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Abstract
We present the development and benchmarking of an in-house fluid–structure interaction (FSI) solver. An implicit par-
titioned approach is utilized to couple a sharp-interface immersed boundary method-based flow solver and a finite-ele-
ment method-based structural solver. In the present work, the coupling is accelerated using a dynamic under-relaxation 
scheme. The revised coupling is around two to three times faster and numerically stable, as compared to the one that 
uses a constant under-relaxation parameter. The solver is validated against two FSI benchmarks in which a thin, finite 
thickness, elastic splitter plate is attached to the lee side of a circular or square rigid cylinder, subjected to laminar flow. 
In these two-dimensional benchmarks, the flow induces a wave-like deformation in the plate, and it attains a periodic 
self-sustained oscillation. We employ the FSI solver to analyze the flow-induced vibration (FIV) of the plate in a uniform 
laminar free-stream flow for a wide range of mass ratio and bending stiffness at Reynolds number (Re) of 100, based 
on the diameter of the cylinder. At the given Re, two-dimensional numerical simulations show that the FIV of the plate 
effectively depends only on the mass ratio and bending stiffness. The largest displacement of the plate vibration is found 
to occur in the lock-in region, where the vortex shedding frequency of the coupled fluid–structure system is close to 
the natural frequency of the splitter plate. We briefly discuss wake structures and phase plots for different cases of mass 
ratio and bending stiffness.

Keywords Fluid–structure interaction (FSI) · Flow-induced vibration (FIV) · Immersed boundary (IB) method

1 Introduction

Flow-induced vibration (FIV) of an elastic plate subjected 
to laminar flow has potential applications in energy har-
vesting [1, 2] and thermal augmentation [3–5]. The inter-
action of fluid flow with a flexible structure may lead to 
large-scale FIV due to the resonant forcing of the struc-
ture caused by periodic vortex shedding. Fluid–structure 
interaction (FSI) modeling of large-scale FIV poses a signifi-
cant challenge of tackling a deforming structure in a fluid 

domain. Moreover, geometric and/or material nonlinear-
ity should be accounted for in the structural solver. The 
nonlinear system of governing equations of the fluid and 
structure may be strongly coupled to accurately capture 
large-scale FIV. Such nonlinear FSI systems exhibit a large 
amplitude of FIV over a wide range of flow velocity [6], 
potentially useful in broadband energy harvesting devices.

Previous studies attempted the computational 
modeling of moving structure in a fluid domain using 
either immersed boundary (IB) method or arbitrary 
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Lagrangian–Eulerian (ALE) method. In the latter, a struc-
ture-conformal grid is used and it gets distorted at each 
time step due to flow-induced deformation (FID) of the 
structure. Therefore, a new mesh should be generated 
and the numerical solution should be mapped to this 
new grid. By contrast, the former is well suited to address 
this computational challenge as compared to the latter. A 
structure non-conformal (oftentimes a Cartesian) grid is 
used in the IB method, and there is no need to remesh the 
fluid domain while tackling a moving structure boundary. 
A review of variants of IB methods is provided by Mittal 
and Iaccarino [7] and Sotiropoulos and Yang [8].

In order to account structural dynamics in an FSI 
system, previous studies successfully integrated finite-
element-based structural solver with existing flow solv-
ers. For example, Bhardwaj and Mittal [9] proposed an 
FSI solver by coupling a sharp-interface IB method and 
an open-source finite-element solver (Tahoe), using an 
implicit partitioned approach. Employing this solver, they 
validated the FSI benchmark, proposed by Turek and Hron 
[10]. In this benchmark, an elastic plate attached to a rigid 
cylinder attains self-sustained oscillation in a laminar chan-
nel flow. Similarly, Tian et al. [11] proposed a versatile FSI 
solver which could handle large-scale FID of a flexible 
structure. They carried out several validations with estab-
lished benchmarks and demonstrated the three-dimen-
sional capability of the solver. Bailoor et al. [12] coupled 
a compressible flow solver with an open-source finite-
element solver (Tahoe) to simulate blast loading on thin 
plates. Very recently, Furquan and Mittal [13] numerically 
studied two side-by-side flexible splitter plates attached to 
square cylinders using a deforming-spatial-domain/stabi-
lized space–time flow solver coupled with a finite-element 
open-source structural dynamics solver.

The dynamic relaxation using Aitken’s method was 
employed to accelerate the convergence of the cou-
pling between the flow and structural solver in previous 
reports. Küttler and Wall [14] demonstrated a successful 
implementation of the dynamic relaxation using Aitken’s 
method in an FSI solver based on the ALE method. They 
showed a reduction in the number of sub-iterations by 
two to four times as compared to the constant under-
relaxation scheme. Similarly, Borazjani et al. [15] imple-
mented Aitken’s method in an IB method-based flow 
solver coupled with an elastically mounted rigid structure. 
Later, Kim et al. [16] reported the implementation of the 
Aitken’s method for an IB method-based flow solver and a 
structural dynamics solver, coupled using weak and strong 
couplings. Degroote et al. [17] also presented a detailed 
algorithm that employed Aitken’s method.

Several previous reports elucidated the flow physics of 
a rigid splitter plate mounted on a cylinder. Vu et al. [18] 
numerically examined the effects of splitter plate length 

and Reynolds numbers on flow characteristics and drag/
lift coefficients at Re = 60 − 180 . They found that a criti-
cal plate length exists to suppress the vortex shedding. 
Sarioglu [19] measured flow field around a rigid splitter 
plate mounted on a square cylinder at Re = 30,000, keep-
ing the plate length equal to cylinder diameter. The author 
varied the angle of incidence and reported a large Strouhal 
number and the lowest drag at an angle of 13◦ . Similarly, 
Chauhan et al. [20] experimentally measured the flow 
field around a rigid plate mounted on a square cylinder 
at Re = 485. They varied plate length from 0 to 6 times of 
the cylinder width and reported that a secondary vortex 
appears near the tailing edge of the plate for a threshold 
plate length.

Several previous studies [21–24] defined two important 
dimensionless parameters that govern the dynamics of a 
flexible plate subjected to fluid flow, namely the bending 
stiffness ( Kb ) and the mass ratio (M). These are given by

where the superscript ∗ denotes a dimensional variable. 
Here, E∗ , �∗

f
 , U∗

∞
 , h∗ , L∗ and �∗

p
 are the Young’s modulus of the 

plate, fluid density, free-stream velocity, plate thickness, 
plate length and plate density, respectively. Note that Kb 
is defined per unit spanwise width of the plate in Eq. 1. 
Physically, Kb represents the ratio of restoring force pro-
duced by stiffness to the loading on the structure by the 
fluid. The parameter M represents the ratio of the density 
of the structure to that of the fluid, which is often referred 
to as the mass ratio. In addition, the reduced velocity UR is 
another important parameter, defined as the ratio of the 
characteristic time scale of the structure to that of the fluid 
[25], and is given by,

The dynamics of thin, flexible plate oscillations subjected 
to a free-stream flow has been reported in several studies. 
Watanabe et al. [26] studied the flutter of a paper sheet 
using an analytical method and reported high flutter 
modes at low M. Argentina and Mahadevan [27] proposed 
a critical speed for the onset of flapping and estimated 
the flapping frequency based on scaling analysis. Tang 
and Païdoussis [25] investigated the dynamics of a flex-
ible plate using an Euler–Bernoulli model coupled with 
an unsteady lumped vortex model. They investigated the 
flutter boundary and the post-critical behavior of this FSI 
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system. They obtained the flutter boundary in the form of 
the critical flow velocity versus the length of the flexible 
plate. They observed that the critical flow velocity is sensi-
tive to short plate lengths.

Previous studies reported different regimes of flapping 
or flutter of a thin plate. A comprehensive review of such 
regimes was provided by Shelley and Zhang [28]. Con-
nell and Yue [21] proposed a regime map of flag flutter 
based on their FSI simulations. They proposed the follow-
ing three categories of plate dynamics: fixed-point stabil-
ity, limit-cycle flapping and chaotic flapping. Fixed-point 
stability occurs when the flag aligns with the flow. As the 
flow velocity is increased, limit-cycle flapping takes over, 
characterized by single-frequency repeating flag oscilla-
tions. Chaotic flapping occurs as the flow velocity is further 
increased. Similarly, Lee et al. [29] examined the flapping 
dynamics of a flexible flag in a uniform flow. They found 
three different flapping states such as regular flapping, 
irregular flapping and irregular flapping with violent snap-
ping by varying M and Kb.

Alben and Shelley [30] simulated the nonlinear dynam-
ics of a flexible sheet in a 2D inviscid fluid. They character-
ized the behavior of flapping flags at large amplitudes and 
over many flapping periods and demonstrated a transition 
from a periodic to a chaotic flapping as the bending rigid-
ity was decreased. They also found the stability boundary 
of the flow-aligned state for a flag within the two-dimen-
sional parameter space of dimensionless flag inertia and 
bending rigidity. Employing a linear stability analysis, Con-
nell and Yue [21] found the existence of a critical mass ratio 
for the chaotic flapping of the plate. Similarly, Eloy et al. 
[31] studied the linear stability of a flexible plate immersed 
in axial flow and found that a finite-span plate is stable 
than the infinite-span plate. Eloy et al. [32] addressed the 
linear stability of the rectangular plate in uniform flow and 
incompressible axial flow by varying aspect ratios. They 
identified critical velocities for the instability transitions 
as a function of system parameters, showing good agree-
ment with their data.

Akcabay and Young [23] examined the dynamic 
response and stability of piezoelectric beams in viscous 
and axial flows. They showed that a heavy beam under-
goes flutter in a light fluid when the fluid inertial forces 
are in the balance with the solid elastic restoring forces, 
and for a light beam in a heavy fluid, flutter occurs when 
the fluid inertial force dominates the solid inertial force. 
Recently, Shoele and Mittal [3] numerically studied the 
dynamics of a self-oscillating reed in a channel flow, and 
they found that heavy reeds have higher critical veloci-
ties and have low oscillation frequencies and amplitudes. 
In a follow-up study, they predicted the flutter instability 
inside for a plate confined in a 2D channel of height H on 
the M-UR plane for a channel length L = 1 , for Re = 400 [33]. 

They found that confinement induces a destabilizing effect 
and increases the oscillation frequency and compared the 
stability curves for different values of the H/L ratio. Their 
study found that using confinement and the asymmetric 
position of the plate could be used to adjust the flutter 
frequency and flutter instability.

In the context of an elastic splitter plate mounted on a 
rigid cylinder, Turek and Hron [10] proposed a FSI bench-
mark in which the elastic splitter plate of aspect ratio 17.5 
attains a self-sustained periodic oscillation in a channel 
flow. Using the same configuration of Turek and Hron 
[10], Bhardwaj and Mittal [9] numerically showed that the 
oscillation frequency of the plate varies linearly with the 
dilatational wave speed inside the plate. Kundu et al. [34] 
showed that the computed plate frequency in the lock-in 
regime scales as the second mode of the natural frequency 
of a vibrating cantilevered plate ( f ∗

ni
 ) in the vacuum. In this 

context, the natural frequency of an elastic plate fixed at 
one end is obtained using the Euler–Bernoulli beam model 
and is given by [34, 35],

where i = 1, 2, 3 represents the frequency modes of the 
plate, E∗I∗ is the dimensional flexural rigidity of the beam 
and ki are the respective constants for the modes. The val-
ues of k are 1.875, 4.694 and 7.855 for the first, second 
and third mode of the natural frequency, respectively. Also, 
�∗
s
 , A∗ and L∗ are the structure density, cross-sectional area 

and length of the plate, respectively. Using Eqs. 1 and 2, 
the non-dimensional form of Eq. 4 is expressed as follows:

Kundu et al. [34] also studied the effect of Reynolds num-
ber (Re) and length of the splitter plate on its flapping fre-
quency. Shukla et al. [36] experimentally showed that the 
amplitude of the oscillation of a splitter plate attached to 
a circular cylinder increases with Re based on the cylinder 
diameter and they reported a plateau oscillation ampli-
tude at Re > 4000 . Very recently, Sahu et al. [37] numeri-
cally investigated the dynamics of an elastic splitter plate 
mounted on an elastically mounted cylinder.

The above literature survey shows that the FIV of 
the plate exhibits complex and coupled physics, and 
most of the previous investigations [21, 24, 29, 33, 38] 
neglected the thickness of the plate in the modeling 
and/or considered a membrane-like structure. For 
instance, the ratio of thickness to length, Kb and M was 
restricted to O(0.01), O(10−3) and O(1), respectively, in 
the previous reports. In the context of the development 
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of FSI solver, while previous studies successfully dem-
onstrated the advantage of Aitken’s method including 
those in IB-based solvers [14–17], an FSI solver with a 
strongly coupled high-fidelity structural solver and that 
can handle large-scale FID of the structure has not been 
reported thus far, to the best of our knowledge.

Therefore, to address these computational chal-
lenges and capture the coupled physics during FIV, the 
objective of the present study is twofold. The first is to 
develop and benchmark a high-fidelity FSI computa-
tional model that can tackle the large-scale FID of a thin 
structure. In particular, the implicit (strong) coupling 
between an in-house sharp-interface IB method-based 
flow solver and an open-source, finite-element-based 
structural dynamics solver is significantly accelerated 
using a dynamic under-relaxation method in the pre-
sent work. To avoid the divergence of the coupling 
residual for challenging cases (e.g., low structure–fluid 
density ratio), additional sub-schemes have been imple-
mented to bring robustness and numerical stability to 
the FSI coupling. For instance, we switch to constant 
under-relaxation if Aitken’s method diverges. Second, 
the present study also aims to generate new numeri-
cal datasets while extending the FSI benchmark pro-
posed by Turek and Hron [10], which could serve as 
additional benchmark data for future studies. These 
datasets correspond to a wide range of mass ratio (M) 
and bending stiffness ( Kb ) of the plate. The second 
objective is to investigate the coupled dynamics of an 
elastic splitter plate attached to a cylinder, subjected to 
laminar flow. We consider a wide range of M = [0.14, 20] , 
Kb = [0.0008, 0.044] and UR = [2.6, 30.3] , at Re = 100, as 
compared to the previous reports.

2  Computational model

We employ an in-house FSI solver based on a sharp-
interface IB method which was developed by Mittal and 
co-workers [9, 39–41]. In the present work, the implicit 
coupling between the flow and structural dynamics 
solver has been implemented with dynamic under-
relaxation [42] and several code validations against 
FSI benchmarks are carried out [43]. In the following 
subsections, different components of the solver are 
described briefly. The definitions of the major symbols 
used in the model are given in Table 1.

2.1  Fluid dynamics

The flow is governed by the two-dimensional, unsteady, 
viscous, incompressible Navier–Stokes equations for a 
Newtonian fluid, written in dimensionless form as follows:

where i, j = 1, 2 , and ui , t, p and Re are velocity compo-
nents, time, pressure and Reynolds number, respectively. 
Re is based on mean inlet flow velocity and cylinder diam-
eter. The computational methodology to solve the above 
governing equations including discretization of the equa-
tions and algorithm of the flow solver has been previously 
well documented, and details can be found in previous 
papers [39–41].

To treat fluid–structure interface in the fluid domain, a 
sharp-interface IB method based on a multi-dimensional 
ghost-cell methodology developed by Mittal et al. [39] is 
employed. In this method, the governing equations for 
the fluid domain are solved on a non-uniform Cartesian 
grid in the Eulerian framework and the moving structure 
boundary is tracked within a Lagrangian framework. A 
schematic of the ghost-cell method is shown in Fig. 1a. 
The cells whose centers are located inside the structure are 
identified as structure cells and the other cells outside the 
structure are identified as fluid cells. A structure cell which 
has at least one fluid cell as a neighbor is called a ghost 
cell. A normal probe is extended from a ghost cell to inter-
sect with the fluid–structure interface at a point, defined 
as body intercept point (Fig. 1a). The probe is extended 
into the fluid to the image point such that the body-inter-
cept lies midway between the image and ghost points, as 
shown in Fig. 1a. The kinematic boundary condition at the 
interface is prescribed by specifying an appropriate value 
at this ghost cell.

While tackling a moving fluid–structure interface, the 
sharp-interface IB methods are usually prone to spurious 
pressure oscillations due to the generation of “fresh” and 
“dead” cells [39]. The fresh (dead) cells are that fluid (solid) 
cells which were solid (fluid) cells in the previous time step. 
A cut-cell method proposed by Seo and Mittal [40] is uti-
lized to reduce the spurious pressure oscillations gener-
ated by fresh and dead cells.

2.2  Structure dynamics

Here, we briefly describe governing equation and constitu-
tive model for the structure and more details are given in 

(6)
�ui

�xi
= 0,

(7)
�ui

�t
+ uj

�ui

�xj
= −

�p

�xi
+

1

Re

�2ui

�xj�xj
,

Fig. 1  a Schematic of the IB method proposed by Mittal et al. [39]. 
b Flowchart of the implicit coupling between flow and structural 
solver utilizing dynamic under-relaxation method for one time-step
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our previous paper [12]. The Navier equations, i.e., momen-
tum balance equation in Lagrangian form, are expressed as 
follows:

where i and j range from 1 to 3, �s is the structure density, 
di is the displacement component in the i direction, t is the 
time, �ij is the Cauchy stress tensor and fi is the body force 
component in the i direction. The displacement vector 
d(x, t) describes the motion of each point in the deformed 
structure as a function of space x and time t.

We employ Saint Venant–Kirchhoff material for the 
structure that considers geometric nonlinearity for a lin-
ear elastic material. The constitutive relation between the 
stress and the strain is based on Green–Lagrangian strain 
tensor � and second Piola–Kirchhoff stress tensor �(�) as 
a function of � . The second Piola–Kirchhoff stress tensor 
can be expressed in terms of the Cauchy stress tensor � 
as follows:

where J is the determinant of the deformation gradient 
tensor � . The Green–Lagrangian strain tensor � is defined 
as follows:

The input parameters to the constitutive model are 
Young’s modulus (E) and Poisson ratio ( � ). The Navier equa-
tions are solved using Galerkin finite-element method, 
implemented in Tahoe, an open-source, Lagrangian, three-
dimensional, finite-element solver. (Tahoe was developed 
at Sandia National Labs, USA.) The details of the numerical 
methodology have been documented in previous papers 
[12, 44].

2.3  Implicit coupling with dynamic 
under‑relaxation

In order to couple the flow and structural solvers, the con-
tinuity of velocity on the fluid–structure interface, i.e., no-
slip condition, is applied for the fluid domain, expressed 
as follows:

where subscripts f and s denote the fluid and structure, 
respectively. The continuity of the traction is prescribed 
at the fluid–structure interface, given by,
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where nj is local normal pointing outward on the 
fluid–structure interface in the fluid domain. The pressure 
on the interface is computed using interpolated pressure 
at the boundary intercept points via a trilinear interpola-
tion (bilinear interpolation for 2D), as described by Mittal 
et al. [39].

The flow and structural solvers are coupled using an 
implicit partitioned approach using a constant value of 
under-relaxation, as described by Bhardwaj and Mittal 
[9]. In the present work, we implement dynamic under-
relaxation factor ( � ), estimated using Aitken’s method. In 
the implicit coupling, the flow solution is marched by one 
time step with the current deformed shape of the struc-
ture and the velocity of the fluid–structure interface acts 
as the boundary condition in the flow solver, as shown in 
the flowchart in Fig. 1b. The structural solver is marched 
by one time step with the updated fluid dynamic forces. 
The FSI convergence is declared if L2 norm of the displace-
ment or velocity of the interface reduces below a preset 
value (Fig. 1b).

In Aitken’s method, two previous FSI sub-iterations are 
used to predict a better value of � . The expression of � at 
a given FSI sub-iteration k is given by [17],

where � is the interface residual vector and is defined as 
follows:

where � is an interface variable, namely position ( � ), veloc-
ity ( � ) and acceleration ( � ) of the interface. � is the differ-
ence between new and old values of � in a sub-iteration. 
Each variable is composed of two components (3 in three-
dimensional); thus, we could use 6 (9 in three-dimensional) 
different variables to compute � , using Eq. 13. In the pre-
sent work, we used velocity of the interface in y-direction 
to compute �.

We start the FSI sub-iterations with a small initial guess 
of � (say �0 ). A better guess of �0 is the value obtained 
using constant under-relaxation value, to achieve the FSI 
convergence. As shown in the flowchart in Fig. 1b, we cal-
culate FSI residual (r) based on � and � over successive 
sub-iterations and convergence is declared if the residual 
reduces below a defined threshold value. We compute � 
at a given sub-iteration k using Eq. 13 and keep revising 
the position and velocity of the fluid–structure interface 
( � and � ) until the convergence is achieved in a given 
time-step.

Aitken’s method is exact for linear systems, imply-
ing that three iterations (two previous guesses plus one 
for Aitken) are needed for the convergence of a linear 
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system in a given time step. However, due to the large 
nonlinearity of the present FSI system, the coupling may 
diverge due to the large value of � , predicted by the Ait-
ken’s method. To circumvent this problem and to ensure 
convergence, we implement the following two sub-
schemes in the algorithm. First, the value of � is restricted 
in a defined range, [ �min , �max ]. Thus, a large prediction of 
� by the Aitken’s method is superseded by �max . Second, in 
case of a divergence even with �max , we switch to constant 
under-relaxation value for few sub-iterations, say Nsafe and 
use a smaller under-relaxation value, say �safe . We switch 
back to the dynamic under-relaxation after Nsafe iterations. 
We have used Nsafe = 5 and �safe = �0 = 0.1 in the present 
work. The improvement in the FSI convergence as well as 
numerical stability for a test case is discussed in Sect. 3.4.

3  Benchmarking and testing of the FSI 
solver

3.1  Grid‑size independence study for fluid domain

We examine grid-size convergence for the FSI benchmark 
problem, proposed by Turek and Hron [10], in an open 
domain instead of a channel. As shown schematically in 
Fig. 2, we consider a thin, elastic splitter plate with dimen-
sions 3.5D × 0.2D , mounted at the lee side of a rigid cyl-
inder of diameter, D. The domain length and width are 
(S1 + S2) and S3 , respectively, where S1 , S2 and S3 are taken 
as 5.5D, 14D and 12D, respectively. The center of the cyl-
inder is ( S1, S3∕2).

The boundary conditions for the present work are 
illustrated in Fig. 2. Inflow and outflow velocity boundary 
conditions are prescribed at the left and right boundary, 

respectively. At left boundary, the following inlet velocity 
is prescribed, ui = (1, 0) . At the top and bottom bounda-
ries of the domain, zero shear stress boundary condition 
is prescribed. No slip is applied on the fluid–structure 
interface. The following values are considered for the 
simulation setup, D = 1 and Re = 100, based on the cylin-
der diameter and uniform velocity at the inlet. The dimen-
sionless Young’s modulus, structure to fluid density ratio 
and Poisson ratio are taken as 100, 1.4 × 103 , 10 and 0.4, 
respectively.

Five cases of non-uniform Cartesian grids in the fluid 
domain with the following points are considered for carry-
ing out grid-size independence study: 193 × 65 , 257 × 97 , 
321 × 161 , 385 × 193 and 481 × 193 . A high resolution of 
the grid is incorporated into the region where the plate 
movement is expected (Fig. 3a) and a non-uniform grid 
stretching is used from this region to the boundary. The 
minimum grid sizes in x- and y-directions are kept same, 
Δxmin = Δymin , in each case and are listed in Table 2. The 
ratio of minimum grid size, � = Δxk

min
∕Δxk+1

min
 , between suc-

cessive meshes is also listed in Table 2, where Δxk
min

 is the 
grid size of case k. � is around 1.3, expect for the coarsest 
mesh considered (for case 1, � = 1.67 ). The time step for 
these unsteady simulations is set to Δt = 0.01 , based on 
a time-step independence study (not shown here).

The comparison of the time-varying Y-displacements 
of the tip of the plate obtained for different grids is shown 
in Fig. 4a. We note minor differences in the maximum tip 
displacement for different cases plotted in the inset. Com-
puted amplitudes of the vibration of the plate ( AYtip ) for 
different grids are also listed in Table 2. To quantify the grid 
size convergence, L2 norm of the errors in the amplitude 
of the displacement signal ( AYtip ) with respect to the finest 
grid is estimated and is given in Table 2. The L2 error norms 

Fig. 2  Schematic of computational domain with details of the boundary conditions considered for the validation with FSI benchmark pro-
posed by Turek and Hron [10] and for analyzing the FIV of the plate in an open domain
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are plotted against the grid size ( Δxmin = Δymin ) in Fig. 4b 
on a log–log scale. The errors approximately reduce along 
a line of slope 2, implying a second-order accuracy of the 
coupled FSI solver. The error in the case of 385 × 193 grid 
is one order of magnitude lesser than the coarsest grid 
considered (Table 2). Therefore, 385 × 193 non-uniform 

Cartesian grid with Δxmin = 0.02 and Δymin = 0.02 was 
selected for all the simulations presented in Sect. 4.

Fig. 3  a Finite-element grid of the plate immersed in a non-uni-
form Cartesian grid for the fluid domain. A uniform grid is used in 
the region in the fluid domain in which the plate is expected to 
move and non-uniform grid stretching is used from this region to 
the boundaries of the computational domain. Inset shows zoomed-

in view of the finite-element grid in the plate. b–e Zoomed-in view 
of the finite-element grid for different cases of the grids considered 
in the plate, for carrying out grid-size resolution study. The number 
of finite elements (N) is specified for each case
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3.2  Domain‑size independence study

In order to test domain size independence, we vary the 
size, (S1 + S2) × S3 , and consider four domains of sizes, 
19.5D × 12D , 30D × 12D , 40D × 12D and 50D × 20D . Other 
simulation parameters are kept the same as described in 
Sect. 3.1. We kept S1 = 5.5D for all cases and varied S2 and 
S3 to study the domain size independence, as given in 
Table 3. Simulated values of the amplitude of the Y-dis-
placement ( AYtip ) obtained for all cases are listed in Table 3, 
and we note minor differences in the values of the AYtip . 
The percentage differences in AYtip with respect to the 

biggest domain considered ( 50D × 20D ) for the rest of 
the domains are also listed in Table 3. The magnitude of 
the percentage difference concerning the 19.5D × 12D 
domain is lesser than 1%. Therefore, 19.5D × 12D domain 
is subsequently used for simulations presented in Sect. 4.

3.3  Grid‑size independence study for structure 
domain

We perform structural grid-size convergence study in an 
open domain with a 385 × 193 grid in the fluid domain 
and consider four different grids composed of triangular 

Fig. 4  Grid size convergence study for the fluid domain a Com-
parison of the time-varying cross-stream displacement of the plate 
tip ( Ytip ) as a function of different grid resolutions used in the fluid 
domain. b Variation of computed L2 error norm of AYtip of the grids 

considered against the grid size ( Δxmin = Δymin ). The errors are 
computed with respect to the finest grid examined, 481 × 193 cor-
responding to Δxmin = 0.015
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finite elements in the plate (Fig. 3b–e). The numbers of 
finite triangular elements (N) in different structural grids 
considered are listed in Table  4. The boundary condi-
tions, domain size and simulation parameters are kept 
the same, as discussed in Sect. 3.1. The comparison of the 
time-varying displacements ( Ytip ) obtained for the differ-
ent structural grids is shown in Fig. 5a. The comparison 
shows minor differences in the maximum displacement, as 
shown in the inset of the figure. Computed values of AYtip 
for all cases are also given in Table 4. In order to quantify 
the grid convergence, L2 norms of the error with respect 
to the finest grid ( N = 3082 ) are listed in Table 4 and are 
plotted against N on a log–log scale in Fig. 5b. The errors 
approximately decay along a line of slope 2, implying a 
second-order accuracy. Since the error for N = 2182 is one 
order of magnitude smaller (Table 4) than the coarsest grid 
considered ( N = 736 ), we choose N = 2182 grid for the 
simulations presented in Sect. 4.

3.4  Testing of faster convergence by using dynamic 
under‑relaxation

We test the improvement in the convergence of the 
implicit coupling by dynamic under-relaxation scheme, 
described in Sect. 2.3. The test problem is chosen as FSI 
benchmark problem proposed by Turek and Hron [10] in 
an channel, described in the previous section. We used 
velocity of the interface in y-direction to compute � 
(Eq. 13) for the dynamic under-relaxation, and the toler-
ance for the convergence is set to 2 × 10−4 . The value of � 
at which the constant under-relaxation converges for this 
problem is around 0.1. In order to demonstrate the advan-
tage offered by the dynamic under-relaxation, we com-
pare the following three cases: (1) constant under-relax-
ation, � = 0.1 ; (2) dynamic under-relaxation, �min = 0.1 
and �max = 0.4 ; and (3) dynamic under-relaxation with 
�min = 0.05 and �max = 0.8.

Computed y-displacement of the tip of the plate is 
shown in Fig. 6a. The plate attains a self-sustained peri-
odic oscillation with a constant amplitude and frequency 
after t ≈ 60 . We examine the FSI convergence history at 
four time instances, t1 to t4 (shown by black dots in Fig. 6a), 
in a cycle of plate oscillation. The variation of the FSI 
residual with sub-iterations is compared for constant and 
dynamic under-relaxation schemes for the time instances 
in Fig. 6b–e. It is noted that residual decreases much faster 
with dynamic � in cases (2) and (3) as compared to con-
stant under-relaxation, case (1), for all time instances con-
sidered. The better performances of the latter two cases 
are almost similar at all instances in a typical cycle of the 
oscillation. The computed average numbers of iterations 
for one cycle of plate oscillation in cases (1), (2) and (3) are 
around 76, 39 and 28, respectively. This shows a reduction 

of around three and two times in the number of sub-iter-
ations in cases (2) and (3), respectively, as compared to 
the case (1). On comparing cases (2) and (3), we note that 
the range of � considered also influences the number of 
sub-iterations in the dynamic under-relaxation method. 
A linear variation of the residual (say between 15 and 20 
sub-iterations at t1 ) shows that the method uses a constant 
value of the under-relaxation, implying that the coupling 
scheme avoids the possible divergence. Overall, we dem-
onstrate a reduction in FSI sub-iterations by three times 
using the dynamic under-relaxation scheme. The revised 
method ensures better numerical stability of the FSI solver 
at low structure–fluid density ratio and accelerates the 
convergence of the implicit coupling.

3.5  Code validations

The present FSI solver has been extensively validated in 
previous studies. The flow solver was validated by Mittal 
et al. [39] for benchmark CFD problems such as the flow 
past a circular cylinder, sphere, airfoil, suddenly acceler-
ated normal plate and suddenly accelerated circular cyl-
inder. Further, Kundu et al. [34] validated the flow solver 
for pulsatile inflow past a cylinder in a channel. Large-scale 
FID of a thin, elastic splitter plate was validated against the 
FSI benchmark problem proposed by Turek and Hron [10], 
Bhardwaj and Mittal [9] and Kundu et al. [34]. Recently, 
the code was validated for vortex-induced vibration of a 
circular cylinder [45] and the FID of a viscoelastic splitter 
plate [46]. In the following subsections, first, we present 
validations of the large-scale FID module of the in-house 
solver, presented in Sect. 2, for the FSI benchmarks pro-
posed by Turek and Hron [10] and Wall and Ramm [47]. We 
used grid size established in Sects. 3.1 and 3.3 for the fluid 
and structure domain, respectively.

3.5.1  Splitter plate attached to the circular cylinder

We carried out the validation proposed by Turek and Hron 
[10], in which an elastic plate is mounted on the lee side 
of a rigid cylinder in a channel (Fig. 2). The length and 
width of the channel are considered as S1 + S2 = 20D 
and S3 = 4.1D , respectively, shown in Fig. 2. The center 
of the cylinder is (2D, 2D). The parabolic inflow bound-
ary condition was imposed. The material parameters 
are taken as follows: Poisson ratio = 0.4, dimensionless 
Young’s modulus (E) = 1400 and the structure to fluid 
density ratio of � = 10 . Based on the grid-size independ-
ence test presented in Sect. 3.1, a non-uniform Cartesian 
mesh with 385 × 161 nodes was used for simulation with 
Δxmin = Δymin = 0.02 and non-dimensional time step of 
Δt = 0.01.
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The computed displacement of the tip of the plate is 
periodic, and its amplitude reaches a plateau value at 
around t ≈ 60 (Fig.  6a). We compare the time-varying 
cross-stream position of the plate tip ( Ytip ) with the bench-
mark data of Turek and Hron [10] in Fig. 7. The amplitude 
( AYtip ) and oscillation frequency ( fp ) of the plate are in 
excellent agreement with the published data. We also 
extend the benchmark in an open domain, keeping all 
simulation parameters the same. Zero shear stress bound-
ary condition is applied at the top and bottom boundary 
(Fig. 2) in this case. The plate displacement ( Ytip ) and its 
oscillation frequency ( fp ) for the open domain are 0.75D 
and 0.155D/U, which are slightly lower than the corre-
sponding benchmark values for the channel.

3.5.2  Splitter plate attached to the square cylinder

We further validate the large-scale FID module against the 
benchmark problem proposed by Wall and Ramm [47]. In 
this problem, a thin elastic splitter plate is attached to a 
rigid square cylinder, as shown in Fig. 8a. The reference 
length is taken as the side length of the square cylinder, 
and the reference velocity is taken as the inlet velocity. 
Re based on these reference values is 333. The material 
parameters are taken as follows: Poisson ratio = 0.35, 
dimensionless Young’s modulus E = 8.1 × 105 and the 
structure to fluid density ratio � = 84.7 . The inlet flow 
conditions and boundary conditions are illustrated in 
Fig. 8a. A non-uniform Cartesian mesh specified in the 
validation study has been used for this simulation, and 
the non-dimensional time step was set to Δt = 7.5 × 10−3 . 
The plate reaches a self-sustained periodic state, similar to 
the case of an elastic plate attached to a circular cylinder. 
The time history of the tip displacement ( Ytip ) is plotted in 
Fig. 8b. The computed plate vibration frequency, as well 
as the tip displacement along with published results, is 
listed in Table 5. We found excellent agreement between 
the present and published results [47–49], which further 
validates the present FSI solver. At the maximum tip dis-
placement, contours of vorticity are shown at different 
time instances in Fig. 8c. These time instances are shown 
by dots in Fig. 8b. As noted from the vorticity field, vortices 
shed alternatively at the top and bottom of the deforming 
plate.

4  Analysis of FIV of an elastic splitter plate

Numerical simulations were performed for the elastic split-
ter plate in an open domain using the same parameters, 
domain size and boundary conditions, as discussed in 
Sect. 3.1. The effects of mass ratio (M) and bending stiff-
ness ( Kb ) on the dynamics of the elastic plate as a function 

of reduced velocity ( UR ) are discussed in the following sub-
sections. The definitions of these dimensionless variables 
are given in Table 1.

4.1  Effect of mass ratio (M)

We discuss the effect of M on the elastic splitter plate 
displacement ( AYtip ), oscillation frequency ( fp ) and wake 
structures, keeping Kb constant. Simulations are presented 
for M = [0.143, 20.029] and Kb = 0.0218 , with simulation 
parameters given in Table 6. Figure 9 plots amplitude of 
the tip of the plate, AYtip , as a function of UR for different 
cases of M. The range of UR considered is [2.562, 30.311] 
and UR increases with an increase in M, as noted in Table 6. 
We also plot frequency ratio, fp∕fni as a function of UR , 
where fp and fn2 are the frequencies of the plate and its nat-
ural frequency of oscillation in second mode, assuming it 
as a Euler–Bernoulli beam. These frequencies are obtained 
by the numerical simulation and Eq. 5, respectively.

Figure  9 shows that AYtip increases with UR for 
0.286 ≤ M ≤ 2.747 , reaching a maximum value of 1.93 
at M = 2.747 and then decreases with UR in the range 
2.747 ≤ M ≤ 14.306 . The frequency ratio increases with M 
(or UR ) for 0.286 ≤ M ≤ 1.717 and is around 0.8–0.9, i.e., 
closer to unity for 1.717 < M < 3.434 . Figure 9 shows that 
a larger amplitude oscillation occurs for the cases where 
fp∕fn2 ≈ 0.8-0.9 . This is called as lock-in condition (dis-
cussed in detail in the next section), and we plot a dotted 
line to denote the lock-in condition where fp∕fn2 = 1 . The 
curve starts to deviate from the dotted line over the mass 
ratio range 3.434 ≤ M ≤ 5.723 . At M ≥ 17.167 , AYtip reduces 
to zero.

4.1.1  Lock‑in condition

In the case of vortex-induced vibration (VIV) of an elas-
tically mounted cylinder, the lock-in occurs if the vortex 
shedding frequency changes (and locks) to match the 
natural frequency of spring in vacuum [50] and the cylin-
der oscillates with a larger amplitude. In the present case, 
the simulated flow over a rigid splitter plate of length 
L∕D = 3.5 does not show any vortex shedding at Re = 100. 
In the case of a rigid and sufficiently long splitter plate 
mounted on the lee side of the cylinder, the plate inhibits 
flow instabilities in the wake, and vortex shedding is sup-
pressed. However, in the case of a shorter rigid plate, the 
shedding may occur. Therefore, we extend the definition 
of the lock-in in a classical VIV of a cylinder to the present 
FSI system, i.e., a rigid cylinder with an elastic splitter plate. 
In the latter, vortex shedding frequency of the FSI system 
and plate oscillation frequency ( fp ) are identical and lock-in 
is defined if the vortex shedding or plate oscillation fre-
quency ( fp ) is close to the natural frequency of the plate in 
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vacuum for any mode ( fni ), where subscript i denotes the 
ith natural mode of the oscillation. Consequently, the plate 
oscillates with a larger amplitude in this condition.

We note similar characteristics for the FIV of the plate 
as described in the literature for the VIV of the cylinder. As 
discussed earlier, we note that large-amplitude oscillations 

for 1.71 ≤ M ≤ 3.43 if fp∕fn2 ≈ 0.8-0.9 , indicating a lock-in 
region. The deviation of the frequency ratio from unity 
is attributed to added mass effect at low mass ratios [51, 
52]. In addition, a large reduction in AYtip from M = 2.74 
to M = 2.857 in Fig. 9 is a typical transition from “upper 
branch” to “lower branch,” as reported for the VIV of an 

Table 1  Definitions of major symbols used in the present paper

Symbols Definitions

AYtip Amplitude of Y-displacement of the tip of the plate [ A∗
Ytip

∕D∗]
b Plate width [ b∗∕D∗]
D∗ Diameter of the cylinder [m]
E Young’s modulus [ E∗/�∗

f
U∗
∞

2]
fni Natural frequency of the plate in vacuum [ fni

∗D∗∕U∗
∞

 ] (Eq. 5)
fp Oscillation frequency of the plate [ fp

∗D∗∕U∗
∞

]
h Plate thickness [ h∗∕D∗]
I∗ Moment of inertia of the plate cross section [b∗h∗3∕12] [m4]

Kb Bending stiffness (Eq. 1)
L∗ Plate length [m]
M Mass ratio (Eq. 2)
N Number of triangular finite elements in plate
Re Reynolds number [ �∗

f
U∗
∞
D∗∕�∗]

Δt Time step in the simulation
ui Velocity vector
UR Reduced velocity (Eq. 3)
U∗
∞ Inlet velocity [m s −1]

� Velocity vector of fluid–structure interface
xi Spatial coordinates
Δxmin Minimum grid size in x-direction near the plate
� Position vector of fluid–structure interface
Xtip x-displacement of the tip of the plate [ X∗

tip
∕D∗]

Δymin Minimum grid size in y-direction near the plate
Ytip y-displacement of the tip of the plate [ Y∗

tip
∕D∗]

Greek symbols

�∗ Dynamic viscosity [Pa.s]
� Density ratio [ � = �p∕�f]

Subscripts

f Fluid
p Plate
ni Natural frequency of mode i

Superscript

∗ Dimensional quantity

Acronyms

ALE Arbitrary Lagrangian–Eulerian
FID Flow-induced deformation
FIV Flow-induced vibration
FSI Fluid–structure interaction
IB Immersed boundary
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elastically mounted cylinder, constrained to move trans-
verse to the flow [50].

4.1.2  Comparison of vibration characteristics of the plate 
and vorticity field

Figure 10 (first row) shows the comparison of the time-
varying Ytip for mass ratios 0.572, 2.747 and 5.723. These 
cases are case 4, case 13 and case 20 of Table 6. These sig-
nals are plotted after the plate reaches a self-sustained 
oscillation state. The computed values of the maximum 

plate amplitude values are 0.75, 1.93 and 0.48, respec-
tively. Figure 10 (second row) shows the FFT of Ytip for the 
three cases. The dominant fp for mass ratios 0.572, 2.747 
and 5.723 is 0.159, 0.073 and 0.061, respectively. Figure 10 
(second row) shows that the plate with largest deforma-
tion for M = 2.747 vibrates with more than one frequency. 
One frequency component is closer to a dominant second 
mode, and the other is a third harmonic of the dominant 
frequency. The phase plots in the third row of Fig. 10 show 
the axial and lateral movement of the plate tip, which are 
larger for M = 2.747 than other mass ratios because of the 

Fig. 5  Grid size convergence study for the structure domain. a 
Comparison of the time-varying cross-stream displacement of the 
plate tip ( Ytip ) for different grids considered in the structure domain. 
The Cartesian grid for the fluid domain is kept same for each case. b 

Variation of computed L2 error norm of AYtip of the grids considered 
against the number of finite elements (N) for the different grids. 
The errors are computed with respect to the finest grid examined, 
N = 3082
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lock-in. As a result, the phase plots are wider at M = 2.747 
and each case exhibits a limit-cycle flapping [21].

Figure  11 depicts the instantaneous vorticity field 
around the plate. The vorticity is plotted in Fig. 11 at three 
different instances, corresponding to maximum, minimum 
and central positions of the plate. For M = 0.572 , the elas-
tic splitter plate is in its self-sustained oscillation state 
and vortices are shed alternately (see the first column of 
Fig. 11). The vortex shedding shows “2S” vortex pattern, i.e., 
one vortex sheds from each side of the plate in a cycle [53] 
in the downstream. For M = 2.747 , the elastic plate bends 
to a greater degree compared to the M = 0.572 . As a result, 
longer vortex shedding from the elastic plate is observed, 
and it tends to split into two small vortices, which are not 
completely separated immediately. This vortex shedding 
flow pattern is typically similar to the 2P mode, i.e., two 
vortices shed from each side of the plate each time [53]. 
For M = 5.723 , two positive and two negative vortices are 
shedding alternatively, as shown in the third column of 
Fig. 11. Therefore, the vortex-shedding pattern depends 
on the FIV of the plate.

4.2  Effect of bending stiffness ( Kb)

The effect of Kb on the FIV of the elastic splitter plate is 
examined in this section. We consider Kb = [0.0008, 0.0436] 
keeping the mass ratio M = 0.572 constant. The param-
eters of these simulation cases are given in Table 7. As 
done previously in Sect. 4.1, we plot AYtip and fp∕fn2 as 
function of UR for different cases of Kb in Fig. 12. Note that 
UR decreases with an increase in Kb , as noted in Table 7. 
Figure 12 shows that AYtip is negligible at large Kb (small 
UR ) and it increases with UR or decreases with Kb . The fre-
quency ratio, fp∕fn2 , is plotted as a function of UR (or Kb ), 
and a red dotted line corresponds to ratio 1, i.e., lock-in 
condition. A larger amplitude occurs if fp∕fn2 is in range of 

[0.9, 1.6]. The deviation of the frequency ratio from unity 
( fp∕fn2≈1.6 ) is attributed to added mass effect at low mass 
ratios [50–52]. The plate amplitude is almost negligible for 
very large or very small Kb . The plate exhibits higher modes 
of the vibration along with the second natural mode at 
larger UR (at UR = 15.652 and 19.170 and desynchronizes 
with the wake at UR = 27.111 . In general, the plate exhib-
its similar characteristics, as seen for VIV of an elastically 
mounted cylinder, constrained to move transverse to the 
flow [50].

Figure 13 shows Ytip , power spectra, phase plots of the 
plate in the first, second and third row, respectively. These 
three rows correspond to Kb = 0.0023 (case 29 in Table 7), 
0.0109 (case 35) and 0.0218 (case 4). The dominant fre-
quencies, plotted in Fig. 13 (second row), are closer to 
second-mode natural frequency in the respective cases 
(e.g., fn2 = 0.0635 for Kb = 0.0023 , Eq. 5). The higher modes 
of the vibration are also observed for Kb = 0.0023 (UR = 
15.652). Figure 13 (third row) shows that the phase plot is 
wider at Kb = 0.0023 , i.e., the plate shows larger bending 
as compared to other two cases. This is attributed to the 
lock-in condition for this case. Figure 14 shows the vorti-
city field for three cases of bending stiffness. Alternate vor-
tices shed in the downstream in each case in 2S mode for 
all the cases [53]. The vortex structures become elongated 
at lower bending stiffness as compared to high bending 
stiffness due to the larger plate displacement.

5  Applications of present study 
in energy‑harvesting

The present numerical data are envisioned to design 
MEMS-based piezoelectric energy harvesters that har-
ness available ambient wind energy. Such miniaturized 
harvesters are potential candidates to replace traditional 
chemical batteries. In particular, they could be useful in 
sensors mounted on a tall bridge on which ambient fluid 
energy is easily available and replacement of the batter-
ies in the sensors is expensive [54]. In general, Re is on the 
order of O(100)–O(1000) in such miniaturized devices. 
Table 8 summarizes recent few studies which examined 
the design and performance of such devices. In the pre-
sent study, Re based on the plate length is 350, which is 
on the order of Re used in the previous studies [55–57]. 
Figure 15 plots amplitude of the plate tip on M-Kb plane 
for all cases considered in the present work and the radius 
of the circle represents the magnitude of the amplitude. 
Therefore, (M, Kb) = (2.69, 0.0218) is an optimum point 
in Fig. 15, at which the FID of the plate is the maximum, 
implying that a large flow energy could be harnessed at 
this design point.

Table 2  Details of hierarchy of grids considered for carrying out 
grid independence study for the fluid domain

The grid sizes in x- and y-direction is kept same where the 
plate is expected to move ( Δxmin = Δymin ) and are given for 
all the cases. The ratios of grid sizes ( � ) of two successive cases 
( � = Δxk

min
∕Δxk+1

min
 ) are also listed ( Δxk

min
 is the grid size of case k). 

Computed amplitudes of the vibration of the plate ( AYtip ) for differ-
ent grid sizes are given and L2 error norms are calculated for each 
case relative to the finest grid

Case Grid points Grid size � AYtip L2 error norm

1 193 × 65 0.050 1.67 0.741 0.014
2 257 × 97 0.030 1.20 0.743 0.012
3 321 × 161 0.025 1.25 0.747 0.008
4 385 × 193 0.020 1.33 0.748 0.007
5 481 × 193 0.015 – 0.755 –
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6  Conclusions

We have presented the development of fluid–structure 
interaction (FSI) solver to simulate large-scale flow-induced 
dynamics of a thin elastic structure. The FSI computational 
approach combines a sharp-interface immersed boundary 
(IB) method-based flow solver and an open-source finite-
element-based structure solver. The implicit coupling 

between the flow and structural dynamics solver has been 
improved with a dynamic under-relaxation scheme. The 
revised coupling is around two to three times faster and 
numerically stable, as compared to the one that uses a 
constant under-relaxation parameter. To bring additional 
numerical stability to the coupling, we have implemented 
an additional sub-scheme in which the solver starts using 
constant under-relaxation for few sub-iterations if the 

Fig. 6  Test of faster FSI conver-
gence by dynamic under-relax-
ation. a Time-varying Y-dis-
placement of tip of the plate 
for a typical oscillation cycle. 
b–e FSI residual variation with 
number of sub-iterations in 
the implicit coupling scheme 
at different time instances for 
density ratio, � = �p∕�f = 10 . 
The time instances t1 , t2 , t3 and 
t4 are shown in a 
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dynamic under-relaxation scheme diverges. The solver was 
validated against two-dimensional FSI benchmark prob-
lems in which a thin elastic plate is attached to a circular 
and square cylinder, and attains self-sustained oscillation. 
The present study reports new numerical data-sets while 
extending the FSI benchmark proposed by Turek and Hron 
[10], which could serve as additional benchmark data for 
future studies. In particular, we report a case with a larger 
mass ratio for FIV of a splitter plate in which tip displace-
ment is twice larger than in the FSI benchmark proposed 
by Turek and Hron [10].

We have employed the FSI solver to simulate and ana-
lyze the dynamics of an elastic splitter plate attached 
to a rigid circular cylinder that is subjected to two-
dimensional laminar flow. The effect of mass ratio (M) 
and bending stiffness (Kb) on the FSI response is studied 
at Re = 100. Here, Re is based on free-stream velocity and 
cylinder diameter. We vary M, Kb and UR in the ranges 
[0.14, 20], [0.0008, 0.044] and [2.6, 30.3], respectively, 
noting that these ranges cover a high-amplitude FSI 
response. The plate amplitude and oscillation frequency 
are found to be a function of M and Kb . The time-varying 
displacement of the tip of the plate, power spectra of 
the displacement signal, phase plots of the plate tip 
displacement and the wake structure are examined to 
quantify the results. The largest amplitude of the plate 
is found to be for the lock-in region at which the natural 
frequency of the plate in a given fluid synchronizes with 
the oscillation frequency of the plate. This behavior is 
consistent with the classical vortex-induced vibration of 
a rigid cylinder. In closure, the present results provide 
fundamental insights into the flapping of an elastic split-
ter plate attached to a rigid circular cylinder, which could 
prove useful to the design of elastic plates for energy 
harvesting and thermal augmentation applications.

Table 3  Variation in the 
vibration amplitude ( AYtip ) for 
different domain sizes

Percentage differences in the amplitude relative to the largest domain size are computed for different 
domains considered

Cases Domain size S1 S2 S3 AYtip Percentage 
difference in 
AYtip

1 19.5D × 12D 5.5D 14D 6D 0.748 − 0.95%
2 30D × 12D 5.5D 25.5D 6D 0.748 − 0.95%
3 40D × 12D 5.5D 34.5D 6D 0.747 − 0.81%
4 50D × 20D 5.5D 45.5D 10D 0.741 –

Table 4  Grid-size convergence study for structure domain. The 
numbers of triangular finite elements (N) are given for the different 
grids tested

Computed L2 errors norm in the plate amplitude ( AYtip ) for different 
grids with respect to the finest grid examined are also listed

Cases Number of finite ele-
ments (N)

AYtip L2 error norm

1 736 0.709 0.046
2 1262 0.738 0.017
3 2182 0.748 0.007
4 3082 0.755 –

Fig. 7  Comparison of the 
computed tip displacement in 
Y-direction of the thin elastic 
splitter attached to the cylin-
der against the benchmark 
results of Turek and Hron [10]
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Fig. 8  a Schematic of FSI benchmark problem proposed by Wall 
and Ramm [47]. A thin elastic splitter plate is attached on the lee 
side of a square cylinder, subjected to laminar flow. b Time-varying 

tip displacement in Y-direction after the plate reaches self-sus-
tained oscillation. c Vorticity field at three different time instances 
t1 , t2 and t3 , as shown by black dots in b 

Fig. 9  Computed values of the plate amplitude ( Ytip,max ) as a func-
tion of reduced velocity ( UR ). The mass ratio was varied and bend-
ing stiffness is kept fixed at Kb = 0.0218 for the cases plotted here. 

Ratio of plate oscillation frequency and second-mode natural fre-
quency of the plate in vacuum ( fp∕fn2 ) is plotted for all cases. A dot-
ted line at fp∕fn2 = 1 is also shown
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Fig. 10  Comparison of tip displacement Ytip (first row), power spec-
tra (second row) and phase-plane plots (third row) for three cases 
of mass ratios, M = 0.572, 2.747 and 5.723. The bending stiffness 

is kept same, Kb = 0.0218 . Phase-plane plots are shown after the 
plate amplitude reaches a plateau value

Table 5  Comparison of computed dimensionless amplitude ( AYtip ) 
and frequency ( fp ) of a thin splitter plate attached on a square cylin-
der at Re = 100 with published data

The FSI benchmark was proposed by Wall and Ramm [47]

Study fp AYtip

Present work 0.0637 0.97
Olivier et al. [48] 0.0617 0.95
Habchi et al. [49] 0.0634 1.02
Wall and Ramm [47] 0.0581 1.22
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Fig. 11  Comparison of vorticity field at different time instances for three different mass ratios M = 0.572, 2.747 and 5.723. The bending stiff-
ness is kept same, Kb = 0.0218 . The color map range is [ −2 , 2]

Table 6  Input parameters 
for the set of simulations to 
studying the effect of mass 
ratio, M, for fixed bending 
stiffness, Kb

Case number E h � M Kb UR AYtip fp

1 1400 0.2 2.5 0.143 0.0218 2.562 0 0
2 1400 0.2 5.0 0.286 0.0218 3.623 0.41 0.183
3 1400 0.2 7.5 0.429 0.0218 4.437 0.55 0.167
4 1400 0.2 10.0 0.572 0.0218 5.123 0.75 0.158
5 1400 0.2 15.0 0.859 0.0218 6.275 0.99 0.137
6 1400 0.2 20.0 1.145 0.0218 7.246 1.17 0.122
7 1400 0.2 25.0 1.431 0.0218 8.101 1.37 0.107
8 1400 0.2 30.0 1.717 0.0218 8.874 1.5 0.096
9 1400 0.2 35.0 2.003 0.0218 9.585 1.65 0.085
10 1400 0.2 40.0 2.289 0.0218 10.247 1.75 0.079
11 1400 0.2 45.0 2.576 0.0218 10.869 1.92 0.076
12 1400 0.2 47.0 2.690 0.0218 11.107 1.93 0.0732
13 1400 0.2 48.0 2.747 0.0218 11.225 1.82 0.073
14 1400 0.2 48.5 2.775 0.0218 11.283 0.76 0.077
15 1400 0.2 49.0 2.804 0.0218 11.341 0.74 0.076
16 1400 0.2 50.0 2.861 0.0218 11.456 0.73 0.073
17 1400 0.2 60.0 3.434 0.0218 12.550 0.60 0.070
18 1400 0.2 75.0 4.292 0.0218 14.031 0.53 0.067
19 1400 0.2 90.0 5.150 0.0218 15.370 0.46 0.063
20 1400 0.2 100.0 5.723 0.0218 16.202 0.45 0.061
21 1400 0.2 125.0 7.153 0.0218 18.114 0.30 0.058
22 1400 0.2 150.0 8.584 0.0218 19.843 0.27 0.059
23 1400 0.2 200.0 11.445 0.0218 22.913 0.24 0.048
24 1400 0.2 250.0 14.306 0.0218 25.617 0.17 0.045
25 1400 0.2 300.0 17.167 0.0218 28.062 0 0
26 1400 0.2 350.0 20.029 0.0218 30.311 0 0
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Table 7  Input parameters 
for the set of simulations to 
studying the effect of bending 
stiffness, Kb , for fixed mass 
ratio, M 

Case number E h � M Kb UR AYtip fp

27 50 0.2 10.0 0.572 0.0008 27.111 0.010 0.116
28 100 0.2 10.0 0.572 0.0016 19.170 1.150 0.087
29 150 0.2 10.0 0.572 0.0023 15.652 1.242 0.098
30 250 0.2 10.0 0.572 0.0039 12.124 1.244 0.095
31 300 0.2 10.0 0.572 0.0047 11.068 1.214 0.102
32 350 0.2 10.0 0.572 0.0055 10.247 1.185 0.104
33 400 0.2 10.0 0.572 0.0062 9.585 1.159 0.110
34 560 0.2 10.0 0.572 0.0087 8.101 1.070 0.121
35 700 0.2 10.0 0.572 0.0109 7.246 1.000 0.122
36 933 0.2 10.0 0.572 0.0145 6.276 0.905 0.137
4 1400 0.2 10.0 0.572 0.0218 5.123 0.753 0.158
37 1866 0.2 10.0 0.572 0.0291 4.438 0.560 0.173
38 2800 0.2 10.0 0.572 0.0436 3.623 0.000 0.000

Fig. 12  Computed values of the plate amplitude ( AYtip ) as a func-
tion of reduced velocity ( UR ). The bending stiffness ( Kb ) was varied 
and mass ratio is kept fixed at M = 0.572 for the cases plotted here. 

Ratio of plate oscillation frequency and second-mode natural fre-
quency of the plate in vacuum ( fp∕fn2 ) is plotted for all cases. A dot-
ted line at fp∕fn2 = 1.0 is also shown
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Fig. 13  Comparison of tip displacement Ytip (first row), power spec-
tra (second row), and phase-plane plots (third row) for three cases 
of bending stiffness, Kb = 0.0023, 0.0109 and 0.0218, with same 

mass ratio, M = 0.572 . Phase-plane plots are shown after the plate 
amplitude reaches a plateau value

Fig. 14  Comparison of vorticity field at different time instances for three different values of bending stiffness, Kb = 0.0023, 0.0109 and 
0.0218, with the same mass ratio, M = 0.572 . The color map range is [ −2 , 2]
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