicating that the flow is closer to quasiperiodic than chaotic. These oscillations are quasiperiodic, based around the
subharmonic mode V. Therefore, these quasiperiodic oscillations have been designated mode IV.

For Un47:9, the flow synchronizes to a new, subharmonic, periodic state, mode V. This is clear in the Lissajou plot of
Fig. 6i, which again shows a closed, double-loop curve. Again, this double-loop curve is indicative of a period-doubled
state, and the significant energy at half of the primary frequency of oscillation shown in the spectrum of Fig. 7i confirms
this. As previously mentioned, this mode V is the same as that found at Un

¼ 4:9, even though the two are separated by a
region of mode competition and quasiperiodicity. One explanation for this is that the stability boundary for mode V is a
complicated shape in the parameter space consisting of Un, Re, and m�. The flow may also be bistable, and dependent on
initial conditions. Further investigation is required to completely understand this phenomenon.

Finally, increasing Un beyond Un
¼ 12:7 sees the flow return to a classic vortex street, and again oscillate at a frequency

close to the Strouhal frequency for a rigid body. In this sense, the oscillations are similar to mode I. However, the
oscillation amplitude is significantly higher than mode I, and there is a difference in the timing of vortex shedding.
Hence, these oscillations are designated mode VI.
3.4. Flow regimes as a function of Un and corner radius

The flow regimes identified for the sharp corner case in Section 3.3 are applicable to all of the geometries tested. A map,
outlining these flow regimes in the Un,rc plane is presented in Fig. 8. These regimes have been delineated based on
temporal behaviour, and vortex shedding pattern and timing relative to the body motion.

There are some features of Fig. 8 that are easy to describe. The onset of significant oscillations with increasing Un

appears to be relatively insensitive to the corner radius, occurring around Un
¼ 2:8. For small corner radii, this occurs with

a transition to mode II; for the large corner radii, this occurs with a transition to mode VII. These two modes are very
similar physically, the only difference being a slight asymmetry in mode II, resulting in a non-zero mean body
displacement.

For large values of Un, the flow settles to mode VI, regardless of corner radius. The value of Un at the onset of mode VI is
however an inverse function of rc . For small values of rc , the transition to mode VI is from mode V, whereas for large rc ,
the transition to mode VI is from mode VII.

Beyond these features, the picture is far more complex, and the boundaries on the map of Fig. 8 are not as definitive,
and therefore have been marked with dashed lines. The two quasiperiodic modes, mode III and mode IV, appear to have
very complex stability boundaries. These two modes, as well as large regions of chaotic flow appear to jointly occupy the
same region of the map. It is possible that the flow is bistable at many of these values, or that small ‘‘tongues’’ of periodic,
quasiperiodic and chaotic response are interleaved throughout this region.
Fig. 8. A map of the flow states encountered as a function of corner radius rc and Un . Simulations were run at rc ¼ 0, 0.01, 0.02, 0.05, 0.10, 0.15, 0.20, and

steps of Un
¼ 0:14. The various wake states are designated by roman numerals. Definitive borders are marked with solid lines(—); dashed lines (- - -)

mark boundaries that are not definitive, due to bi-stability or mode competition.
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The mechanisms leading to chaos also appear to be quite complex. For the sharp corner case, for values of Un around
Un
¼ 4:2, the flow appears to become chaotic via intermittency, whereas for Un

Z5:1, there seems to be some mode
competition between mode III and mode IV. At higher corner radii, the flow seems to switch between the two possible
solutions of mode V; one with a positive mean lift, one with a negative mean lift.

3.5. Vortex shedding patterns for each of the flow regimes

Each of the flow states mapped in Fig. 8 presents a unique vortex shedding pattern. The wide range of possible states,
particularly for the sharp corner cases, is a result of the interaction of vortices being shed from the sharp corner
(essentially a leading edge) and the sharp trailing edge of the body. Images of vorticity for each state, along with
identification of the salient features of the vortex formation and shedding process, are presented in the following sections.

3.5.1. Mode I

Mode I consists of relatively small oscillations, however these oscillations can be chaotic, regardless of corner radius. This
chaotic fluctuation does not disappear until synchronization to the periodic, but asymmetric, mode II, or the periodic mode VI. It
is hypothesized that these fluctuations are a direct consequence of the sharp trailing edge of the body, which leads to a complex
interaction between the forming vortices being shed from the side corners of the body, and smaller vortices formed in the
recirculation regions along each of the rear edges. Evidence for this interaction can be found in the animations of the flow found in
the online supplemental material (Video 1 and Video 2). It is the interaction of these vortex systems that results in chaos (Fig. 9).

Supplementary material related to this article can be found online at doi: http://dx.doi.org/10.1016/j.jfluidstructs.2013.01.002.

3.5.2. Mode II
Mode II consists of a mode that oscillates periodically at a frequency close to the natural structural frequency. This

mode is asymmetric, with a non-zero mean body displacement, and non-zero mean lift. This asymmetry is reflected in the
vortex shedding, yet the exact configuration of vortices in the wake depends on the values of Un and rc.
Fig. 10. A series of images of vorticity of mode II. The images show progressions in time, reading left to right, for two cases (the time instant of each

image is stated below the image). The top row is for rc ¼ 0, Un
¼ 2:8, the bottom row is for rc ¼ 0:1, Un

¼ 3:5. The sequence of images progress from

displacement close to zero, maximum displacement, displacement close to zero, minimum displacement. Both examples have a non-zero mean lift, but

different configurations of vortices in the wake. The relevant pairs and single vortices are annotated with a P and S, respectively, and marked with black

and white circles, in the first image of each sequence. The top example shows a weak PþS wake (the pair consisting of a strong negative (black) vortex

and a much weaker weak positive (white) vortex). The bottom example shows a 2P vortex configuration, with pairs consisting of almost equal strength

positive and negative vortices.

Fig. 9. An example of the flow for mode I. Instantaneous snapshots of vorticity at t¼ 415:78 of the flow (a) close to the body and (b) of the far wake for

rc ¼ 0, Un
¼ 2:12. The vortex formation and shedding process is complicated by the presence of the sharp corners.
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Fig. 10 shows two examples of mode II. In the first, for rc ¼ 0:0 and Un
¼ 2:8, the asymmetry manifests as a PþS mode,

albeit one where the second vortex in the pair is very much weaker than the first. In the second, for rc ¼ 0:1 and Un
¼ 3:5,

the flow is an asymmetric 2P mode, where the pair on one side is stronger than the other.
The vortex formation is influenced by the interaction between the separating shear layer and the sharp trailing edge.

For the case that develops into the PþS mode, the forming vortex on one side is augmented by the sweep of the sharp
trailing edge across the wake. This sweep forms a trailing edge vortex, on the opposite side of the wake to the leading edge
vortex of the same sign. The trailing edge vortex pairs with the forming vortex of opposite sign, while the leading edge
vortex is shed alone to form the single vortex. For the 2P mode, both forming vortices are chopped by the trailing edge.
This process is illustrated in the animations provided in the online supplementary material (Video 3 and Video 4), for the
same case as Fig. 10.

Supplementary material related to this article can be found online at doi: http://dx.doi.org/10.1016/j.jfluidstructs.2013.
01.002.

This interaction between leading and trailing edge is critical to the formation of this mode. For the cases where the
leading ‘‘edge’’ is essentially removed (by making the top and bottom corners more rounded), this asymmetric mode
disappears. It also seems that the sharp trailing edge has a very important role to play, and these asymmetric modes may
disappear if the trailing edge is rounded. This fits with the observation of Sheard et al. (2009), that asymmetry occurred in
the wake of a rigid sharp corner diamond, but was eliminated by rounding the trailing edge.
3.5.3. Mode III
With the onset of mode III, mode II loses its periodicity, becoming quasiperiodic. This quasiperiodicity is generated

physically not by a significant change in the vortex shedding process, but by some complicated vortex pairing and merging
in the wake at around 8D downstream. This pairing and merging causes a modulation of the lift force on the body, and
therefore causes an amplitude modulation of the body displacement.

Fig. 11 shows this process in a series of images. The amplitude modulation period is around 3–3.5 times the oscillation
period. The sequence of images covers three oscillation periods, showing images taken at the maximum body
displacement in each direction. A portion of the time history of the body displacement is shown at the top of the image,
showing the amplitude modulation, and the time of each image is marked with a dot and the dotted line. The images show
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Fig. 11. A series of images of vorticity showing the structure of mode III, for Un
¼ 3:1 and rc ¼ 0. The images progress in time from bottom to top, left to

right. The bottom row of images show the wake when the body is at maximum negative displacement, the top row show the wake when the body is a

maximum positive displacement. The images are half a period apart, and cover three consecutive oscillations. The time of each image is marked with the

black circle (�) and the dotted line in the time history at the top of the figure. The images show that the vortex formation and shedding immediately

behind the body is similar in each oscillation, yet there is complex vortex pairing and merging occurring approximately 8D downstream, leading to

amplitude modulation of the body displacement.
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that the wake is essentially in a PþS mode, and that in the near wake, the vortex formation and shedding process is quite
similar in each consecutive oscillation. However, small changes in the timing of the vortex formation and shedding relative
to the body oscillation leads to complicated vortex dynamics further downstream. In all the images, the organized
structure of the pure PþS wake quickly breaks down, and the shed vortices pair and merge in a complicated manner
approximately 8D downstream. Animations of the shedding process close to the body, and of the wake further
downstream, are providing for the same case as Fig. 11 in the online supplementary material (Video 5 and Video 6).

Supplementary material related to this article can be found online at doi: http://dx.doi.org/10.1016/j.jfluidstructs.2013.
01.002.

As Un is increased further beyond the loss of stability of the original mode II, the pairing and merging becomes more
complicated, and the wake rapidly becomes chaotic.
3.5.4. Mode IV
Mode IV is a quasiperiodic mode, with a slow growth and decay of the oscillations over a long time. The basic

oscillations are very similar to those of mode V (described in Section 3.5.5), except for this long period modulation.
Fig. 12 shows a portion of the time history for an example of mode IV, for the sharp corner case rc ¼ 0 at Un

¼ 7:8.
Animations of this case are provided in the online supplementary material (Video 7 and Video 8). Approximately two long
periods are shown. The time history shows that the basic oscillations consist of a type of period doubled mode, where
every ‘‘even’’ oscillation reaches a higher maximum displacement than the previous ‘‘odd’’ oscillation. However, there is an
amplitude modulation of this basic oscillation cycle. Over one cycle of this modulation (starting, for example, around
t¼ 590 in the time history of Fig. 12), the higher ‘‘even’’ maxima decrease, and the lower ‘‘odd’’ maxima increase, until
they essentially match (around t¼ 780 in the time history of Fig. 12). At this point, the cycle begins again, with a sudden
increase in the first ‘‘even’’ maximum of the next cycle.

Supplementary material related to this article can be found online at doi: http://dx.doi.org/10.1016/j.jfluidstructs.2013.
01.002.

This amplitude modulation coincides with a subtle change in the phase of the vortex shedding with respect to the body
motion. The images of Fig. 12 show the progression of the wake configuration over a cycle of amplitude modulation.
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Fig. 12. An example of mode IV, for Un
¼ 7:8 and rc ¼ 0. Time history of the body displacement, showing approximately two long cycles of the

quasiperiodic oscillation, and a series of images of vorticity showing the development of the wake over this cycle. The instant of each of the images is

marked on the time history with a black dot and dotted vertical line. The time history shows, in general, every ‘‘even’’ oscillation reaches a higher

maximum than the previous ‘‘odd’’ oscillation. Over a quasiperiodic cycle, the ‘‘even’’ maxima decrease, and the ‘‘odd’’ maxima increase, until they match,

and the cycle begins again. Each bottom-top pair of images shows an ‘‘odd–even’’ pair of maxima. The images show that over the quasiperiodic cycle, the

flow oscillation is relatively subtle, basically consisting of small changes of phase between the body oscillation and vortex shedding, which results in

changes in vortex placement, and therefore wake width.
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Each of the images is taken at an instant where the body displacement is close to a local maximum. The top row of images
represent ‘‘even’’ cycles, with the higher local maxima, and the bottom row of images represent ‘‘odd’’ cycles, with low
local maxima. Each top image is approximately one oscillation cycle forward in time with respect to the corresponding
bottom image. The images show that the wake development is not dramatic, with small changes in the timing of vortex
shedding resulting in small changes of vortex placement and therefore wake width. However, close to the end of
the modulation cycle (represented by the final two images), the ‘‘even’’ and ‘‘odd’’ cycles become harder to distinguish, the
similar displacement amplitude resulting in similar wake configurations.

As Un is decreased from the mode IV to mode V transition (around Un
¼ 7:9), the period of the amplitude modulation is

reduced. An indication of this can been seen in the spectra presented in Fig. 7. The spectra representing mode IV
(particularly those for Un

¼ 7:8 and Un
¼ 7:1, Fig. 7h and g respectively) show the same primary frequencies (f¼0.11 and its

harmonics), but secondary frequencies around this gradually moving away with decreasing Un. The frequency of the
amplitude modulation is governed by the difference between the primary frequency and these secondary frequencies.
Therefore, as these secondary frequencies move further from the primary, the frequency of the amplitude modulation
increases, and the period decreases.

3.5.5. Mode V
Mode V consists of a mode that oscillates periodically, at a frequency close to the natural structural frequency.

However, two oscillations are required for the flow to repeat, and so this mode is period doubled.
Fig. 13, and the animations provided in the online supplementary material (Video 9 and Video 10), shows a series of

images taken over one period of repetition. The series of images start at an instant where the body displacement is close to
zero, then at a maximum displacement, then again close to zero, then at a minimum displacement. This sequence is
repeated twice due to the period doubled nature of the mode. Note that the images are not equi-spaced in time, as the two
oscillation cycles that make up one full period are not quite the same length, nor are they completely sinusoidal.

Supplementary material related to this article can be found online at doi: http://dx.doi.org/10.1016/j.jfluidstructs.2013.01.002.
During the upstroke of the first cycle (the top row of Fig. 13) the top shear layer stays attached to the body, all the way

to the sharp trailing edge, where it eventually separates. This separated shear layer goes on to form a weak vortex shed
from the trailing edge, that is paired with the forming vortex from the bottom shear layer, that is essentially shed from the
sharp corner leading edge. This process is illustrated in the first two images of Fig. 13. During the downstroke, the top
shear layer separates from the sharp corner leading edge, and rolls up into a vortex that is shed into the wake. This is
illustrated in the third and fourth images of Fig. 13.

The vortex formation and shedding process for the second cycle is similar, but subtly shifted in phase compared to the
first cycle. The pair is still formed during the upstroke, but the weak vortex, shed from the upper shear layer from the sharp
trailing edge of the body, is shed much later, practically when the body has begun its downstroke. This is shown in the
fifth, sixth, and seventh images of Fig. 13. This same process seems to weaken the forming leading edge vortex of the upper
shear layer that is formed and eventually shed near the end of the downstroke. Comparison of the eighth image with the
fourth image of Fig. 13 shows that the shed negative vortex (shed from the top leading edge) is weaker (smaller) in the
second cycle compared to the first.

3.5.6. Mode VI
The final identified mode for the sharp corner case, mode VI, occurs for relatively high values of Un, typically Un412:7.

This mode is periodic, and particularly for the sharp corner cases, still results in a significant oscillation amplitude.
Fig. 13. A series of images of vorticity of mode V, for Un
¼ 8:5 and rc ¼ 0. Images show the progression in time, reading left to right, top to bottom. The

sequence of images progress from displacement close to zero, maximum displacement, displacement close to zero, minimum displacement, repeated

twice. Comparing the top row to the bottom row shows the difference between two subsequent oscillations. The wake configuration is a PþS mode, but

essentially period doubled.
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Fig. 14 shows a series of images of mode VI, separated in time by a quarter of an oscillation cycle. This mode oscillates
at a frequency close to the Strouhal frequency for a fixed body, similar to mode II and mode VII. However, unlike mode II,
this mode is spatio-temporally symmetric, similar to the classic Kármán vortex street. Also, comparing Fig. 14 with Fig. 15
(both of which show the body at approximately the same four points in the oscillation cycle, for mode VI and mode VII
respectively) shows that there is a change in the phase between the body oscillation and the vortex shedding. Further
confirmation of this behaviour is found in the animations of the case of Fig. 14 provided in the online supplementary
material (Video 11 and Video 12). This is similar to the behaviour for a circular cylinder, which sees the phase f between
the body motion and the lift force (which is heavily influenced by the vortex shedding) jump from close to 01 to around
1801 in experiments (Govardhan and Williamson, 2000), or slide between these same two limits in lower Re simulations
(Leontini et al., 2006b).

Supplementary material related to this article can be found online at doi: http://dx.doi.org/10.1016/j.jfluidstructs.2013.01.002.
Fig. 16 shows the phase between the body displacement and the lift force, for the body with the most rounded corners,

rc ¼ 0:2. This phase was obtained by finding the maximum of the cross-correlation between the two signals. This figure
shows that, like the experiments using circular cylinders, there is a distinct jump in the phase from close to 01 to around
1801. In fact, it is this change in phase that delineates mode VI from mode VII, as the two have the same spatio-temporal
symmetries and basic organization of vortices in the wake.

3.5.7. Mode VII
The last clearly identifiable mode is mode VII. This mode occurs only for the well-rounded corner bodies. The wake

configuration of this mode is the classic Kármán vortex street, or the 2S mode. The frequency of oscillation is similar to the
Fig. 15. A series of images of vorticity of mode VII, for Un
¼ 3:5 and rc ¼ 0:2. Images show the progression in time, reading left to right, top to bottom.

The sequence of images progress from displacement close to zero, maximum displacement, displacement close to zero, minimum displacement.
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Fig. 16. Phase between the body displacement and lift force, for rc ¼ 0:2, as a function of Un . The sudden jump from 01 to 1801 delineates mode VI from

mode VII.

Fig. 14. A series of images of vorticity of mode VI, for Un
¼ 14:1 and rc ¼ 0. Images show the progression in time, reading left to right, top to bottom.

The sequence of images progress from displacement close to zero, maximum displacement, displacement close to zero, minimum displacement.
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natural structural frequency. This mode is similar in behaviour to the asymmetric mode II, apart from the fact that it
maintains the spatio-temporal symmetry of the Kármán vortex street. Again, animations of the case outlined in Fig. 15 are
also provided in the online supplementary material (Video 13 and Video 14).

Supplementary material related to this article can be found online at doi: http://dx.doi.org/10.1016/j.jfluidstructs.2013.01.002.
3.6. Further discussion of mode competition leading to chaos

Chaos through mode competition or mode interaction occurs in a variety of fluid-mechanical systems (Crawford and
Knobloch, 1991). The work of Ciliberto and Gollub (1984) showed mode competition between stationary wave patterns in
the Faraday experiment (where a layer of fluid with a free surface is oscillated vertically at a set amplitude and frequency)
could lead to either slowly varying-amplitude oscillations or more complex chaotic oscillations. Their heuristic model was
able to produce many of the features of the full system.

In a system where the patterns are not stationary, but periodic, the addition of a slowly varying amplitude essentially
renders the flow quasiperiodic. Therefore, it may be expected that mode competition will lead to quasiperiodicity and
chaos in the wake of an elastically mounted bluff body. This is in fact observed for the elastically mounted diamond
studied here.

The study of Crawford and Knobloch (1991) explains that, from a theoretical point of view, mode interactions arise
when there are two separate solutions which bifurcate from a given base state. Ciliberto and Gollub (1984) showed that, in
a practical sense, this means mode competition is likely to arise in regions of the parameter space that separate regions
dominated by different modes. The chaotic region shown in Fig. 8, between mode III and mode IV (themselves
quasiperiodic ‘‘versions’’ of the periodic mode II and mode V), is such a region.

Further qualitative evidence of mode competition between mode II and mode V leading to chaos is presented in Fig. 17,
which shows the time history of oscillation and six snapshots of vorticity for a case in the chaotic region of parameter
space, Un

¼ 5:7 and rc ¼ 0. The time history shows that the oscillation is modulated in an irregular way, while the
snapshots show that at times the wake resembles the wake of mode II (shown in Fig. 10), and at other times resemble the
wake of mode V (shown in Fig. 13). The flow essentially oscillates irregularly between these two patterns. While not
unequivocal, the results indicate the presence of mode competition.
Fig. 17. Qualitative evidence for chaos driven by mode competition, for Un
¼ 5:7 and rc ¼ 0. Time history of the body displacement, and a series of images

of vorticity showing the changes in wake vortex organization over time. The instant of each of the images is marked on the time history with a black dot

and dotted vertical line. The images are organized such that the progression in time is from top to bottom, left to right. The top row of images show

instants where the near wake is similar in structure to the periodic mode II; the bottom row show instants where the near wake is more similar to the

periodic but subharmonic mode V. The images show that the flow essentially oscillates irregularly between these two patterns.
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4. Concluding remarks

A systematic parameter study of diamond cross-sections undergoing VIV has been performed, specifically investigating
the impact of the sharpness of the side corners. These results have been compared with those for the canonical bluff body,
the circular cylinder.

For rigid (non-oscillating) bodies, it has been shown that the lift and drag forces are strong functions of the sharpness of
these corners. However, the configuration of the wake is essentially the same in all cases, and is the classic Kármán vortex
street. However, for the elastically mounted bodies, it has been shown that, particularly for sharp corner bodies, the flow
response is markedly more varied than for the circular cylinder. At least six different flow regimes, as a function of Un, can
be identified, many with distinct symmetry properties. Of particular interest is the disappearance of a high-amplitude
regime that is synchronized to a frequency near the natural structural frequency, and the appearance of a chaotic regime,
with higher peak amplitudes than those achieved from a circular cylinder, that exists over a significantly wide band of Un,
for corner radii rc r0:10.

As the side corners are progressively rounded, the flow response moves from ‘‘diamond-like’’ to ‘‘cylinder-like’’, as the
number of flow regimes possible as a function of Un decreases. For corner radii rc 40:15, the response types are similar to
those encountered for a circular cylinder.
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