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Abstract

Two-dimensional simulations of flow past both an elastically-mounted cylinder and an externally-driven oscillating cyl-
inder were performed at a Reynolds number of Re = 200. The results were compared to determine if the oscillations of the
driven-oscillation model were consistent with the oscillations observed in the elastically-mounted system. It was found that
while this is the case, there is considerable sensitivity to input forcing. This sensitivity could explain observed discrepancies
between experimental results for the two systems.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

Vortex-induced vibration (VIV) of bluff structures can occur whenever a bluff structure is immersed in a
fluid stream. If the frequency of this flow-induced vibration is close to a natural frequency of the bluff struc-
ture, large-scale oscillations can occur, potentially resulting in the failure of the structure.

In an attempt to study the fundamental aspects of VIV, simplified experimental models are often used. The
most common of these is an elastically-mounted cylinder constrained to oscillate transversely to the incoming
flow. The behaviour of this system is dependent on a set of non-dimensional parameters including the Rey-
nolds number, Re, the scaled mechanical system natural frequency, f �N, and the damping ratio, f. These param-
eters are defined as follows. The Reynolds number is Re = UD/m, where U is the freestream velocity, D is the
cylinder diameter, and m is the kinematic viscosity. The natural frequency is fN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�=ð1þ CA=m�Þ

p
=2p where

k* = k/m, CA is the added-mass coefficient (CA = 1 for a circular cylinder for inviscid flow), k is the spring con-
stant, m is the cylinder mass per unit length, m* = m/mf, and mf is the mass of displaced fluid. This form of fN

therefore includes an added-mass effect of the fluid, and is the natural frequency of the submerged cylinder.
This can be non-dimensionalised by multiplying by D/U to give f �N ¼ fND=U . Note that while the inviscid
added mass is a well-defined constant, the effective added mass can vary significantly in flows associated with
vortex-induced vibration [1]. For the cases examined here, the mass ratio is large enough so that the added
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mass correction to the natural frequency is relatively small. Finally, the damping ratio is defined as f = c/
(4pmfN) where c is the mechanical damping constant.

Many studies have been made of this system, including the early work of [2], and the recent studies of [3,4].
An extensive recent review is given in [1]. While simplified, this model is still subject to the complexity of cou-
pled fluid–structure interaction.

It is possible to write down an equation of motion for the coupled fluid–structure system with the body
force applied by the fluid as a right-hand side forcing term, and the left-hand side including the spring force
and damping force of the mechanical system. Thus the system can effectively be decoupled, although, of
course, the fluid forcing is a function of the mechanical setup of the system. From this point of view, given
the form of the fluid-forcing signal, it should be possible to accurately predict the motion that the elasti-
cally-mounted cylinder would undergo. In particular, if the forcing is sinusoidal, by running a series of
models with different forcing amplitudes it should be possible to predict the response of the elastically-
mounted case. This can be done by monitoring the energy transfer from the fluid to the cylinder over a
cycle for each model. If the energy transfer for a particular model matches the energy loss due to
damping, then the predicted amplitude should correspond to that observed in the elastically-mounted
case.

The forced system is dependent upon Re, the normalised amplitude A* = ymax/D, where ymax is the
transverse oscillation amplitude, and the normalised frequency of oscillation, f* = fD/U, where f is the fre-
quency of oscillation. The transverse driven oscillating cylinder has been studied by many authors, including
[5–7].

The agreement between the predicted amplitude responses from driven-oscillation experiments, and
observed responses from VIV experiments, is not always good, even when the vorticity structure of both wakes
appear to resemble each other quite closely. In particular, the predicted energy transfer over a cycle appears to
be in contradiction. The energy transfer is quantified as the work done on a unit length of the cylinder by the
fluid over one cycle of oscillation. This is given by
E ¼
Z

T
F Lvdt; ð1Þ
where E is the work done over the period T, FL is the lift force per unit length, v is the transverse velocity and
t is the time. This equation can be normalised to the form
CE ¼
Z

T �
CLv� ds ð2Þ
where CE is the energy transfer coefficient, T* = TU/D is the normalised period, CL = FL/(1/2qU2D) is the lift
coefficient, and q is the fluid density, v* = v/U is the normalised transverse velocity, and s = tU/D is norma-
lised time.

During experiments, the sign of CE is inferred from the sign of the phase angle between the lift force on the
cylinder, and the cylinder displacement. The reasoning for this inference can be found in [8].

Given this reasoning, some attempts have been made at directly predicting VIV from driven oscillation
results. The study of [9] had only limited success, and prescribed a limiting maximum amplitude during
VIV that has since been exceeded [10]. A later study [11] only found agreement between predictions and exper-
iments over a small range of oscillation frequencies. The more recent direct comparison of [12] showed these
discrepancies quite clearly. In a recent review this discrepancy led [13] to ponder whether it was at all possible
to model VIV with pure-tone driven oscillation.

The results presented in this paper were obtained at a Reynolds number Re = 200, using two-dimensional
simulations. The results indicate that at this value of Re driven-oscillation predictions can be consistent with
the energy transfer characteristics of VIV, if the values of the input parameters, A* and f* are matched closely
to the values obtained during VIV. It is shown that changes in either the value of A* or f* of the order of 1%
can result in a change in the value of CE of 25% during driven oscillation. While these results are two-dimen-
sional and laminar, it is hypothesised that this level of sensitivity could explain the discrepancy between the
two systems during higher Re experiments.
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2. Computational method

2.1. Mathematical formulation

The incompressible Navier–Stokes equations are solved in an accelerated frame of reference attached to the
cylinder in both the VIV and driven-oscillation simulations. To allow this, an extra (non-inertial) forcing term
is introduced into the momentum equation rendering the system to be solved as
ov

os
¼ rP þ 1

Re
ðr2vÞ � ðv � rÞvþ duF

ds
j ð3Þ
and
r � v ¼ 0; ð4Þ

where v is the non-dimensional velocity, s is non-dimensional time, P is the kinematic pressure and duF/dsj is
the introduced forcing term, which is just the acceleration of the reference frame.

2.2. Time advancement

A high-order three-step time-splitting scheme was employed in the solution of the velocity and pressure field
for both the VIV and driven-oscillation flows. The three steps account for the advection, pressure and diffusion
terms of the Navier–Stokes equation. The pressure and diffusion terms were treated the same way for both prob-
lems. The pressure field was evaluated by forming a Poisson equation by taking the divergence of the equation
for the pressure, and enforcing continuity at the end of the substep. The diffusion term was evaluated with the
theta form of the Crank–Nicholson scheme. This results in a Helmholtz equation. Both the Poisson equation for
the pressure and the Helmholtz equations for the viscous terms, lead to linear matrix problems, once the equa-
tions are discretised in space. The matrices are inverted at the start of the timestepping procedure; subsequently,
the effects of continuity (pressure) and viscous diffusion at each timestep only involve matrix multiplies.

Because the convection term is nonlinear, it is generally treated with an explicit (third-order) Adams–Bash-
forth method. For the VIV case, there is strong coupling between the fluid and the structural response. The
explicit approach becomes unstable and the overall timestepping has to be treated semi-implicitly. This is done
by iterating through the three substeps and structural update until the velocity and pressure fields, and the
cylinder motion converge. Note that except for the first iteration, the advection term is treated by a semi-impli-
cit Adams–Moulton method, which improves the stability. Typically, it takes two or three outer iterations to
establish convergence, however, the timestep can generally be chosen to up to an order of magnitude greater
than the Courant timestep, which controls the non-iterative approach used for the forced oscillation
simulations.

For the VIV simulations, the motion of the cylinder was solved as part of the solution procedure. The fol-
lowing equation governs the motion:
m€y þ cy þ ky ¼ F L. ð5Þ

For the driven-oscillation problem, the cylinder position at any time was prescribed by the driving function,
y ¼ ymax cosð2pf sÞ; ð6Þ

where ymax and f were prescribed through A* and f*. This allowed the additional forcing term in the Navier–
Stokes equations to be expressed explicitly. Further details of the time-splitting method can be found in
[14,15].

2.3. Spatial discretisation

A spectral-element technique was employed for all the simulations performed. The spatial domain was dis-
cretised into 508 elements, with the majority concentrated in the wake and boundary-layer regions. Some care
was taken to construct a near-optimal mesh, and domain size and resolution studies were conducted to val-
idate the predictions. This macro-element mesh is shown in Fig. 1. Within each element, the mesh geometry,



Fig. 1. The mesh used for both the VIV and driven-oscillation simulations.
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as well as the velocity and pressure fields, were represented by eighth-order tensor-product polynomials, asso-
ciated with Gauss–Lobatto–Legendre quadrature points. Details of the approach and implementation have
been provided elsewhere, e.g., [15,16].

Boundary conditions were set to u = U and v = vcyl at the inlet, top and bottom boundaries, where u and v

are the x and y velocity components, respectively, and vcyl is the cylinder velocity. At the cylinder wall, a
no-slip condition was imposed. Higher-order boundary conditions [14] are used for the pressure gradient at
no-slip boundaries and at the far-field boundaries. At the outlet, the pressure is fixed and the normal velocity
gradient is set to zero.

3. Results

3.1. Vortex-induced vibration

To allow a comparison between vortex-induced vibration (VIV) and driven-oscillation predictions, a set of
VIV results were first obtained. For all of these simulations, a mass ratio of m* = 10 was used, where m* is the
ratio between the mass of the cylinder structure and the mass of displaced fluid. A damping coefficient was
used that yielded a damping ratio of f = 0.01, resulting in a combined mass-damping parameter of m*f = 0.1.

The natural frequency of the mechanical system, fN, was varied by altering the value of the spring constant,
k. Three distinct regions of amplitude response were observed, with the highest magnitude response occurring
at values of fN close or equal to the shedding frequency, or Strouhal frequency, of a stationary cylinder, fSt. At
these values of fN, the shedding frequency of the wake and the oscillation frequency of the cylinder were
observed to synchronise with approximately the natural frequency of the structure, f � fN. This response
regime was labelled the synchronisation region. Outside this region, shedding and the cylinder oscillation
was at approximately the same frequency as the shedding from a fixed cylinder, f � fSt.

This synchronisation region can be clearly identified in Fig. 2a and b. Fig. 2a shows A* plotted against the
normalised natural frequency f �N. This plot clearly shows the sudden jump to larger amplitudes corresponding
to the onset of synchronisation, and the sudden decrease in amplitude of oscillation with the loss of synchro-
nisation. Fig. 2b shows the ratio of response frequency f to the natural frequency fN, plotted against the nor-
malised response frequency f*. This plot shows the sudden synchronisation of the wake to the natural
frequency, as the natural frequency approaches the wake-shedding frequency of the stationary cylinder, fSt.

3.2. Synchronisation during driven oscillation

Presented in Fig. 3a are the synchronisation boundaries for the driven cylinder case, in the A* versus f*

plane. Synchronisation during driven oscillation is caused by the motion of the cylinder overriding the
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Fig. 2. (a) A* versus normalised natural frequency. The largest amplitudes occur between f �N ¼ 0:16 and f �N ¼ 0:22, bracketing the
shedding frequency from a stationary cylinder, fSt (- - -). (b) The ratio of response frequency f to natural frequency fN, versus normalised
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Fig. 3. (a) Synchronisation boundaries for the driven oscillation case. ( ) represents data points used for synchronisation boundary. (—)
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shedding frequency from a stationary cylinder, fSt. It is therefore the cylinder oscillation frequency that con-
trols the oscillation of the wake. The fact that the VIV results mainly fall inside this boundary implies that the
cylinder oscillation controls the wake oscillation during synchronised VIV.

While the lower frequency synchronisation boundary presented in Fig. 3a is well defined, the upper bound-
ary is not and requires further work to clearly define. This boundary is difficult to define due to the high sen-
sitivity of the system to input frequency. For a given amplitude, varying the normalised oscillation frequency
by as little as 1% could change the magnitude of the lift force on the cylinder by as much as 25%.

In this same region of parameter space, it is also observed that the VIV results fall outside the driven oscil-
lation synchronisation boundary. This is not so surprising, as the VIV oscillation is moving further from a
pure sinusoid in this region, acquiring a significant variation in amplitude over time that is not purely periodic.
All the VIV results that fall inside the synchronisation boundaries of the driven oscillation are very close to
purely sinusoidal, suggesting that the points outside the boundary are not completely synchronised, but under-
going a transition, with intermittent periods of synchronisation interspersed with periods of unsynchronised
vortex shedding.

3.3. Energy transfer during driven oscillation

For driven oscillation to be a useful model of VIV, it needs to exhibit similar energy transfer characteristics
to the VIV case. During steady-state, synchronised VIV, the overall energy transfer to the mechanical system
must be zero. Alternatively, the work done on the cylinder by the fluid will be equal to the work dissipated by
mechanical damping. Hence, CE during VIV retains the same definition as during driven oscillation. For
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driven oscillation to model VIV, it must return a positive value of CE in regions of the A*, f* plane where VIV
occurs. For this study, CE was only calculated during synchronisation, hence the value of CE was the same for
any period of oscillation.

Fig. 3b shows a line of CE = 0, effectively dividing the A*, f* plane into CE > 0 and CE < 0 zones. It shows
an upper limit on A* for CE > 0, indicating a limit on the amplitude possible during VIV, if the driven oscil-
lation is modelling VIV accurately.

Also plotted are the amplitudes of VIV cases, and all of these fall in the CE > 0 region. This result is encour-
aging, and indicates that at the Re tested, the driven oscillation using a pure-tone oscillation is capturing the
energy transfer characteristics of VIV. It also shows that the VIV cases occur close to the transition from posi-
tive to negative CE. The small positive difference can be attributed to the energy required by the system to
account for energy lost through damping.

The proximity of the VIV cases to the boundary between positive and negative CE again highlights the
importance of matching the input frequency closely, as high gradients of CE during driven oscillation are
observed in this area of the parameter space.

This sensitivity is shown in Fig. 4. Fig. 4a shows the change in CE with increasing frequency for a fixed
amplitude. It is shown that as soon as CE becomes positive, it rapidly increases with increasing frequency f*.

Fig. 4b shows the change in CE with increasing amplitude for a fixed frequency in the synchronisation
range. Here, CE displays a sensitive dependence on the value of A*, especially as A* approaches A* > 0.35. This
range of A* is that experienced during synchronised VIV. The high sensitivity of the CE value of the driven
oscillation system on its input parameters highlights the difficulty in using driven oscillation results to predict
or model VIV. Changes in the input parameters (A* and f*) of the order of 1% can result in changes of CE of
up to 25%, or in it reversing sign.

4. Conclusions

Experimental work has been unable to capture all of the characteristics of vortex-induced vibration, espe-
cially the energy transfer characteristics. However, this numerical study has made good progress, showing that
for the parameter regime considered here at least, VIV occurs where it is predicted by driven oscillation, and
the behaviour VIV causes is well predicted by driven oscillation simulations.

This numerical study has shown that the driven oscillating system is highly sensitive to the amplitude of
oscillation A*, and the oscillation frequency f*, especially in the region of parameter space where VIV occurs.
Changes of the order of 1% in either can change the magnitude of the energy transfer coefficient, CE, by the
order of 25%. In some critical instances, this can also result in the sign of CE reversing.

While the Reynolds number, Re, is low compared to experiments, the discovery of this high sensitivity
could help to provide an explanation as to why driven oscillation experiments predict VIV should not occur
when it actually occurs at its largest amplitudes. It remains to be seen whether three-dimensional simulations
at higher Reynolds number can improve the predictions made.
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