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A combined numerical and experimental study examining vortex-induced vibration
(VIV) of a neutrally buoyant tethered sphere has been undertaken. The study covered
the Reynolds-number range 50 6 Re . 12 000, with the numerical (50 6 Re 6 800) and
experimental (370 6 Re . 12 000) ranges overlapping. Neutral buoyancy was chosen to
eliminate one parameter, i.e. the influence of gravity, on the VIV behaviour, although,
of course, the effect of added mass remains. The tether length was also chosen to
be sufficiently long so that, to a good approximation, the sphere was constrained to
move within a plane. Seven broad but relatively distinct sphere oscillation and wake
states could be distinguished. For regime I, the wake is steady and axisymmetric,
and it undergoes transition to a steady two-tailed wake in regime II at Re = 210.
Those regimes are directly analogous to those of a fixed sphere. Once the sphere
begins to vibrate at Re ' 270 in regime III, the wake behaviour is distinct from
the fixed-sphere wake. Initially the vibration frequency of the sphere is half the
shedding frequency in the wake, with the latter consistent with the fixed-sphere wake
frequency. The sphere vibration is not purely periodic but modulated over several base
periods. However, at slightly higher Reynolds numbers (Re ' 280), planar symmetry
is broken, and the vibration shifts to the planar normal (or azimuthal) direction, and
becomes completely azimuthal at the start of regime IV at Re = 300. In comparison,
for a fixed sphere, planar symmetry is broken at a much higher Reynolds number
of Re ' 375. Interestingly, planar symmetry returns to the wake for Re > 330, in
regime V, for which the oscillations are again radial, and is maintained until Re= 450
or higher. At the same time, the characteristic vortex loops in the wake become
symmetrical, i.e. two-sided. For Re > 500, in regime VI, the trajectory of the sphere
becomes irregular, possibly chaotic. That state is maintained over the remaining
Reynolds-number range simulated numerically (Re 6 800). Experiments overlapping
this Reynolds-number range confirm the amplitude radial oscillations in regime V
and the chaotic wandering for regime VI. At still higher Reynolds numbers of
Re > 3000, in regime VII, the trajectories evolve to quasi-circular orbits about the
neutral point, with the orbital radius increasing as the Reynolds number is increased.
At Re = 12 000, the orbital diameter reaches approximately one sphere diameter. Of
interest, this transition sequence is distinct from that for a vertically tethered heavy
sphere, which undergoes transition to quasi-circular orbits beyond Re= 500.
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1. Introduction
Vortex-induced vibration (VIV) of structures is of practical interest to many fields

of engineering; for example, it can cause vibrations of heat exchanger tubes, and
it influences the dynamics of offshore risers. It is important to the design of civil
engineering structures such as bridges and chimneys stacks, as well as to the design
of marine and land vehicles, and it can cause large-amplitude vibrations of tethered
structures in the ocean. These examples number only a few of a large range of
problems where VIV is important. The practical significance of VIV has led to many
fundamental studies, many of which are discussed in the comprehensive reviews of
Sarpkaya (1979, 2004), Griffin & Ramberg (1982) and Williamson & Govardhan
(2004). As the wakes and the vortex shedding patterns of bluff bodies are closely
related to VIV, the literature of the sphere at rest is to be reviewed first; the review of
VIV of bluff bodies will then follow.

The wake transitions of a sphere are remarkably different from those of the circular
cylinder (Johnson & Patel 1999; Tomboulides & Orszag 2000). A major difference is
that the wake of a sphere becomes asymmetrical prior to a transition to unsteady flow,
whereas the cylinder wake becomes unsteady before asymmetric structures appear in
the wake (Williamson 1988).

Taneda (1956) performed an experimental study of the flow past a sphere being
towed through a tank, for Reynolds numbers 5 < Re < 300. By extrapolating the
linear relationship between the measured recirculation bubble length and logRe
to zero, he obtained a transition Reynolds number for flow separation from the
sphere of ReS1 = 24, within some uncertainty due to the difficulty in identifying and
quantifying small recirculation bubbles. Recent numerical computations have improved
this estimate to ReS1 = 20 (Tomboulides, Orszag & Karniadakis 1993; Johnson & Patel
1999; Tomboulides & Orszag 2000), which is also consistent with an experimental
study by Dennis & Walker (1971).

Natarajan & Acrivos (1993) predicted that the first bifurcation of the steady
axisymmetric wake of a sphere occurred at ReS2 = 210, with an azimuthal mode
number m = 1. This instability was predicted to occur through a regular (steady
to steady flow) transition. They predicted that a secondary mode occurs at ReS3 ≈
277.5. This secondary instability was predicted to occur through a Hopf bifurcation
to unsteady flow, with an azimuthal symmetry of m = 1. Despite the axisymmetric
base flow not providing a physical representation of the wake beyond the primary
non-axisymmetric instability, the predicted Hopf mode was still qualitatively consistent
with the experimental observations of the onset of unsteady flow in the wake
(270 < ReS3 < 300), such as the descending liquid-drop experiments of Magarvey &
Bishop (1961a,b), which produced some beautiful images of the wake. In their second
paper, Magarvey & Bishop (1961b) reported experiments over a wide Reynolds-
number range 0 < Re < 2500. Their experimental rig enabled detailed images of the
trailing wakes to be obtained. Attention was paid to classifying the observed wakes,
which were summarized as follows: class I (0 < Re < 210) exhibits a single-thread
wake, class II (210 < Re < 270) exhibits a double-thread wake, classes III to V
(270 < Re < 700) exhibit planar-symmetric unsteady wakes, and class VI (Re > 700)
exhibit asymmetrical aperiodic wakes. Various experimental and numerical studies on
the unsteady wake from a solid sphere show that the wake consists of vortex loops
or hairpins that shed downstream from the sphere, in the same plane as that of the
steady double-threaded wake (Johnson & Patel 1999; Leweke et al. 1999; Ormières &
Provansal 1999; Ghidersa & Dušek 2000; Thompson, Leweke & Provansal 2001).
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The stability of the sphere wake was studied using the complex wave amplitude
Stuart–Landau equation (Ghidersa & Dušek 2000; Thompson et al. 2001). The
coefficients of the linear and cubic terms of the Landau model were estimated from
non-axisymmetric numerical computations close to the transition Reynolds numbers.
The initial asymmetric transition was found to be a regular-type transition, occurring
at ReS2 = 212, and the subsequent transition was identified as being a Hopf transition
at ReS3 = 272. Both transitions occur through continuous supercritical bifurcations, and
hence no hysteresis is expected in the vicinity of either transition. The Hopf transition
in the wake of a sphere was the subject of an experimental study by Schouveiler &
Provansal (2002), who verified the supercritical nature and determined Landau model
coefficients experimentally.

Experiments and numerical computations performed by Johnson & Patel (1999)
found the axisymmetric wake to undergo a regular bifurcation through a shift of
the steady recirculating bubble behind the sphere from the axis at ReS2 ≈ 211. They
observed the double-threaded wake, consistent with previous experimental observations
(Magarvey & Bishop 1961a,b). The numerical studies of Tomboulides et al. (1993)
and Tomboulides & Orszag (2000) find a similar value, ReS2 = 212.

Computations by Mittal (1999a,b) showed that the wake remained planar-symmetric
up to a Reynolds number of Re ≈ 375, beyond which the planar symmetry was lost,
i.e. there was flow across the plane passing between the trailing streamwise vortices.
Combining a digital particle image velocimetry technique with a spatio-temporal
reconstruction technique, the asymmetric structure of the wake of a sphere was
analysed experimentally by Brücker (2001), who observed a similar loss of symmetry
occurring within the Reynolds-number range 400< Re< 500.

At higher Reynolds numbers, Tomboulides et al. (1993) observed fine-scale flow
structures in the wake of a sphere computed with a large-eddy simulation method, for
a Reynolds-number range of 500 < Re < 1000. Magarvey & Bishop (1961b) observed
a breakdown in periodicity of the hairpin shedding for Re> 600 also. These results are
considered to mark the onset of turbulence. Measurements indicating the development
of similar fine-scale structures are reported by Chomaz, Bonneton & Hopfinger (1993)
and Tomboulides & Orszag (2000), who speculated that these structures developed
from a Kelvin–Helmholtz instability of the shear layer separating from the sphere.
The smoke-wire visualizations presented by Kim & Durbin (1988) show fine-scale
wake structures behind a sphere for Re = 32 000, consistent with a Kelvin–Helmholtz
instability of the separating shear layer as is observed to occur for a cylinder wake
(e.g. Prasad & Williamson 1997; Thompson & Hourigan 2005).

The vast majority of work to date on tethered spheres has been concerned with the
action of surface waves on tethered buoyant structures. For example, the investigations
of Harlemann & Shapiro (1961) and Shi-Igai & Kono (1969) employed empirically
obtained drag and inertia coefficients for use in the so-called Morison’s equation
(Morison et al. 1950; Sarpkaya 1986). Consequently, because the waves represented
harmonic forcing functions, the tethered sphere was found to vibrate vigorously.
However, the coupling of the wave motion and the dynamics of the sphere resulted
in complicated equations of motion, from which it is difficult to understand the
underlying physics.

Gottlieb (1997) investigated a nonlinear, small-body mooring configuration excited
by finite-amplitude waves and restrained by a massless elastic tether. A Lagrangian
approach was formulated in which the stability of periodic motion was determined
numerically using Floquet analysis and revealed a bifurcation structure including ultra-
subharmonic and quasi-periodic responses. The hydrodynamic dissipation mechanism
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was found to control stability thresholds, whereas the convective terms enhanced the
onset of secondary resonances culminating in chaotic motion. Consequently, excitation
by finite-amplitude waves may generate a complex transfer of energy between the
modes of motion for wave frequencies that are integer multiples of the system natural
frequencies.

Williamson & Govardhan (1997) found that a tethered sphere does indeed vibrate in
a uniform flow. In particular, they found that it will oscillate vigorously at a transverse
saturation amplitude of close to two diameters peak-to-peak. This transverse oscillation
frequency was at half the frequency of the streamwise oscillations, although the natural
frequencies of both the streamwise and transverse motions were the same. In the
Reynolds-number range of their experiments (Re < 12 000), the response amplitude
was a function of the flow velocity. They found that a more suitable parameter
on which to gauge the response is the reduced velocity, U∗. However, conclusions
regarding the synchronization of natural and vortex formation frequencies were lacking
owing to the large scatter in the literature of the vortex formation frequency in the
wake of a sphere.

Govardhan & Williamson (1997) noted that the maximum root-mean-square (r.m.s.)
amplitude was approximately 1.1 diameters, regardless of the mass ratio. It was further
found that the vortex shedding frequency for a fixed sphere matched the natural
frequency for the tethered sphere at the same reduced velocity, U∗ ≈ 5, at which the
local peak in the r.m.s. response occurred. This suggests that the local peak in the
r.m.s. response is caused by a resonance between the natural frequency of the tethered
body and the wake vortex shedding frequency, and is known as the mode I response.
For high mass ratios (typically m∗ � 1), the oscillation frequency at large reduced
velocity tended towards the natural frequency. However, it is interesting to note that
the oscillation frequency for lower mass ratios (m∗ < 1) at high U∗ did not correspond
to either the natural frequency or the vortex shedding frequency for a fixed sphere.

Jauvtis, Govardhan & Williamson (2001) focused on mass ratios between m∗ = 80
and 940, and reduced velocities in the range U∗ = 0–300. For the sphere of mass ratio
80, they found a new mode of vibration (defined as mode III), which extends over a
broad regime of U∗ = 20–40. Because of the high mass ratios involved, the oscillation
frequency remained very close to the natural frequency of the tethered sphere, whereas
low m∗ yielded oscillation frequencies higher than, and departing significantly from,
the natural frequency (Govardhan & Williamson 1997). This mode cannot be explained
as the classical lock-in effect, since between three and eight cycles of vortex shedding
occur for each cycle of sphere motion. Although no explanation is given here, they
note that there must exist vortex dynamics that are repeatable in each cycle, and give
rise to the fluid forcing component that is synchronized with the body motion.

Jauvtis et al. (2001) also found that, for reduced velocities beyond the regime for
mode III, another vibration mode was discovered that grew in amplitude and persisted
to the limit of flow speed in the wind tunnel. The sphere dynamics of this ‘mode IV’
were characterized by intermittent bursts of large-amplitude vibration, in contrast to
the periodic vibrations of modes I to III. In addition, despite these intermittent bursts,
the vibration frequency of this mode remained very close to the natural frequency
throughout the range of up to at least U∗ = 300. With the vortex shedding frequency
between 40 and 50 times the oscillation frequency, the vortex shedding cannot be
responsible for these large vibrations, and the origin of these transient bursts remains
unknown.

Govardhan & Williamson (2005) extended their previous study on sphere vortex-
induced vibration and found that the body oscillation frequency f is of the order of the
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vortex shedding frequency of a fixed body fvo, and there exist two modes of periodic
large-amplitude oscillation, defined as modes I and II (Govardhan & Williamson 1997;
Williamson & Govardhan 1997), separated by a transition regime exhibiting non-
periodic vibration. In the case of the very light tethered body, the transition between
modes is quite distinct, especially when the response amplitude is plotted versus the
parameter (U∗/f ∗)St , which is equivalent to fvo/f , where a jump between modes is
clearly exhibited.

Govardhan & Williamson (2005) also noted that the phase of the vortex force
relative to sphere dynamics is quite different between the modes I and II. This
difference in the phase of the vortex force is consistent with the large difference
in the timing of the vortex formation between modes, which was observed from the
vorticity measurements for the light-sphere vibrations.

Pregnalato (2003) numerically investigated the case of a tethered sphere for the
much lower Reynolds-number range, 200 > Re > 500. In his investigation, the first
mode of oscillation, mode I, found by Govardhan & Williamson (2005), was not
found. However, the numerical results compared well with experiments performed in
the same Reynolds-number range.

Provansal, Schouveiler & Leweke (2004) examined the trajectories of a vertically
tethered heavy sphere. For a mass ratio of 2.433, they observed quasi-circular
or elliptic motion in a plane normal to the flow for the Reynolds-number range
600 6 Re 6 800. This contrasts with the types of motion observed for the cases
discussed above, with horizontal flow and with gravity acting vertically. In addition,
from numerical simulations, Behara, Borazjani & Sotiropoulos (2011) found circular
oscillations and a spiral wake mode for an m∗ = 2 elastically mounted sphere with
three degrees of freedom at Re = 300, for values of reduced velocity in the range
4 6 U∗ 6 9. In that case it was found that different sphere motions were observed at
the same reduced velocity.

The aim of the current study is to quantify the different oscillation regimes of a
neutrally buoyant tethered sphere as a function of the Reynolds number. The neutrally
buoyant case was chosen to eliminate the effects of buoyancy and gravity on the
motion in order to provide a reference case for the more complex situation when the
influence of gravity is included. From that point of view, there are some similarities
to the numerical simulations of Behara et al. (2011), for which the sphere of m∗ = 2
was allowed to move in three dimensions constrained by linear springs without the
effect of gravity. For the case here, neutral buoyancy and possibly the restriction to
movement on a two-dimensional spherical surface lead to a different set of trajectories
and, in particular, to the onset of circular motion being delayed to much higher
Reynolds numbers.

This paper is organized as follows. The underlying mathematics is presented
first. Following this, the computational method is discussed, including validation
and grid resolution studies, and the experimental method is described. Results are
then presented in terms of key parameters controlling the body oscillation and
wake characteristics, including oscillation frequency, amplitude and trajectory, wake
symmetries and structures, and phase behaviour. A summary of the different regimes is
provided before presenting the conclusions.

2. Problem formulation
The tethered-sphere system is sketched in figure 1. The forces acting on the sphere

are the tether tension T , buoyancy force B, body weight W, streamwise fluid force Fx,
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FIGURE 1. (Colour online) Coordinate system and forces on a tethered sphere.

transverse fluid force Fy and lateral fluid force Fz. Fluid flows past the sphere in the
positive x direction.

The tension is linked to the other force components by

T = Fx cos θ + (Fy + B−W) sin θ cosφ + Fz sin θ sinφ, (2.1)

where the tether angle θ is the angle to the sphere from the streamwise (x) axis, and
φ is the inclination angle of the sphere in the cross-flow (yz) plane. This is just a
statement of radial force balance. The tether angle (θ ) plus the layover angle (ϑ) of
Williamson & Govardhan (1997) equals 90◦.

The equations of motion for the sphere are given by

mẍ = Fx − T cos θ, (2.2)
mÿ= (Fy + B−W)− T sin θ cosφ, (2.3)

mz̈= Fz − T sin θ sinφ. (2.4)

Here m = (4/3)π(D3/8)ρb is the mass of the sphere, with ρb its density and D the
diameter of the sphere.

By substituting for the tension from (2.1) and converting to Cartesian coordinates,
these equations can be reduced to
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ÿ

γ
= 1

m∗

{[
1−

( y

L

)2
]
[Cy + (1− m∗)α] − Cx

x

L

y

L
+ Cz

z

L

y

L

}
, (2.6)

z̈

γ
= 1

m∗

{[
1−

( z

L

)2
]

Cz − Cx
x

L

z

L
+ [Cy + (1− m∗)α] y

L

z

L

}
. (2.7)

The parameters appearing in (2.5)–(2.7) are:

(i) the drag coefficient Cx = Fx/(ρf AU2/2);
(ii) the lift coefficient Cy = Fy/(ρf AU2/2);

(iii) the side force coefficient Cz = Fz/(ρf AU2/2);
(iv) the mass ratio m∗ = ρb/ρf ;
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(v) a Froude number α = 4gD/3U2, and
(vi) a dimensional acceleration γ = 3U2/4D.

In addition, ρf is the fluid density, U is the upstream flow speed, L is the inextensible
tether length and A = πD2/4 is the cross-sectional area of the sphere. Note that the
tether causes the sphere to move on a spherical surface of radius L.

These equations are solved together with the incompressible Navier–Stokes
equations as a coupled system in an accelerating frame of reference attached to the
centre of the sphere. The Reynolds number is given by Re = UD/ν, with ν being the
kinematic viscosity.

3. Computational method
3.1. Time integration

For the fluid calculation, a second-order, three-step, time-splitting scheme was
employed to evolve the fluid velocity and pressure fields. The three steps account
for the convection, pressure and diffusion terms of the incompressible Navier–Stokes
equation. In the first of the three steps, the convection term was evaluated using a
third-order Adams–Bashforth scheme (and semi-implicit Adams–Moulton scheme in
subsequent iterations). Then, the pressure field was evaluated by forming a Poisson
equation by taking the divergence of the equation for the pressure, and enforcing
continuity at the end of the step. The diffusion term was evaluated with the theta form
of the Crank–Nicolson scheme. This results in a Helmholtz equation. Both the Poisson
equation for the pressure and the Helmholtz equations for the viscous terms lead to
linear matrix problems, once the equations are discretized in space, as described below.
The matrices are inverted at the start of the time-stepping procedure; subsequently, the
effects of continuity (pressure) and viscous diffusion at each time step only involve
matrix multiplications. Because the convection term is nonlinear, it is generally treated
explicitly. The pressure boundary condition is treated using the approach described in
Karniadakis, Israeli & Orszag (1991), leading to a second-order time-accurate velocity
field, which has been verified using convergence tests. For the VIV case, there is
strong coupling between the fluid and the structural response. The explicit approach
becomes unstable and the overall time stepping has to be treated semi-implicitly.

To commence the time-stepping procedure, the sphere position at the end of the
time step is first predicted from straight extrapolation from stored positions at previous
time steps. Then the fluid variables, i.e. the velocity and pressure fields, are updated
using the three-step method described above. At this stage, the position and velocity
of the sphere are updated. The finite-difference time-stepping procedure for the motion
of the sphere is based on the leapfrog approach, with the velocity of the sphere
calculated halfway through the time step using the current calculated surface forces
and two stored force vectors at previous time steps. This provides a third-order
velocity prediction. Then the displacement vector at the end of the time step is updated
using a third-order time-stepping method based on this calculated velocity and the two
previous stored velocity vectors. Under-relaxation can be used for the velocity update
while iterating for a single time step, i.e. only part of the predicted velocity change is
added during each iteration. The under-relaxation parameter required is dependent on
the mass ratio and somewhat on the Reynolds number, but typically the value needs to
be less than unity to ensure convergence when the mass ratio is small (i.e. m∗ 6 0.5).
It is not required for simulations described in this paper. At this stage, the iteration
loop returns to the fluid calculation, but now it is based on the newly calculated
position of the sphere. Once again, the sphere velocity and position are updated. Then
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convergence is tested by comparing the differences in the force on the sphere, and the
velocity of the sphere, between iterations, together with the maximum fluid velocity
change over all grid points between iterations. Iteration continues until convergence
and then moves to the next time step. The convergence tolerances were adjusted until
any further tightening produced no change in the results. Typically, it takes two or
three inner iterations to establish convergence, but perhaps a few more at the start of
each simulation; however, the time step can generally be chosen to be up to an order
of magnitude greater than a time step based on the Courant condition. Further details
on the basic approach can be found in Thompson et al. (2006).

3.2. Spatial discretization
The three-dimensional fluid equations are discretized using a spectral element–Fourier
spectral method with a global Galerkin Fourier spectral discretization in the third
dimension, which is the azimuthal direction in the present study. This has been
employed previously for the case of the flow past a circular cylinder by Karniadakis
& Triantafyllou (1992) and Thompson, Hourigan & Sheridan (1996). The spatial
discretization consists of F equi-spaced planes in the azimuthal direction, each
consisting of an identical spectral-element mesh in two dimensions (streamwise and
transverse directions). The flow variables are transformed into Fourier space in the
azimuthal direction for each node on the spectral-element mesh using a fast Fourier
transform. This decouples the problem into a set of F equations for each Fourier mode,
which are then solved independently for the linear operators. The spatial domain in the
streamwise and transverse directions was discretized into a number of macro-elements,
with the majority concentrated in the wake and boundary layer regions. Domain size
and resolution studies were conducted to validate the predictions. Within each element,
the mesh geometry as well as the velocity and pressure fields, were represented by up
to eighth-order tensor-product polynomials, associated with Gauss–Lobatto–Legendre
quadrature points. Details of the approach and implementation have been provided by
Thompson et al. (1996), Leontini, Thompson & Hourigan (2007) and Ryan, Thompson
& Hourigan (2007). First-order boundary conditions (Karniadakis et al. 1991) are
used for the pressure gradient at the sphere surface and far-field boundaries. At the
outlet the pressure is fixed and the normal velocity gradient is set to zero. The
fluid equations are solved in a non-inertial moving-frame Cartesian coordinate system
(x′y′z′) attached to the sphere, whereas the motion of the sphere is calculated in the
fixed Cartesian frame (xyz). Because of the rigid tether, the sphere actually rotates
during its motion. That motion is taken into account to set velocity and pressure
boundary conditions in the moving frame at the surface of the sphere.

3.3. Validation
A validation study for the tethered-sphere VIV was initially performed. Using
experience gained from previous studies on fixed and oscillating spheres (Thompson
et al. 2001; Leweke, Thompson & Hourigan 2006; Thompson, Leweke & Hourigan
2007; Stewart et al. 2010), a set of meshes were constructed. The key fluid properties
and sphere motions for different domain sizes and the grid resolutions were compared
to determine an acceptable mesh to generate accurate and computationally practicable
solutions.

3.3.1. Mesh independence study
The three meshes shown in figure 2 were used to validate the numerical results. In

particular, S1 is constructed after an extensive search of the literature dealing with
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S3

S2

S1

Mesh Inlet OutletSide M

S1 5D 5D 20D 239

S2 15D 5D 20D 251

S3 15D 15D 40D 338

FIGURE 2. Meshes examined for the tethered-sphere simulations.

the flow simulations around a sphere. From the literature, it was reported that, for
simulations of a fixed sphere in free stream, changing the inlet extent and radial
extent from 5D to 10D resulted in minimal differences in measured flow properties
(Tomboulides & Orszag 2000; Pregnalato 2003). In addition, it was also reported that
predictions based on outflow domain lengths of 20D and 40D also showed negligible
differences (Ghidersa & Dušek 2000; Tomboulides & Orszag 2000). Based on these
results, the radial and inlet extents of the mesh S1 were set to 5D, and the outlet
length set to 20D. Formally, this results in a blockage ratio of 4 %. The adequacy of
this computational domain size is considered further below.

Some care was taken in choosing the element size close to the sphere. The normal
extent of elements adjacent to the sphere was chosen according to the boundary layer
thickness for axisymmetric laminar boundary layers. From estimates of the boundary
layer thickness, the required size of the elements was derived based on the analysis
of Gottlieb & Orszag (1977) and Tomboulides & Orszag (2000) for spectral-based
methods. Accordingly, the element thickness of all meshes was set to 0.1D, which
should maintain acceptable accuracy down to an internal element polynomial order of
4 for Re= 1000.

The larger meshes S2 and S3 were used to examine whether mesh S1 imposes
unacceptable blockage. These meshes were constructed from the S1 mesh by adding
elements to have increased inflow, outflow and radial extents. The domain sizes of
each of these meshes are given in figure 2.

At Re = 300, the flow past a stationary sphere is unsteady and characterized
by the presence of periodically shed vortex loops. In addition, the tethered sphere
shows a near-periodic oscillation around its mean radial position, with an amplitude
of approximately 0.08D. Note that the oscillation amplitude in the periodic regime
(Re 6 500) is limited to be below approximately 0.12D. This case was used to
examine the domain size effects, by recording the mean value of the tether angle
and the radial oscillation amplitude on the three meshes. The results are shown in
table 1. This indicates that, for mesh S1, the mean tether angle lies within 4 % of the
values on the larger meshes, and the amplitude varies by less than 2 %. Thus, in terms
of blockage, mesh S1 appears to be sufficiently large to provide acceptable accuracy
and to capture the flow physics, and it was used for all simulations presented in this
paper.
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Mesh θ
(deg.)

A∗tot N × N Cx Cy Cz

S1 4.12 0.0346 5 × 5 0.679 −0.0207 0.057
S2 3.98 0.0351 6 × 6 0.677 0.0025 0.062
S3 4.11 0.0348 7 × 7 0.677 0.0027 0.061

8 × 8 0.677 0.0027 0.061
9 × 9 0.678 0.0028 0.061

TABLE 1. Left: Domain size study results. Here, θ is the tether angle and A∗tot is the
sum of the normalized amplitudes in all three directions. The results are for the tethered
sphere with m∗ = 1.0 and 10D tether length at Re = 300. These are time-mean values.
Right: Resolution study results. Streamwise fluid force coefficient Cx, transverse fluid force
coefficient Cy and lateral fluid force coefficient Cz as a function of number of internal
nodes within each element. The results are for a tethered sphere with m∗ = 1.0 and 10D
tether length at Re= 300. Coefficients are time-mean values.

3.3.2. Grid resolution study
Having checked the adequacy of the computational domain size, the resolution of

the mesh required to fully resolve the flow was next determined by changing the order
of the Lagrange polynomial interpolants within the macro-elements. Again, the study
was carried out at Re= 300 for an inelastically tethered sphere (as before). As a point
of comparison, the mean force coefficients in each direction were calculated.

Table 1 also shows results from the resolution study. This indicates that the
acceptable convergence is achieved for N × N = 6 × 6 corresponding to polynomial
order p = N − 1 = 5. The predictions for mean force coefficients Cx and Cz lie within
1 % or better of the higher-resolution predictions. Thus, the majority of simulations for
the tethered sphere were performed using fifth-order (p = 5) tensor-product Lagrange
polynomial interpolants within elements. For Reynolds numbers higher than 300,
however, it was found necessary to increase the p value to p = 6 for Re = 500
and to p= 8 for Re= 800 in order to provide this level of accuracy.

Having undertaken these studies to determine a suitable computational mesh in the
streamwise–radial plane, the question of azimuthal resolution needs to be addressed.
This was examined by altering the number of Fourier planes in the azimuthal direction.
Ghidersa & Dušek (2000) showed that six Fourier modes, i.e. 12 Fourier planes, were
sufficient to capture the secondary instability at Re ' 275. However, the breaking of
planar symmetry for Re > 375 means that more modes are likely to be required to
accurately resolve the shed vortices, not only because they shed asymmetrically but
also because they are coupled with the motion of the sphere. Therefore, together
with the need for additional resolution to handle an increase of Re up to 800, 24
Fourier planes were selected. Other studies have shown this resolution to be sufficient
(Tomboulides & Orszag 2000). Nevertheless, to confirm that this was sufficient, force
coefficients were calculated for 24 and 32 planes at Re = 500. The difference in
force coefficient predictions was less than 1 %, which confirms that this resolution is
sufficient.

4. Experimental method
A parallel experimental study was undertaken especially to examine the flow at

higher Reynolds numbers but overlapping the Reynolds-number range of the numerical
study. The experiments were performed in a recirculating free-surface water channel.
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FIGURE 3. (Colour online) (a) Schematic of the experimental set-up and (b) sample images
from the experiment.

Upstream of the working section, water flows through a honeycomb and a thin wire
mesh before going through a two-dimensional 9 : 1 contraction to the working section.
The combination of the screens and the contraction yield a measured turbulence level
of less than 1.0 %. The schematic of the experimental set-up is shown in figure 3(a)
(see Lee, Thompson & Hourigan 2008 for further details).

Spheres of diameters of 9, 16, 25 and 40 mm made of Perspex were used for the
experiments. These were manufactured to allow them to be separated in half and
hollowed out to allow their buoyancy ratio to be adjusted by putting material inside.
In every experiment, packing material was carefully weighed and inserted to set the
mass ratio to a specified value. A thin string consisting of inelastic non-twist fishing
line with the diameter of 0.1 mm was carefully connected to the sphere as a tether,
which was then attached to a 0.315 mm wire. The wire was vertically tensioned
between the bottom of the working section and the ceiling vertically above to provide
rigid supports. The wire tension required to suppress vibration was calculated and
applied. To minimize the effect of vortex shedding of the wire, visual observations
and preliminary video analysis of a moving sphere with a thicker wire of 0.5 mm
and a thinner wire of 0.15 mm were performed. Based on this observation, it was
expected that the effect of wire vortex shedding on the sphere movement is negligible,
although some of the higher Reynolds-number experiments (Re > 5000) were above
the threshold of vortex shedding for the support wire.

Animations of the motion of the sphere in both the xy and yz planes were captured
using either or both a MiniDV video camera of standard resolution (720 × 576)
operating at 25 frames per second (fps), or a higher-resolution PCO charge-coupled
device camera of resolution 1360 × 1024 pixels, using 2, 4 or 8 fps. The recorded
videos were converted to uncompressed avi files, and then each frame from the avi
files was extracted for further processing. Sample images are shown in figure 3(b).

Two different techniques were used to extract the position of the sphere recorded
in the images. For the first, which was used for most of the analysis, raw bitmap
information from each video frame was used without filtering techniques. The post-
processing procedure consisted of three steps. In the first step, the diameter of the
sphere in an image (usually the first of the images) and the position of its centre were
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identified and saved. In the second step, the number of bright pixels within a circle of
the sphere diameter using the previously calculated position of the sphere centre was
calculated. In the third step, an optimization function was used to update the actual
position of the sphere centre, which maximized the number of bright pixels within the
circle. An alternative method was used for analysis of images for experiments with
the smallest sphere. In that case, it was found that the method just described was not
sufficiently accurate given the relatively small movements involved. Images were first
filtered so that any pixels below a certain intensity level were zeroed. This was used to
make the background purely black. Careful thresholding could also remove the tether
from the video frames, leaving only the image of the sphere. Then each frame was
cross-correlated with the first frame in the sequence. By accurately determining the
maximum of the cross-correlation function, the movement of the sphere between video
frames could be resolved to subpixel accuracy.

Naturally, the first method is valid only when the image has a simple background
and circular object within it. To improve image contrast for processing, two or three
spotlights were set up to focus on the moving sphere during the experiments. This
approach was found to be adequate to extract the sphere centre and size accurately,
and was applied to process the experimental images. Typically, the sphere diameter is
100 pixels or more and the sphere position can be reliably determined within better
than 2 pixels, giving a relative error of better than 2 %. For the smallest sphere
of diameter 9 mm, the cross-correlation technique was used to determine movement
between video frames. In that case, the sphere diameter was only 30 pixels in the
yz plane, so subpixel resolution was necessary to extract the trajectories accurately.
These procedures were performed using specially written Matlab code using its image
processing and optimization libraries. Each procedure was tested on a set of bitmap
image data by comparing the identified centre and boundary of the sphere with those
through visual identification for all images from one of the sequences.

5. Results
This study reveals that a neutrally buoyant tethered sphere experiences seven

different identifiable flow regimes for Re . 12 000. The first six regimes were
identified from numerical simulations and the seventh was found through experiments
at higher Reynolds numbers.

The simulations were performed on computer clusters using a parallel version of
the software for 50 6 Re 6 800. Some simulations have been run over 5000 non-
dimensional time units (i.e. of the order of 500 oscillation cycles) to reach the
asymptotic state. Reynolds numbers for the simulations were selected within this
range in steps of ∆Re = 50, and further simulations were performed at intermediate
Reynolds numbers if a difference in body dynamics was observed between
neighbouring simulations. For example, this led to running simulations at Re = 205,
210, 270, 280 and 330 to capture transitions between regimes more accurately.

The tether length was chosen as 10D for all cases. Since the yz motion is restricted
to an amplitude of approximately 0.25D, even at the upper end of the Reynolds-
number range simulated, this limits the horizontal range of movement, owing to the
tether constraining the motion to a spherical surface, to be approximately 0.003D or
generally much less. Thus, to a good approximation, the motion effectively takes place
within the yz plane passing through the neutral point.

Experiments were carried out to support the numerical findings and to expand the
Re range beyond the limit of the numerical simulations. The experiments covered the
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FIGURE 4. Layover angle of a neutrally buoyant sphere as a function of Reynolds number
obtained from the numerical simulations.

range of 370 6 Re . 12 000, which extends well past the range for the numerical study.
But, importantly, this range overlaps the Re range for the numerical simulations.

For cases when the mean position of the sphere was not located on the x axis, i.e.
the layover angle was not 90◦, the raw trajectories were first rotated about the x axis
so that the mean position was located in the first quadrant of the xy plane. After this
rotation, motion in the y direction corresponds to radial motion, and motion in the z
direction corresponds to ‘azimuthal’ motion. Despite there being no difference between
movement in these (Cartesian) directions when the mean position is located directly
downstream on the x axis, this is not strictly the case when the mean position is not
on the x axis. In that case, y (or radial) motion moves the sphere slightly upstream
and downstream over an oscillation cycle, while z (or azimuthal) motion maintains
the sphere at approximately the same downstream position during an oscillation cycle.
When the mean position did lie on the x axis, the trajectories were still rotated, but in
this case to align the largest oscillatory motion with the xy plane, again so that motion
in the y direction could be associated with radial motion. For each simulation, the
oscillation behaviour in y and z were used to determine the mean radial and azimuthal
oscillation amplitudes and frequencies. The mean layover angle was also determined.
Together, these parameters were used to classify the different flow responses as the
Reynolds number was varied.

5.1. Time-mean position: layover angle ϑ
The angle measured from the transverse (x) axis to the centre of the body is used to
represent the time-mean position of the body. This angle ϑ , which is known as the
layover angle, has been used in the previous studies of VIV of tethered bodies. The
layover angle for the range of 50 6 Re 6 800 from the numerical simulations is shown
in figure 4.

In the first regime (regime I), the sphere remains on the pivot axis without
movement. The applicable Reynolds-number range is Re 6 210. The second regime
(regime II), starting at Re ' 210, is also steady but axisymmetry is lost. The wake
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FIGURE 5. Amplitude of oscillation for a neutrally buoyant sphere from the numerical
simulations. The solid line (with circles) indicates the amplitude in the radial (or y) direction.
The dashed line (with triangles) shows the amplitude in the azimuthal (or z) direction.

corresponds to the two-threaded wake of a stationary sphere as observed by Magarvey
& Bishop (1961b) and Johnson & Patel (1999). Over this range, the sphere is located
offset from the symmetry axis, and the layover angle decreases from 90◦ as the
Reynolds number is increased. This is due to the net fluid force from the non-
axisymmetric two-tailed wake. This regime exists for Re < 270. As Re is increased
further, the sphere starts to vibrate at Re > 270, the start of regime III. Similarly,
this corresponds closely to the Reynolds number at which shedding commences for
a fixed sphere. Regime IV begins at Re = 300. It is associated with the layover
angle increasing back towards 90◦. In regime V (332 6 Re 6 500), the layover angle
remains close to 90◦, indicating that the body oscillates symmetrically around the x′

axis.

5.2. Amplitude and frequency of oscillation
Figure 5 shows the maximum radial and azimuthal amplitudes, A∗r and A∗θ , of the
sphere oscillations, whereas figure 6 gives the corresponding non-dimensionalized
frequencies in terms of Strouhal numbers, St r = frD/U and Stθ = fθD/U, after the
asymptotic states have been reached. Sphere oscillation occurs from regime III
onwards, starting from Re= 270. Simulations performed at the neighbouring Reynolds
numbers of Re = 265, 268, 272 and 275 showed that the oscillation is first detectable
at Re = 270. This is very close to the onset of wake oscillation for a fixed sphere,
which has been determined as ReS3 = 271 or 272 (Johnson & Patel 1999; Ghidersa &
Dušek 2000; Thompson et al. 2001). This indicates that the ability of the sphere to
move does not appear to lead to the premature onset of wake unsteadiness.

For this regime, initially the sphere oscillates along a radial line through the
neutral point. The oscillation is not strictly periodic, with the mean sphere position
moving slightly radially inwards and outwards over several oscillation cycles. This is
shown in figure 7(a). The radial amplitude of oscillation at Re = 270 is approximately
0.04D.
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The non-dimensional natural frequency of oscillation, Stn, can be expressed as

Stn = fnD

U
= 1

2π

√√√√3
4

√
C2

x + [(1− m∗) α + Cy]2+C2
z

(CA + m∗)L∗
. (5.1)

In this equation, m∗ is the mass ratio, L∗ is the non-dimensionalized tether length, α
is the parameter defined in § 2 and CA is the added mass coefficient (CA = 0.5 for a
sphere) of an ideal flow.

This equation is derived from the following momentum balance equations
(5.2)–(5.4):

(m+ ma)ẍ+ T

L
x = Fx, (5.2)

(m+ ma)ÿ+ T

L
y= Fy + B−W, (5.3)

(m+ ma)z̈+ T

L
z= Fz. (5.4)

From these equations, it is obvious that the natural frequency is the same in all three
dimensions, and is given by

fn = 1
2π

√
T

(m+ ma)L
. (5.5)

This dimensional natural frequency can be put in non-dimensional form, which is
given by

Stn = fnD

U
= 1

2π

√
D2

U2

T

(m+ ma)L
. (5.6)

Substituting the expression for the tension in the tether, collecting terms and using the
non-dimensional form of the fluid forces results in (5.1).

Williamson & Govardhan (1997) used (5.6) to calculate Stn by assuming that the y
force, Cy, and the z force, Cz, are much smaller than the buoyancy, (1− m∗) α, to give

Stn ' fnD

U
≈ 1

2π

√√√√3
4

√
C2

x + [(1− m∗) α]2
(CA + m∗)L∗

. (5.7)

Using (5.1), the non-dimensionalized natural frequency Stn was calculated to lie
in the range of 0.0254 6 St∗n 6 0.0296. In turn, this means that the reduced velocity,
U∗ = 1/Stn, lies in the range 34 6 U∗ 6 39 for the numerical simulations, which
covered Re 6 800. Between Re = 103 and 104, the drag coefficient is approximately
constant at Cx ' 0.4. Thus the reduced velocity for the experimental results was close
to U∗ ' 44 over most of the Reynolds-number range considered. Figure 6 shows that
St r for regime III is 0.0671 and is more than twice the calculated natural Stn for
the neutrally buoyant tethered sphere. Interestingly, St r is almost precisely half of the
wake frequency for a fixed sphere at the same Reynolds number of St = 0.134. This
point is explored further below.

As the Reynolds number is increased through this regime, the radial oscillation
frequency is maintained at St = 0.067; however, the oscillation moves from radial to
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FIGURE 8. Trajectories in the yz plane at various Reynolds numbers from the numerical
simulations: (a) Re = 280 (regime III); (b) Re = 310 (regime IV); (c) Re = 330 (regime IV);
(d) Re = 450 (regime V); (e) Re = 500 (regime V); (f ) Re = 800 (regime VI). Note that the
axes have quite different scales to show the complex motion of the sphere.

predominantly azimuthal. At Re = 280, the azimuthal oscillation is more than four
times the radial oscillation amplitude (0.110 : 0.0241) and the azimuthal oscillation
frequency is St = 0.0214, which is much closer to the natural shedding frequency. The
overall oscillation is quasi-periodic. As the Reynolds number is increased further, the
radial oscillation amplitude continues to reduce.

By Re = 300, the oscillation is almost purely azimuthal. This Reynolds number
marks the beginning of regime IV. For this regime, the azimuthal oscillation frequency
jumps up to St = 0.11, with an amplitude of A∗θ = 0.03–0.045. The radial oscillation
amplitude is very small, but the oscillation frequency is St = 0.22, twice the radial
oscillation frequency. The yz motion in this regime seems to approach a limit cycle
– see figures 8(b) and 8(c). This behaviour is maintained until Re= 330.
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FIGURE 9. A comparison of experimental and numerical trajectories for the Reynolds-
number range common to both the experiments and numerical simulations. In regime V:
(a) experimental trajectory for Re = 370; (b) experimental trajectory after removing the
random drift in mean position with time; (c) numerical trajectory for Re = 400. In regime VI:
(d) experimental trajectory for Re= 815; (e) numerical trajectory for Re= 800.

Beyond Re = 330, in regime V, the mean position of the sphere is no longer
offset from the neutral point. The oscillation initially reverts to purely radial, with an
amplitude of A∗r = 0.08–0.12. The radial oscillation frequency is close to constant
across this range at St r = 0.104, not far below the Strouhal number of a fixed
sphere at onset of shedding at 0.134. At the end of the Reynolds-number range
for this regime, azimuthal oscillation returns. Again, the motion appears quasi-periodic,
with the complex yz trajectory (see figure 8e) appearing close to a limit cycle. The
frequency ratio is close to St r/St z ' 7/5.

In regime VI, for Re> 500, the vibrations become chaotic and the sphere undertakes
chaotic wandering about the neutral point as shown in figure 8(e) for Re = 800, the
highest Reynolds number simulated. The oscillation amplitude varied from 0.2D at
Re = 500 to 0.25D at Re = 800. Note that these are only approximate because of the
chaotic nature of the oscillations.

5.2.1. Experimental results
The trajectories in the xy and yz planes at various Reynolds numbers were recorded

and were processed as described previously to calculate the time-dependent position of
the tethered sphere. The main experimental findings were twofold. First, the existence
of regimes V and VI found from the numerical investigations is verified. Figure 9
shows a comparison of experimental and numerical trajectories for regimes V and VI.
For regime V, the experimental trajectory (figure 9a) is predominantly unidirectional,
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FIGURE 10. (Colour online) Trajectories in yz plane from experiments. Both axes have the
same scale and are normalized by the sphere diameter D.
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FIGURE 11. (Colour online) Compilation of trajectories in yz plane for unsteady regimes.
The blue lines (Re = 270 to 800) are the numerical results. Again, both axes have the same
scale and are normalized by the sphere diameter D.

although there is some wandering from one cycle to another, presumably due to
low-level background noise in the water tunnel. This random shift in the centre of
each orbit with time corresponds to a typical drift speed of the order of 1 % of the
free stream velocity. Note that the turbulence level of the water tunnel used for the
experiments is approximately 1 %, and hence this slow drift of the centre of each orbit
with time is not surprising. It is possible to approximately remove the drift from each
orbit by tracking the position of the centre of each orbit of the trajectory as a function
of time, fitting a spline and using this to continuously correct the trajectory. The
corrected trajectory is shown in figure 9(b). This further verifies that the movement
is almost linear in the yz plane. The numerical trajectory (figure 9c) is also purely
unidirectional in this regime. For both the experiments and simulations, the amplitude
of oscillation is approximately 0.1 diameters. The experimental data gave a Strouhal
number of 0.120, which is close to the numerical value of 0.104. For regime VI, the
experimental (figure 9d) and numerical (figure 9e) trajectories show chaotic wandering
of similar amplitude about the neutral point on the x axis.

Figure 10 shows how the trajectories of the sphere change as the Reynolds number
is increased. The orbits shown are obtained from the experiments. The chaotic
wandering observed in regime VI increases significantly in amplitude as the Reynolds
number is increased up to Re ' 3000. Beyond this Reynolds number, the trajectories
become increasingly elliptical or quasi-circular and increasingly concentric up to the
highest Reynolds number considered of Re = 11 870. This new trajectory type is
identified as regime VII.

To compare the trajectories and amplitudes of oscillation for each regime, the
trajectories in the yz plane of the unsteady regimes are shown in figure 11. The
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Re D∗circle f ∗y f ∗z

3 630 0.44 0.0293 0.0293
4 930 0.56 0.0335 0.0335
5 730 0.62 0.0352 0.0352
6 260 0.58 0.0360 0.0360
6 432 0.56 0.0310 0.0310
7 418 0.66 0.0347 0.0347
7 930 0.68 0.0397 0.0397

11 870 0.96 0.0454 0.0454

TABLE 2. The diameter of the quasi-circular area and the frequency of oscillation in
regime VII from experiments. Here D∗circle = Dcircle/D, and f ∗ = fD/U. Note that the sphere
oscillates at a frequency higher than the estimated range of f ∗n = 0.0145–0.0214. This is
also the case for VIV of a cylinder with m∗ 6 1.

variation of the oscillation amplitudes shown in figure 5 can be observed in figure 11.
This reinforces that the sphere oscillation in the unsteady regimes III to V is close
to linear, albeit swapping from radial to azimuthal and then back to radial. The
trajectories are chaotic in regime VI, and quasi-circular in regime VII.

The response variables characterizing the sphere oscillation in regime VII are given
in table 2. The diameter of the circle (calculated as Dcircle = Dy/2 + Dz/2) gradually
grows as Re increases, and reaches about 1D at the maximum Reynolds number
investigated of Re = 11 870. The diameter of the area enclosed over many orbital
cycles is somewhat larger, as can be seen in figure 10 for Re= 7930.

The non-dimensionalized natural frequency, f ∗n , calculated using (5.1), is in the range
of f ∗n = 0.0145–0.0214 for the Reynolds-number range investigated. Only an estimate
of f ∗n was possible owing to the lack of force data from the experiments. It is obvious
that the sphere oscillates at a frequency higher than its natural frequency in regime VII.
A similar frequency response has been reported in the study of VIV of a transversely
oscillating cylinder: when m∗ 6 1, or of the order of unity, the cylinder oscillates
at considerably higher frequency than its natural frequency. This (orbital) frequency,
however, is lower than that of the other regimes.

5.3. Vortex structure around the sphere and in the wake
The vortex structures of the different regimes are shown in figures 12–17. The
structures are rendered using isosurfaces of streamwise vorticity (regime II) and also
by the λ2 eigenvalue approach (Jeong & Hussain 1995) for regimes III through VI.
Figure 12 shows the vorticity plot of regime II for Re = 210. A vorticity plot for
regime I is not presented because the steady axisymmetric flow has zero streamwise
vorticity. For regime II, the axisymmetry is broken, although the wake remains steady.
The wake is characterized by a pair of counter-rotating streamwise vortices, with
self-induction causing them to offset from the pivot axis. In turn, this results in a net
force causing the sphere also to migrate off the pivot axis. Thus the layover angle
decreases away from 90◦ in this regime.

Regimes III, IV and V consist of periodic shedding of vortices as shown in
figures 13–15. Within regime III, the body oscillates initially radially but increasingly
azimuthally for increasing Reynolds number. At Re = 270, the streamwise vortices of
opposite signs do not interact significantly as they pinch off and shed downstream, and
vorticity of each sign remains on the same side of the sphere from which it was shed.
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FIGURE 12. (Colour online) Streamwise vorticity of regime II (Re = 210) from simulations.
Flow is from the bottom left corner to the top right. Positive streamwise vorticity is shown
in mid-grey (red online) and negative streamwise vorticity in darker grey (blue online). The
vorticity values are ±0.1, and the two trailing streamwise vortices are apparent.

FIGURE 13. (Colour online) Evolution of the corresponding vortical wake structures over
a radial oscillation period from the lowest point in the cycle from numerical simulations at
Re = 270. This corresponds to the start of regime III. Images are separated by one-quarter
of a radial oscillation period. The first column shows isosurfaces of streamwise vorticity, and
the second column shows the λ2 field defined by Jeong & Hussain (1995). The grey levels
(colours online) for the streamwise vorticity are same as in figure 12. The two-tailed vortical
wake is periodically pinched off during the evolution.

The radial oscillation is not purely sinusoidal, but rather modulated, corresponding to
inwards and outwards movement over several oscillation cycles, as can be seen from
figure 8(a). This explains why the shedding over one cycle shown in the figure does
not appear to be periodic. As mentioned previously, the radial oscillation frequency of
St r = 0.0671 is half the wake shedding frequency for the fixed sphere (St = 0.134).
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FIGURE 14. (Colour online) Evolution of vortical wake structures for Re = 330 (regime
IV) (from numerical simulations). The details of the plots are the same as in figure 13.
Hairpin-shaped vortex loops appear in the wake.

Indeed, pinching together of the trailing streamwise vortices occurs twice per cycle,
even though the vorticity field in the immediate neighbourhood of the sphere varies
over a single cycle.

As the Reynolds number is increased in this regime, two things happen. The
vibration alters from being radially dominant to being azimuthally dominant. This
corresponds with breaking of planar symmetry, allowing flow across the plane passing
between the trailing vortices, and also a tendency towards shedding more symmetric
vortex loops, i.e. successive loops facing upwards and downwards, rather than facing
only one way. The increase in loop symmetry causes a movement of the mean sphere
position back towards the neutral point, i.e. the layover angle moves back towards 90◦.
The breaking of planar symmetry is perhaps more intriguing. For the wake of a fixed
sphere, this transition occurs at approximately Re= 375 (Mittal 1999b), which is much
higher than the Reynolds number at which it is seen for the tethered sphere (Re= 280).
These trends continue as the Reynolds number is increased. By Re = 300, the start of
regime IV, the oscillation is almost purely azimuthal (but see figures 8b and 8c) and
the azimuthal oscillation frequency has increased and stabilized at Stθ = 0.111. The
shedding of loops is not yet symmetric, with the layover angle increasing back towards
90◦. Figure 14 shows the vortex shedding pattern at the end of this regime (Re= 330).
In particular, note that the upward- and downward-facing loops appear to be relatively
symmetrical.

At the start of regime V, for Re > 330, the layover angle rapidly increases back to
90◦ and shedding reverts to being radial and centred about the neutral point. This is
consistent with the development of a symmetric wake, with upward- and downward-
facing vortex loops of equal strength. Figure 15 shows the different depictions of the
shedding pattern at Re = 400. In addition, planar symmetry returns and is maintained
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FIGURE 15. (Colour online) Evolution of vortical wake structures for Re = 400 (regime V)
(from numerical simulations). The details of the plots are the same as in figure 13. The
hairpin-shaped vortices are now quite pronounced and maintain planar symmetry.

until at least Re = 450. At Re = 500, the yz trajectory is no longer linear (see
figure 8e), indicating once more the loss of planar symmetry.

The motion of the sphere in regime VI (Re= 700) shows irregular behaviour, owing
to the loss of regular shedding of vortices. In figure 16, the hairpin vortex loops are
visible although they are not as apparent as the cases for regimes IV and V. After the
flow becomes irregular, the differences in the wake vortex structure are more difficult
to characterize.

5.4. Phase relationship between forces and displacements
In general, fluid forces are the cause of bluff-body movement when the body is free
to move. For VIV, the phase between the fluid force and the displacement helps to
explain its response, and hence the dynamics can be investigated by examining phase
plots. For the VIV problem, Bearman (1984) pointed out the importance of the phase,
together with other parameters such as the mass ratio and structural damping ratio.
Many researchers, such as Blackburn & Henderson (1999) and Carberry et al. (2004),
have interpreted the phase information in terms of the direction of energy transfer
between the fluid flow and the body, and have calculated this using phase plots.

For a bluff body under forced vibrations, the energy transfer may be negative,
because the body can transfer energy to the fluid flow. However, the energy must be
positive for a freely vibrating bluff body, as the body needs to extract energy from the
fluid flow to maintain its vibration.

Phase information can also be used to detect a change of response regimes in
VIV problems. Bishop & Hassan (1964) were the first to mention this relationship.
Govardhan & Williamson (2005) found, for VIV of a transversely vibrating cylinder,
that the phase relationships between the vortex force and the displacement, and
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FIGURE 16. (Colour online) Vortex structure at Re = 700 (regime VI) at t∗ = 510 (top)
and t∗ = 513 (bottom) time units. The sphere motion has no periodicity. (Again, these are
from numerical simulations.) The details of the plots are the same as in figure 13. The
hairpin-shaped vortices are visible, but no longer maintain their planar symmetry.

FIGURE 17. (Colour online) Views in xy plane of the vortex structure at the top position
of the cycle in unsteady regimes from numerical simulations. It is clear that the structure is
planar-symmetric at Re = 270 (regime III) and 400 (regime V). The planar symmetry is lost
when Re= 330 (regime IV).

the total force and the displacement change when the body goes through the three
response branches: the initial, the upper and the lower branches. With this in mind, the
phase is plotted and analysed for unsteady regimes (regime III to VI) of the tethered
sphere found through numerical simulations. For all three regimes, the total force,
pressure force component, viscous force component and displacement are provided for
all three Cartesian directions.

The motions in the x, y and z directions are coupled and not independent, owing
to the constant tether length (L∗ = 10). They are related to each other by (5.10), and
the sphere moves on a spherical surface defined by L∗, θ and φ. As L∗ is fixed at
L∗ = 10 for all the simulations considered, the motion is actually two-dimensional in
θ and φ. However, the following discussions are presented in terms of x, y and z for
convenience, considering the initial conditions used in the simulations for the neutrally
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FIGURE 18. History of the displacements (thick solid line) (measured in units of the sphere
radius) and the forces (thin dashed line) at Re = 270 (regime III). The abscissa of the history
is in non-dimensional time units. The insets of each panel are the phase plots between the
displacement (abscissa) and the force (ordinate). The axes in the phase plot are auto-scaled to
show the pattern more clearly. These data are extracted from the numerical simulations.

buoyant sphere:

x = L cos θ, (5.8)
y= L sin θ cosφ, (5.9)
z= L sin θ sinφ. (5.10)

When m∗ = 1, there is no preferred direction in the yz plane, as buoyancy is zero,
whereas the sphere oscillates in the z direction when m∗ 6= 1. For all the following
simulations when m∗ = 1, the initial conditions introduce a perturbation in the y
direction; thus, the results show the largest oscillation in the y direction. This is one
reason why the following results are discussed in the xyz coordinate system. However,
note that the motion of a tethered sphere with a constant-length tether is basically
two-dimensional, and there is no preferred direction of oscillation in the cross-flow (yz)
plane when the sphere is neutrally buoyant.

In regime III (Re = 270), the total fluid force in the x direction as well as its
pressure and viscous components lead the x displacement by ϕ ≈ 270◦, as shown in
the time histories of the force and the displacement of figure 18. At this value of
ϕ = 270◦, the phase plots are characterized by a circle. In the y direction, only the
viscous force component shows the phase value of ϕ = 270◦. The total fluid force
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FIGURE 19. History of the displacements (thick solid line) (measured in units of the sphere
radius) and the forces (thin dashed line) at Re = 330 (regime IV). The abscissa of the history
is in non-dimensional time units. The insets of each panel are the phase plots between the
displacement (abscissa) and the force (ordinate). The axes in the phase plot are auto-scaled to
show the pattern more clearly. These data are extracted from the numerical simulations.

in the y direction and its pressure component show a phase value of ϕ < 90◦. If
ϕ = 90◦, the phase plot will exhibit a straight line from the top left to the bottom
right. It should be noted that the body oscillates mainly in this direction. Although
the magnitude of the force and the displacement in the z direction are small, they
exhibit the same characteristics as in the y direction, i.e. ϕFV−z ≈ 180◦, ϕFP−z ≈ 90◦

and ϕFtotal−z ≈ 90◦.
The histories of the forces and the displacement, and the phase plots for regime IV

(Re = 330), are provided in figure 19. In the x direction, the total fluid force and all
its components have the phase value ϕ ≈ 0◦. In detail, the phase between the viscous
force component and the displacement is ϕ ≈ 360◦ (meaning that the viscous force is
slightly behind the x displacement), and ϕFtotal−x is closer to zero than ϕFP−x. In the
main oscillation direction of y, these two phase values change to 180◦ (see figure 19).
However, ϕFV−y ≈ 270◦, similar to that of the x direction as well as that for regime
III. A quick look at the phase plots for the other unsteady regimes shows that ϕFV−y
and ϕFV−z have almost the same value of 270◦. The z fluid force shows non-sinusoidal
history, which makes the phase plots distorted, as shown in figure 19. As in the y
directional force and displacement, ϕFtotal−z ≈ 180◦ and ϕFP−z ≈ 180◦.
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FIGURE 20. History of the displacements (thick solid line) (measured in units of the sphere
radius) and the forces (thin dashed line) at Re = 400 (regime V). The abscissa of the history
is in non-dimensional time units. The insets of each panel are the phase plots between the
displacement (abscissa) and the force (ordinate). The axes in the phase plot are auto-scaled to
show the pattern more clearly. These data are extracted from the numerical simulations.

Figure 20 shows the histories of the forces and displacement in the x direction for
regime V for the specific case of Re= 400. In the x direction, the total force advances
the displacement with the phase (ϕ) less than 45◦ and close to the condition of being
in phase. If we look at the pressure and viscous components of the total, the phase
between the x and the viscous force components is less than that of the x and the
pressure force components. Nevertheless, the difference in the value of the phase is
very small and both values are less than 90◦. The pressure force component comprises
about 90 % of the magnitude of the fluctuating x force. This portion of the force
component is similar to the forces in the y and z directions, as the sphere is a bluff
body. Actually, the oscillation in the x direction is not of interest, owing to its minute
oscillation (since it is highly constrained) compared with that of y and z. The sphere
oscillates mainly in the y direction. It is obvious that total force and the displacement
are out of phase, i.e. ϕFtotal−y ≈ 180◦. This is the same for the pressure component, and
ϕFP−y ≈ 180◦. However, for the viscous component, ϕFV−y ≈ 270◦ as was observed for
regimes III and IV.

Figure 21 shows the histories of the forces and displacement when Re = 500.
Even though this Reynolds number is categorized in regime V (the same regime
as Re = 400), the oscillation in the z direction appears. The y and z oscillations
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FIGURE 21. History of the displacements (thick solid line) (measured in units of the sphere
radius) and the forces (thin dashed line) at Re = 500 (regime V). The abscissa of the history
is in non-dimensional time units. The insets of each panel are the phase plots between the
displacement (abscissa) and the force (ordinate). The axes in the phase plot are auto-scaled to
show the pattern more clearly. These data are extracted from the numerical simulations.

are quite periodic at this Re = 500, but their trajectories are very different from
those of the Re = 400 case. Secondary oscillation is clearly observed in the x force
and displacement. As a result, the phase plots exhibit a particular shape of limit
cycle shown in figure 21 even though the amplitude is small. This is the case for
oscillations in both the y and z directions; their histories of displacement and force
exhibit secondary (low-frequency) oscillations. Based on the phase plots for the y and
z directions, it is indicated that the total force and the corresponding displacement are
out of phase. This is the case for the pressure force component for both y and z.

6. Conclusions
This paper examines the VIV response of a neutrally buoyant tethered sphere.

Neutral buoyancy represents an interesting special case in that the influence of
gravity is excluded, while a long tether allows undamped, almost planar, motion.
Experiments and simulations are combined to show that there exist seven different
flow regimes in the Reynolds-number range 50 6 Re . 12 000, based on the behaviour
of the mean layover angle, amplitude of oscillation, frequency of oscillation and
trajectory of oscillation in the cross-flow plane. The first six regimes were determined
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by direct numerical simulation and the (sixth and) seventh regimes were found through
experiments at higher Reynolds number.

The first regime, regime I, covers the range of 50 6 Re < 210, with the sphere
remaining stationary at a symmetrical layover angle of ϑ = 90◦. Regime II covers
the range 210 6 Re < 270. The sphere remains stationary and the flow is steady but
non-axisymmetric. The increasing strength of the counter-rotating vortex pair means
that the layover angle moves further away from the neutral position at ϑ = 90◦ as the
Reynolds number is increased.

As Re increases further, the sphere starts to vibrate at Re = 270, the start of regime
III. Regime IV begins at Re = 300. It shows a return of the layover angle back
towards 90◦ with increasing Reynolds number as the shed vortex loops become more
symmetric. The sphere predominantly oscillates in the azimuthal direction, with a
frequency of St = 0.111, which is reasonably close to that of the stationary sphere
(St = 0.134) but much higher than its natural frequency (St ≈ 0.029).

In regime V, covering Re = 332–500, the layover angle returns to ϑ = 90◦. In
contrast to regime IV, the sphere motion is predominantly in the radial direction.
The amplitude of oscillation in regime V gradually increases as Re is increased. The
frequency of the radial displacement for regime V is 0.104. This Strouhal number is
also close to but still less than that of the fixed sphere (St = 0.134). In regime VI, the
vibrations become chaotic and the sphere undertakes chaotic wandering. The range of
Re for regime VI covers both simulations and experiments, and the existence of the
regime is verified by observations of a similar irregular pattern in the experimental
visualizations for the overlapping Reynolds-number range.

In regime VII (Re > 3000), the oscillation changes from chaotic wandering to quasi-
circular motion. As Re is raised further, the orbits of the sphere exhibit a more clearly
circular shape. Table 3 summarizes the seven regimes found for the neutrally buoyant
tethered sphere.

Of some interest is the change to the symmetry-breaking transitions relative to the
fixed-sphere case. For the wake of a fixed sphere, the initial steady/axisymmetric to
steady/non-axisymmetric transition occurs at Re ' 212, and the next transition from
steady/non-axisymmetric flow to unsteady/non-axisymmetric flow occurs at Re ' 272.
These two transitions occur in the same sequence and at the same Reynolds numbers
(within numerical uncertainty) as for the tethered sphere. Beyond these Reynolds
numbers, there are distinct differences between the wake states once the sphere
starts to vibrate. At onset, the radial oscillation frequency St r = 0.0671 is half that
for the fixed-sphere case (St = 0.134); however, pinching together of the trailing
streamwise vortices occurs twice per cycle. By Re = 280, the oscillation has switched
to be predominantly azimuthal rather than radial. This is associated with the loss of
symmetry in the wake with respect to the plane running between the trailing vortices.
Breaking of planar symmetry only occurs for the fixed sphere at Re = 375. Planar
symmetry remains broken for the tethered sphere in regimes IV and V, but it is
recovered in regime VI from Re> 330 and maintained until at least Re= 450.

As indicated in the introduction, Provansal et al. (2004) observed quasi-circular
motion of a sphere with m∗ = 2.433 in an experimental study of a vertically tethered
sphere. They observed quasi-circular or elliptic motion in the plane normal to the
flow for Re = 600–800. In addition, from numerical simulations, Behara et al. (2011)
found circular oscillations for an m∗ = 2 elastically mounted sphere with three degrees
of freedom at Re = 300 for 4 6 U∗ 6 9. Both of these findings contrast with the
sphere response seen in experiments presented here, as this circular motion appears
only at much higher Reynolds numbers of Re > 3000. The substantial difference in
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Regime Reynolds number Trajectory Wake characteristics

I 50 6 Re< 210 N/A Steady, axisymmetric

II 210 6 Re< 270 N/A Steady, non-axisymmetric,
planar-symmetric, ‘double-thread’
wake vortex formation

III 270 6 Re< 300 Radial, shifting to
azimuthal

Unsteady periodic, planar-symmetric,
start of periodic vortex shedding

IV 300 6 Re< 332 Primarily
azimuthal

Unsteady periodic, no planar
symmetry, periodic vortex shedding in
the form of vortex loops

V 332 6 Re< 550 Linear radial Unsteady periodic, planar-symmetric,
periodic vortex shedding in the form
of vortex loops

VI 550 6 Re< 3000 Irregular Unsteady non-periodic, vortex
shedding pattern becomes irregular

VII 3000 6 Re< 12 000 Quasi-circular Unsteady periodic, helix-shaped
vortex formation without shedding

TABLE 3. Regimes of the flow and response of the neutrally buoyant tethered sphere for
the range of Re = 50–12 000. The trajectories are those of the oscillating sphere on the
cross-flow (yz) plane.

mass ratio for those two cases from the one examined here may help explain the
different trajectories. In addition, the numerical results of Behara et al. (2011) used
springs in all three directions to control the motion rather than a tether, allowing
full three-dimensional movement, whereas the tether restricts the motion of the sphere
to lie on a two-dimensional spherical surface. Also, the restoring force of the tether
is approximately quadratic from the neutral point, while springs are linear. Finally,
the reduced velocity ranges are substantially different. Using a tether to supply a
restoring force does not allow independent variation of the reduced velocity; it lies in
the relatively narrow range 34 6 U∗ 6 44, as the Reynolds number is varied between
the onset of shedding at Re = 270 up to 12 000. The use of springs to provide the
restoring force allows the reduced velocity to be varied independently. Thus Behara
et al. (2011) chose a reduced velocity range for which resonance is likely between
the structural and the wake frequencies. To investigate the different response a little
further, limited simulations were undertaken with the flow direction aligned with
gravity, and for a mass ratio of m∗ = 2.433, in line with the study of Provansal
et al. (2004). The simulations indeed showed that the cross-plane trajectories became
approximately circular for Re & 500, consistent with their results.
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