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a b s t r a c t

The nature of the circulation regions around a bluff body in a cross flow can vary consid-
erably from the normal von Kármán vortex-shedding mode when subjected to external
excitations. The dynamics of the circulation regions around the bluff body has a direct
impact on the force coefficients of the bluff body. In the present work, we correlate the
spectral content and characteristics of the force coefficients of different vortex-shedding
modes, observed for a square cylinder that is subjected to external excitation in the form
of inline sinusoidal pulsation, to the near body vortical events. The strengths of various
circulation regions around the bluff body and its location of formation are used to assess
the impact of the vortical events on the force coefficient characteristics. In addition, the
implication of relative timing of vortical events with respect to the inline excitation on the
energy transfer is also discussed.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction and literature survey

The problem of a steady inflow past bluff bodies and the resulting von Kármán vortex-shedding mode and its various
transitions has been extensively studied in the past due to the practical significance of the problem in engineering
applications. The vortex-shedding modes can significantly vary from the von Kármán vortex-shedding mode when there
is unsteadiness in the inflow. Evidently, the change in vortical structures near the body also significantly affects the loads on
the body. The prediction of loads for such unsteady inflows is important in marine structures and bodies that are capable of
undergoing vibration (Williamson and Govardhan, 2004).

Several authors have studied the problem of pure sinusoidal flow of the form U = uf sin (2π fet) , relative to the bluff
body (Williamson, 1985; Tatsuno and Bearman, 1990). The problem is characterized by the amplitude and the frequency of
the velocity pulsation. In dimensionless form the Keulegen–Carpenter number, KC = uf /feD,defines the amplitude and the
Stokes number, β = Re/KC = D2fe/ν the frequency, where uf the maximum amplitude of the fluctuating velocity is, fe, is
the externally imposed frequency, D, the diameter of the bluff body and, ν is the kinematic viscosity of the fluid. Williamson
(1985) visualized the vortex-shedding modes for the pure sinusoidal flow that is relative to the circular cylinder. He also
correlated the force coefficients with the near-body vortical events. The KC was varied from 0 to 60 for visualization, and 0
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to 35 for force measurements. Even though the original problem is symmetric, the vortex shedding could be symmetric or
asymmetric depending on the value of KC. For KC< 7, nomajor vortices are shed during a half cycle, whereas for KC> 7 large
vortices are shed. Further, for a low KC of < 1.5, no separation was observed and for 1 < KC < 4, the flow was symmetrical.
In 4 < KC < 7, the attached vortices were found to be unequal in strength. Between 7 < KC < 15, a single vortex is shed in
each half cycle. The shed vortices pair up and convect at an angle to the flow direction, clearly indicating the asymmetrical
nature of the shedding. Williamson (1985) observed that the direction can switch intermittently in a single experiment or
change in different experiments depending on the initial conditions. As a result of the vortical events, the structure may
experience a mean lift coefficient due to the asymmetric nature of vorticity formation. The interaction of generated vorticity
at the cylinder wall in previous cycles with the cylinder wall is crucial to determining the vorticity generation at a given
instant, indicating the nonlinear nature of vorticity production. For 15< KC< 24, pairs of vortices are generated in each half
cycle. In the first half of the cycle, a pair of vortices is shed at an angle to the direction of the relative motion and, in the next
half cycle, another pair of vortices is shed in the opposite direction. For 24< KC< 32, a three-pair regimewas found and, for
32< KC< 40, a four-pair regimewas found. Although Bearman et al. (1985) investigated sinusoidal flow that is relative to a
square cylinder, no information regarding the vortex formation was given. Zheng and Dalton (1999) numerically studied the
same problem for β = 213 and 1 < KC < 5. Symmetric vortex structures were observed in KC < 1. For KC = 3, the vorticity
structures were still symmetric. However, the drag coefficient was found to be low. For KC= 5, the vortex structures around
the body were clearly asymmetric and, hence, the lift coefficient was also found to be nonzero and asymmetric.

When a mean current is present in addition to the sinusoidal excitation, the dynamics near the bluff body can change
considerably. Several authors have considered an inlet mean flow with sinusoidal pulsation that has the form, u = um +

uf sin(2π fet) ( Barbi et al., 1986; Armstrong et al., 1986; Konstantinidis et al. 2007; Zhou and Graham, 2000). The number of
parameters in the problem increases to three from twodue to the additionalmean component. The choice of nondimensional
parameters is no longer unique. Depending on whether the flow is current dominated or wave-dominated, several authors
nondimensionalize themean velocity as Vr = um/(feD), which is referred to as reduced velocity, or alternatively, the velocity
scale used for Reynolds number is the fluctuating velocity while the mean velocity is nondimensionalized with respect to
the fluctuating velocity, to give a current ratio (Zhou and Graham, 2000). In the present study, the flow field is considered
as the natural vortex shedding perturbed by a fluctuating velocity component. In the present work, the Reynolds number is
defined as Re = umD/ν, and the fluctuating part is nondimensionalized as A∗

= uf /(2π feD). The amplitude ratio is related
to the Keulegen–Carpenter number through A∗

= 2πKC. The external frequency is nondimensionalized with the inherent
natural vortex-shedding frequency that corresponds to Re, (if the natural vortex shedding caused because Reynolds number
is above the critical limit) as f ∗

= fe/fn.
The addedmean part of inlet excitation promotes the von Kármán vortex shedding, in which the vorticity of the opposite

sign rolls up in an alternate part of a cycle in an antisymmetric manner; meanwhile, the fluctuating component promotes
the shedding of vortices in a symmetric manner in one half of the cycle. The two modes can compete, resulting in chaotic
vortex shedding (Srikanth et al., 2011; Ongoren and Rockwell, 1988). Considering that there are a great number of vortex-
shedding modes, it is normal to classify the vortex-shedding mode according to the number of vortices that are shed in a
complete cycle. An S mode denotes a single vortex shed per cycle, and P mode denotes a pair shed per cycle. Thus, the usual
von Kármán vortex shedding is the 2S mode, which indicates that two single vortices of opposite sign complete one cycle.
In the literature, several vortex-shedding modes are referred to as P, 2P, P + S, 2P + 2S and are identified in a variety of
perturbations that are parallel and transverse to the mean flow. The classification mentioned above is mainly applicable to
antisymmetric vortex-sheddingmodes. However, with inline excitations, vortex-sheddingmodes in which the timing of the
formation of the vortices is symmetric with respect to the inline excitation can occur. In such cases, it is usual to add S as
a prefix, followed by the number of pairs of vortices (in Roman numerals) that are shed in a cycle, in order to differentiate
symmetric modes from the antisymmetric mode. In literature, S-I, S-II, and S-III modes are observed as symmetric modes.
In addition to the change in the vortex arrangement, synchronization, or a vortex lock-in phenomenon, occurs when the
frequency of the external pulsation influences the natural vortex-shedding frequency to make a rational ratio.

Zhou and Graham (2000) numerically investigated a wave-dominated flow over a circular cylinder. The current ratio,
which was defined as B = um/uf , was varied from 0 to 1 in steps of 0.25. The Keulegen–Carpenter number was varied from
0.2 to 26, and the Stokes parameter was kept constant at 200. For the current ratio B = 1 and KC = 1, von Kármán vortex
shedding was identified, while for KC = 2, a pair of symmetric vortices were shed per cycle. For KC = 3, symmetric shedding
of a pair of symmetric vortex pairs was found, while at KC = 4, a pair of asymmetric vortex couples were shed in a cycle.
Zhou and Graham (2000), also examined the relevance of the Morison equation to such problems.

However, no explicit information about the effect of vortical events on the force characteristics is available. Armstrong
et al. (1986) studied the effect of inline pulsatile flow on circular, D-Section, and flat plate bodies. For all geometries, the
synchronization was found to be around fe/fn = 2.0. However, no flow visualization was provided. Barbi et al. (1986)
conducted experiments for a high Re ∼ 40000 flow over a circular cylinder. They found subharmonic synchronization
around the regions of fe/fn = 1.0 and fe/fn = 2.0. The amplitude ratiowas kept constant at 0.2, and the frequencywas varied.
They found that there was a progressive decrease in the vortex-shedding frequency before the lock-in at both, fe/fn = 1.0
and fe/fn = 2.0 (see Leontini et al., 2011; Barbi et al., 1986 for further details). In addition to the usual von Kármán vortex-
shedding frequency, Armstrong et al. observed asymmetric vortex shedding around fe/fn = 0.7, which is locked in as a
harmonic of the excitation frequency. Konstantinidis et al., (2007) investigated the timing of vortex shedding across the
lock-in range of fe/fn = 2.0, for a pulsatile flow at a high Re ∼ 2150 for a circular cylinder. The region in the parameter
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space they investigated was characterized by two self-exciting branches that were separated by a region in which there was
no self-excitation of the flow. They observed both, the 2S and 2P modes and reported that the change between the vortex-
shedding modes was random. While both modes coexisted in fe/fn = 1.74, for fe/fn > 2.0, only the 2S mode existed.
The timing of the vortex shedding, with respect to the inflow oscillation, was not changed by the mode of vortex shedding.
The lack of excitation in the middle of the lock-in region was attributed to the timing of the shedding of the vortex during
the forward stroke of the cylinder. In addition, they speculated about a possible phase jump near the first response branch
and the hysteresis effects on either side. Konstantinidis and Balabani (2007) found symmetric vortex shedding at Re ∼ 1200
between fe/fn = 3 and fe/fn = 4,with periodic flow forcing. They found that the symmetric vortex shedding breaks down into
an antisymmetric mode downstream. In another experiment, Konstantinidis et al. (2007) observed bimodal vortex shedding
in which the vortex-shedding mode changed from the 2S mode to the 2P mode in a single experiment. They observed this
behavior in fe/fn < 2 and inside the lock-in region. The 2P mode was not found for fe/fn > 2. Most of these studies were
conducted for a current-dominated flow.

While the vortex-shedding modes observed in a current-dominated flow are documented in the literature, there is a
scarcity of data available on the correlation of force coefficients associated with the near body vortical events. It is expected
that the near-body vortical eventswill significantly impact the characteristics of the force coefficients. In addition to the force
exerted, the phase of the dynamics of thenear-body vortical region formationwith respect to the inline excitationdetermines
the energy transfer between the bluff body and the surrounding fluid. For example, Konstantinidis and Balabani (2007)
associated symmetric vortex shedding with positive energy transfer to the cylinder on the basis of available information
about the relative phasing of vortical events with respect to inline excitation.

Several of the vortex-sheddingmodes discussed in the present work have previously been observed by other authors in a
variety of contexts, such as different bluff body geometries and methods of perturbation. Given that the vorticity dynamics
are similar, someof the characteristics of the force coefficients could also be similar for such cases. The presentwork attempts
to answer questions such as; Which vortical events are likely to be reflected in force coefficients for the canonical modes
observed in the present study? How Pmode generatesmean lift? How is the slow frequency content of modulatedwake and
P mode reflected in the force coefficients? How the energy transfer between bluff body and fluid correlated with the near
body vortical events?

To clarify such questions, we characterize the circulation strengths and location of formation of various vortical structures
of several canonical vortex shedding modes. By using timed snapshots of vorticity contour, the frequency content and its
correlation with the vortical events and the wake structure are explicitly examined. The timed snapshots are also used to
assess the impact of timing of vortical events with respect to the inline excitation, on the energy transfer between bluff body
and fluid. Note that vorticity generation and its transport around the bluff body to form different circulation regions and
how these circulation regions convect around the bluff body are all important in the correlation of force coefficients with
respect to the vorticity dynamics. Due to the similarity in vorticity dynamics, the characteristics of force coefficients could
be similar across different bluff bodies and flow parameters, for a given vortex shedding mode. However, this characteristic
similarity between modes of similar nature arising under different conditions is expected to be only qualitative.

2. Problem description and computational details

In the present study, inline excitation is provided by employing velocity of the formula u = um + uf sin(2π fet) and
v = 0 at the inlet, and on the lateral sides. At the outlet, the convective boundary condition is employed. Flow is initially
assumed to be at rest. The Reynolds number is computed based on the mean flow and is kept constant at Re = 100. The
nondimensional frequency ratio was varied from 0.6 to 1.4 in step of 0.1, and the amplitude ratio was varied from 0.1 to 0.6
in step of 0.1. The flow domain along with the initial and boundary conditions employed in the simulation is given in Fig. 1.
The domain size was chosen to be 15D at the inlet and on the lateral sides. The outlet is kept at 55D from the square cylinder
rear side.

The evolution of flow variables is computed using D2Q9 Lattice Boltzmann Method with a single relaxation time and
Bhatnagar–Gross–Crook operator (see Succi, 2001 for more details). For a given Reynolds number, we chose a mean flow
speed and then specify the dimension of the bluff body in lattice units. Then the viscosity of the fluid is set to match the
given Reynolds number. The evolution of flow field is computed in the following manner: the particle distribution function
at each node is initialized to the equilibrium value corresponding to the initial values of the flow variables. The evolution of
particle distribution functions is tracked by lattice propagation step given in Eq. (2) and collision step given in Eq. (3)
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where ρ denotes the macroscopic density at the node; u⃗ denotes the macroscopic velocity vector; e⃗i denotes the lattice
vectors of the D2Q9 scheme; and wi denote the lattice constants for each lattice vector. At the boundaries, the equilibrium
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Fig. 1. Initial and boundary conditions for flow past the square cylinder that is subjected to inline pulsation. Domain size, Lu = 15D, Ld = 55D, Ls = 15D.

Fig. 2. Comparison of drag coefficient for β = 213 and KC = 3 with literature.

distribution functions are computed after the collision step, from the known value of macroscopic variables and propagated
to the next step. On the wall, the no slip boundary condition is implemented using the bounce back scheme.

At each time step, the macroscopic variables are recovered from the known distribution functions by using Eq. (4).

ρ =

∑
i=0−8

fi, ρu⃗ =

∑
i=0−8

fie⃗i, p = ρC2 (4)

where p denotes the macroscopic pressure, and C is the lattice speed of sound for the D2Q9 scheme.
The present code has been validated extensively for steady inflowproblembyKumar et al. (2008) and unsteady oscillation

problems by Sewatkar et al. (2012). Detailed grid independence study for the problem is given by Krishnan et al. (2016).
Further, we calculate the inline force that acts on the square cylinder that is purely under oscillatory flow conditions, for
β = 213 and KC = 3. A grid resolution of 32 grid points per side of the square cylinder was used for both the benchmark
cases. The calculated drag coefficient is compared with the experimental results of Bearman et al. (1985) and the numerical
results of Scolan and Faltinsen (1994), in Fig. 2. The drag coefficient of the experimental and numerical results is computed
using the given coefficients ofMorison’s equation by Bearman et al. (1985) and Scolan and Faltinsen (1994) in their respective
works. The drag coefficient that was computed matches well with these experimental and numerical results.

3. Results and discussion

The effect of non-dimensional amplitude and frequency of the inline pulsatile free-stream flow, on the instantaneous,
mean, and r.m.s. value of force (lift and drag) coefficients as well as energy transfer between the fluid-flow and the square-
cylinder, is presented below at a constant Reynolds number Re = 100. Other non-dimensional governing parameters are
varied as follows:

Amplitude ratio, A∗
= 0.1 to 0.6 in step of 0.1

Frequency ratio, fe/fn = 0.6 to 1.4 in step of 0.1.
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The results are presented separately for the various vortex-sheddingmodes — correlating the vortical structures with the
force coefficients in each flow-regime.

In our recentwork (Krishnan et al. 2016), a flow regimemapwas prepared for the above parametric study, shown in Fig. 3.
Furthermore, in the earlier work, we demonstrated a good match between our regime map and the vortex-shedding modes
(for square-cylinder) with that for the inline acoustic excitation experiments for the circular cylinder (Detemple-Laake and
Eckelmann, 1989). Due to the weakly compressible nature of the flow, it was considered more appropriate to compare the
present results with acoustic experiments. Finally, a detailed discussion on the formation of various vortex-shedding modes
was also presented. Because this work depends on the results of the earlier work, particularly based on the proposition that
the vorticity-dynamics in the various vortex-sheddingmodes relate to their effect on the force-coefficients, a brief summary
of the salient results is given in the following paragraphs.

The regime map in Fig. 3 shows that the parametric-space (oscillation frequency versus amplitude) is subdivided into
six different regions – corresponding to five flow regimes or modes of vortex-shedding: 2S, 2P + 2S, modulated-wake or
beating-string, P, and Symmetric. With increasing amplitude at various fe/fn, the flow regime map shows four transitions
in vortex-shedding modes: first, the 2S → 2P + 2S mode at fe/fn = 0.6 (under sub-harmonic synchronization); second, 2S
→ modulated wake mode (no synchronization) for fe/fn = 0.7, 0.8, and fe/fn ≥ 1.2; third, 2S → P → Symmetric mode
(under harmonic synchronization) for fe/fn = 0.9 and 1.0; and fourth, the 2S → modulated-wake → Symmetric mode at
fe/fn = 1.1.

With increasing amplitude, the figure shows that all the four transitions from the 2Smode occur at A∗
= 0.3, for all fe/fn;

the third and fourth transitions – to P-Symmetric mode – occur at A∗
= 0.5 for the intermediate range of fe/fn. During

the modulated wake or beating string mode, the direction of vortex shedding alternates over a few vortex shedding cycles;
and there is no synchronization between the two types of periodic flow — natural vortex shedding flow and the external
oscillation of incoming flow. The synchronization is sub-harmonic in the 2P + 2S mode and harmonic in the P-mode of flow
regime. The pair of shed-vortices is symmetric about the horizontal centerline in the Symmetric mode, as discussed below.

The dynamics of vortical formation leaves a trace in the spectra of lift coefficient of each vortex-shedding mode. The
typical spectral characteristics of various vortex shedding modes observed are shown in Fig. 4. The spectra of the lift
coefficient of the 2P + 2S mode show a major peak at half the imposed frequency (P1) in Fig. 4(a), indicating subharmonic
synchronization. The modulated wake mode shows three peaks P1, P2 & P3. These three major components of spectra can
be understood as an amplitude modulation process between natural vortex shedding frequency and the imposed frequency
(see Leontini et al., 2011). The spectra of the P-mode (Fig. 4(d)) show a peak at the imposed frequency (P2 in Fig. 4(c)), which
indicates harmonic synchronization, although the maximum peak is observed at zero frequency (P1 in Fig. 4(c)) due to the
asymmetric vortex shedding. The spectra of the Symmetric mode show rather broadband spectra with no peaks. The mean
lift coefficient is reduced to almost zero due to the symmetric nature of the vortex shedding. However, the visualization of
vortex shedding over a cycle confirms that symmetric vortex shedding is under harmonic synchronization (see Krishnan et
al., 2016).

3.1. Correlation of force coefficients with near-body vortical events

In this section, over a single/multiple time period of inline pulsation/natural vortex shedding, we discuss the temporal
variation of force coefficients for the various vortex-shedding modes. The near-body vortical events will leave a trail on
the force characteristics of each vortex shedding mode, due to the circulation regions formed/present around the body at
different locations and its evolution over time.

Any phase difference between the incoming flow and the forces acting on the bluff body must be due to the second
term and by understanding the relative timing of various vortical events one can obtain meaningful results on the nature of
energy transfer between bluff body and fluid flow. The objective is to correlate the near-body vortical events to the major
frequency components of the force coefficients and to also understand the effect of relative phasing of vortical events on the
energy transfer. In Fig. 5, the alphabetical order from (a) to (e) indicates the instantaneous value of sinusoidal pulsation over
a cycle. In all the subsequent force-coefficient plots, the timing is shownwith reference to Fig. 5, unless mentioned explicitly
otherwise.

3.1.1. 2P + 2S vortex-shedding mode
First, we examine the 2P+ 2Smode, which is observed at the lowest frequency ratio studied here. Since this flow is under

subharmonic lock-in, two cycles of inline pulsation complete the 2P+ 2Smode. Hence, in Fig. 6(f, g), the temporal variation
of the lift and drag coefficient is shown over two cycles of external pulsation time period for Re = 100, fe/fn = 0.6, and
A∗

= 0.4. It can be verified from the figure that the temporal variation over the second cycle is a mirror image (with respect
to the horizontal line) of the first cycle for the lift coefficient, and the drag coefficients are almost the same. In the first half
of the first cycle, one-pair of vortices (P) is shed and one-single vortex (S) is shed, while in the second half, one P is shed in
the opposite direction and one S is shed, totaling to 2P + 2S over two cycles of incoming excitation.

At the start of the cycle, Fig. 6(a) shows that a pair of vortices is convected into the wake toward the upside, which was
formed in the previous cycle; thereafter, Fig. 6(b) shows that this pair of vertices has been completely shed into the wake.
During this process, the lift coefficient has reached a local minimum close to point (b) due to the proximity of the oppositely
signed shear layer for a brief period (the red lower region in Fig. 6(b)); however, the drag coefficient ((b) to (c) in Fig. 6(g))
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Fig. 3. Flow regime map of a square cylinder subjected to inline pulsation at Re = 100, Present results (I) 2S mode; (II) 2P + 2S mode, subharmonic
synchronization; (III) Beating String mode; (IV) P Mode, harmonic synchronization; (V) Symmetric mode and P-mode; and (VI) Beating String mode. The
transitions between the regions are known only within the resolution of the parameters investigated. The transitions between the various regions may not
be straight lines as indicated. Vorticity contours, in the various regimes, are also shown. Gray regions indicate lock in regions.
Source: Adapted from Krishnan et al. 2016.

falls rapidly just after the departure of the P vortex pair. From Fig. 6(c) to (e), it can be observed that a pair of vortices is
being formed of the opposite sign when compared to the first half of the cycle. It should be noted that a single (clockwise)
vortex is also shed in between Fig. 6(c) and (e) as a tail-end shear layer process. The effect of formation of a vortex-pair (P) in
the downward direction, during (c)–(d)–(e), is to cause a positive lift coefficient, while increasing the drag that acts on the
body.

To assess the impact of various circulation regions on the force coefficients, the relative strengths of various circulation
regions and the positions of vorticity extrema are calculated by isolating each of these vortex structures in the computational
domain. The extent of circulation regions is determined by incorporating all vorticity contour levels greater than 0.1%
of the global maxima of the peak vorticity. The circulation is calculated by evaluating the integral Γn =

∫∫
ωdA over

isolated vortical regions; the local extrema are found using a local neighbor search algorithm (Kumar et al., 2008). A wider
snapshot of the vorticity contour of 2P + 2S mode in Fig. 6(d)) is shown in Fig. 7; at the time-instant corresponding
to the maximum lift-coefficient. At this time instant, Fig. 7 clearly shows the various types of vortical structures (
S for Single and P for Pair of shed-vortices; and B for Base-region and S for Shear-layer attached-vortices) that evolve during
the formation of 2P + 2S mode. If a vortical structure is part of a pair in 2P + 2S, it is indicated as P, followed by the first
letter of the sign ( P for Positive and N for Negative) of the vortical structure, and the location of already shed vortices for
previous cycles are indicated by the number. The number suffixes indicate that the vortices are shed one cycle before the
presented snapshot. The capital letter B indicates that the vortical region originates in the base region, and SP and SN denote
positive and negative shear layers, respectively while BP represents base region positive vorticity and BN represents base
region negative vorticity. SN1 refers to the single vortex shed into the wake in 2P + 2S mode and PP1 and PN1 denote the
pair of vorticity region, with positive and negative vorticity respectively. The X and Y coordinates are shown in brackets in
Fig. 7, near to each vertical structure. The value shown in dashed box is the circulation strength and the value shown in solid
box is peak vorticity.

The strengths of the computed circulation regions are nondimensionalized by dividing the circulation strengthwithUmD,
and is given in Table 1. The positive vortex maxima are shown in white circles, while the negative minima are shown with
a plus sign; furthermore, the strength is nondimensionalized by dividing the vortical value with Um/D. The coordinates of
various maxima and minima are given with reference to the coordinate system with the origin at the center of the square
cylinder. A positive value of the Y coordinate of the vortex center implies that the point is above the wake center line, while
the negative value implies that the vortex center is below the wake center line.
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Fig. 4. Vorticity contours and spectra at the various vortex shedding modes at Re = 100: (a) 2P + 2S mode (shedding with half the imposed frequency), at
A∗

= 0.4, fe/fn = 0.6; (b) Modulated-wake mode, at A∗
= 0.4, fe/fn = 0.8; (c) P-mode (shedding with the imposed frequency), at A∗

= 0.4, fe/fn = 0.9;
and (d) Symmetric mode, at A∗

= 0.6, fe/fn = 0.9.

From Table 1 and Fig. 7, it can be inferred that the closest vortical structures to the body are the base region vortical
regions and the shear layers. The rolling up of the negative shear layer (SN) has the maximum impact on the lift coefficient,
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Fig. 5. Timing of inline pulsation over a cycle indicated from (a) to (e).

Fig. 6. Temporal variation of (a)–(e) vorticity-contours, and (f)–(g) lift and drag coefficient, over two time period of external pulsation (2Te ) for 2P + 2S
mode at Re = 100, fe/fn = 0.6 A∗

= 0.4,. The frame-size considered for the contour plots in (a)–(e) is 5D× 6D. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

which is both due to the proximity to the body and to the strength of the circulation region. The single vortex that is formed
in the 2P + 2S mode is at a distance of 5.4D from the wake center and, hence, unlikely to have any impact on the force
coefficients. The entire process of P formation happens in the latter part of the cycle.

It is informative to compare the vortical structures of 2P + 2S mode to the vortex shedding without any excitation. The
vortical structures for vortex shedding without excitation are evaluated when the lift coefficient is at its maximum, which
is shown in Fig. 8. The strengths of the circulation regions given in Fig. 8. Compared to the 2P + 2S mode, the strengths
of the circulation regions are weaker. The strength of the base region vorticity is negligible, and the roll-up of the negative
shear layer occurs approximately 0.66D away from the base region when compared to the 2P + 2S mode. Thus, the stronger
vortical regions that is nearer to the body cause higher base region vorticity and also higher force coefficients. The difference
in the absolute strength of the circulation between the vortices in the P vortex pair is not appreciable. A pair of vortices tends
to form simultaneously in the P formation.
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Fig. 7. Vortical structures near the body for at maximum lift coefficient shown as (d) in Fig. 6 for 2P + 2S mode, for Re = 100, fe/fn = 0.6 A∗
= 0.4. X and

Y coordinates are shown in brackets. Value shown in dashed box is the circulation strength and value shown in solid box is peak vorticity. For description
and value of circulation regions refer Table 1.

Fig. 8. Vortical structures near the body at themaximum lift coefficient shown for vortex sheddingwithout excitation at themaximumof the lift coefficient
that is at Re = 100.

Table 1
Strength and positions of the various circulation regions that are shown in Fig. 7, 2P + 2S mode.

Region Description Circulation strength
(Nondimensionalized)

Position of vortex center from center of
square cylinder

Local maxima/minima vorticity
value (Nondimensionalized)

X/D Y/D

BP Base region vorticity, Positive 0.31 0.56 0.06 3.14
BN Base region vorticity, Negative −0.11 0.5 0.53 −2.89
SN Shear layer, Negative vorticity −3.28 1.28 0.16 −1.82
SP Shear Layer, Positive vorticity 3.96 2.34 −0.84 1.86
SN1 Single vorticity region,

Negative, Shed in present
cycle

−1.11 5.41 0.5 −0.75

PN1 Vortex pair, Negative
vorticity, Shed in the previous
half cycle

−2.67 9.06 1.16 0.89

PP1 Vortex pair, Positive vorticity,
Shed in the previous half cycle

2.5 11.28 2.97 −0.88

3.1.2. Modulated-wake vortex-shedding mode
Next, we examine the modulated wake that is observed at fe/fn = 0.7 and fe/fn = 0.8. At these frequency ratios, the

flow is not synchronized to the external excitation. The spectra shown in Fig. 4(b) contain three major components. The
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Fig. 9. Instantaneous snapshot of the modulated wake at Re = 100 and A∗
= 0.4: (a) fe/fn = 0.7 and (b) fe/fn = 0.8, A∗

= 0.4; the dash–dot lines contain
approximately 6 vortices in (a) and 10 vortices in (b), within a complete swing of the wake.

maximum peak shown as P2 is the natural vortex-shedding frequency and is unaltered. This observation is different from
the observations by Leontini et al. (2011), Smith et al. (2012) who observe a reduction in the natural frequency around this
region. The present results are more similar to the acoustical experiment results of Detemple-Laake and Eckelmann (1989).
The next peak, P1, is given as fn − fe. This frequency is slower than the natural vortex-shedding frequency. This P1 frequency
arises because of the modulation of the basic natural vortex shedding by the imposed excitation.

The instantaneous snapshot of the vortex shedding in the modulated wake at fe/fn = 0.7 and fe/fn = 0.8 for A∗
= 0.4 is

given in Fig. 9. An evident feature in Fig. 9 is the wake swinging, which is indicated by the dashed lines. It can be observed
that this swinging is a phenomenon of slower frequency. It is possible to ascertain whether this corresponds to the slower
frequency that is part of the spectra of the modulated wake that is shown in Fig. 4(b). The peak frequency, P2, is the natural
vortex-shedding frequency; therefore, two vortices of opposite sign are shed in a cycle. For fe/fn = 0.7, the ratio of P2/P1 is
approximately 3.3. This implies that the periodic phenomenon contains approximately 6.6 vortices. This can be confirmed
by the number of vortices in the dashed line that is shown in Fig. 9(a). Similarly, for fe/fn = 0.8, the ratio of P2/P1 is 5, which
implies that the periodic phenomenon contains 10 vortices. This is evident from Fig. 9(b).

The lift and drag coefficients for the modulated wake are given in Fig. 10(b) and (c). The frequency of the drag coefficient
shown in Fig. 10(b) is the imposed external frequency. In order to further confirm the swinging of the wake, successive
snapshots are shown in Fig. 10(a). The timing of the snapshots is given in Fig. 10(b). The snapshots correspond to the local
extrema in lift coefficient. Fig. 10 shows that snapshots which are three frames apart (such as I & IV, and II and V) are
almost mirror symmetric, that is they correspond to approximately 1.5 vortex-shedding cycles. The slower wake swinging
is completed at the vortex-shedding cycle of approximately 3.3.

3.1.3. P vortex-shedding mode
Next, we examine the P vortex-shedding mode that is observed under harmonic synchronization for the square cylinder.

The extensive study by Leontini et al. (2013) for circular cylinder also shows similar P mode around similar flow parameters
and associate the same with a mean lift. In the present study, the spectra of the P mode show a peak at the zero frequency
due to the mean lift coefficient, which is indicated as P2 in Fig. 4(c). The main frequency P1 shows the timing of the vortex
formation pair. However, unlike the natural vortex shedding, the pair of vortices tends to form together in a part of the cycle.
The temporal variation of the lift and drag coefficient over two cycles in the P mode at Re = 100, fe/fn = 0.4 and A∗

= 0.4 is
shown in Fig. 11. The vortical structure corresponding to the peak of the lift coefficient can be seen in Fig. 11(c); zoomed-out
view shown in Fig. 12. At this instant, one can observe that a pair of vortices is being formed closer to the bluff body in the
wake as compared to similar vortical structures of natural vortex shedding. It is the rolling up of the positive shear layer
that is nearer to the body, the main vortical event that causes the peak that is observed in the lift coefficient. During the
formation of P, the drag also increases. During the brief period when the negative shear layer is in close contact with the
body, shown as (d)–(e) in Fig. 12, there is a positive peak in lift coefficient. Thus, the asymmetry in the lift coefficient is not
only due to the differing circulation strength but also due to the differing amounts of time for which each shear layer is in
contact with the body. The P formation resembles the vortical processes that are similar to the P formation in the 2P + 2S
mode; however, the direction of vortex shedding does not alternate in the case of the P mode. Furthermore, the phase of the
pair vortex formation shifts to the former part of the cycle in comparison to the vortex formation of the 2P + 2S mode.
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(a)

(b) Lift coefficient. (c) Drag coefficient.

Fig. 10. (a) Temporal variation of instantaneous vorticity contours in the modulated wake mode for Re = 100, fe/fn = 0.7, and A∗
= 0.4. Time instants

corresponding to the contours in (a) is given in Fig. 10(b). The encircled region in (a) shows the successive shedding of vortices. Swinging of the wake
phenomenon is evident. The wake swinging is given by the P1 frequency content shown in Fig. 4(b).

3.1.4. Symmetric vortex-shedding mode
The symmetric mode observed at the left lock-in boundary of the harmonic synchronization region is now examined.

The spectra of the lift coefficient are broadband, as shown in Fig. 4(d). This is due to the approximately symmetric vortical
generation and the interaction around the body. The lift coefficient shows random fluctuations around the mean as shown
in Fig. 13. In a perfectly symmetric mode such as the S-II mode, the lift coefficient is exactly zero, and the base region
vortices couple with the shear layer vortices, yielding two pairs of vortices. Xu et al. (2006) distinguish between the
approximate symmetric mode as S-I mode while the perfectly symmetric mode is described as S-II mode. In literature often
the distinction is not made between the two types of symmetric modes and it is usual to refer both modes as symmetric
mode. In the case of the presently observed approximately symmetric mode, the strengths and positions of the vortical
regions vary slightly from cycle to cycle, and the wake length is stochastic. Konstantinidis and Balabani (2007) observed
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Fig. 11. Temporal variation of (a)–(e) vorticity-contours, and (f), (g) lift and drag coefficient, for P mode, Re = 100, fe/fn = 1.0, A∗
= 0.4.

Fig. 12. Vortical structures near the body for at maximum lift coefficient for P mode shown as (c) in Fig. 11.

similar approximately symmetric vortex-shedding mode in their experiments. Al-Mdallal et al. (2007) also observed similar
approximately symmetric vortex shedding for circular cylinders in their numerical simulations and they found themean and
RMS value of lift coefficient was close to zero, though not exactly zero. This confirms the similarity in the force coefficients
over awide range of Reynolds number and bluff bodies. Various vortical regions are indicated in Fig. 14. The positions and the
strengths of the circulation regions are only approximately symmetric, including the base region vortices. The pair formation
shifts completely to the first part of the cycles, and the drag coefficient also increases during the pair formation.

3.2. Long-term averages of lift and drag coefficients

This section focuses on the mean and RMS values of the lift and drag coefficients. In all cases, the values were obtained
by taking sample data for 60 cycles of natural vortex-shedding. The values of CD,mean, CD,rms, CL,mean, and CL,arms for various
frequencies and amplitudes are given in Fig. 15(a), (b), (c), and (d), respectively. The frequency resolution of the data around
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Fig. 13. Temporal variation of (a)–(e) vorticity-contours, and (f)–(g) lift and drag coefficient, Lift and drag coefficient over two time period of external
pulsation (2Te ) for Symmetric mode, Re = 100, fe/fn = 0.9, A∗

= 0.5.

Fig. 14. Vortical structures near the body for Symmetric mode at time instant (b) in Fig. 13.

the fundamental synchronization region was increased by carrying additional simulations at fe/fn = 0.85, 0.95&1.05, in
addition to the simulations carried out in Section 3. For the force curves, the results of amplitudes greater than 0.2 are only
plotted. For 0.6 ≤ fe/fn ≤ 0.8, CD,mean,CD,arms, and CL,rms values decrease with an increase in the driving frequency for a given
amplitude. As the amplitude of the inline excitation is increased while keeping the frequency ratio constant, the values of
the various average and RMS force parameters increases. The CL,mean values are negligible in this response region. Overall, in
this region of parameter space, the trends are well behaved.

For fe/fn > 0.8 the trend of various force curves distinct. For fe/fn = 0.85, the CD,mean value increases for all amplitudes
considered. For fe/fn = 0.9, the CD,mean values increase up to A∗

≤ 0.4. At higher amplitudes the CD,mean values are reduced.
However, the CD,rms values show an increase at all amplitudes. In this region, CL,mean is nonzero due to the asymmetrical
nature of the P mode vortex shedding. For A∗ > 0.4, the values of the mean and RMS lift coefficient are considerably less
than the values found at lower amplitudes. The vortex-shedding mode resembles the S-II vortex-shedding mode. The S-II
mode has zero mean and RMS values in the lift coefficient. In the present case, since the flow is not completely in the S-II
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vortex-shedding mode, only a reduction in the mean and RMS values is observed. The considerable nonzero mean value of
the lift coefficient is found only around the region in the parameter space 0.85 ≤ fe/fn ≤ 1.1. The CL,mean can be either
positive or negative depending on the direction of vortex shedding. For fe/fn = 1.1, a considerable mean lift coefficient is
observed only above A∗ > 0.4. For fe/fn > 1.1, the CD,mean value increases with an increase in the driving frequency ratio,
while the trend in the case of the CD,rms value ismixed. In general, an increase in A∗ for a given fe/fn increase the values of the
force coefficients. The CL,rms values increase with an increase in the amplitude for a given frequency ratio. CL,mean becomes
negligible in this region of parameter space once again. Cetiner and Rockwell (2001) observed an increase in the RMS value
of the lift coefficient within the synchronization regions as well. As discussed previously, this is not only due to the increased
strength of vortical regions but also due to the vortical region forming closer to the body.

3.3. Energy transfer between the fluid and bluff body

According to Williamson and Govardhan (2004), the total force acting on the body can be decomposed into the potential
force and the vortex force. A change in the phase of the vortex force with respect to the inline excitation can indicate a
change in the energy transfer between the fluid and the bluff body. The timing/phase of vortex shedding with respect to
the excitation is an important parameter in both inline and transverse vibration and can determine the energy transfer
between the fluid and the bluff body (Singh et al., 2009; Sewatkar et al., 2012). As seen from the previous discussion about
various vortex-shedding modes, the relative phase at which the vortices form a pair changes, especially near the harmonic
synchronization region. It is useful to check whether such a phase change entails any change in energy transfer.

To assess the effect of the change in the phase of the vortex shedding, the work done by the excitation force during
a cycle of excitation can be calculated from the perspective of relative motion between the bluff body and the fluid. The
fluid can be considered to be flowing at a mean velocity, while the bluff body is under a relative sinusoidal motion. Under
such conditions, the timing of pulsation from (a)–(c), which is shown in Fig. 5, can be interpreted as the downstroke/co-flow
stroke and (c)–(e) can be considered as the upstroke/counterflow stroke of the bluff body. The dimensionless energy transfer
rate and the coefficient of energy transfer is defined below in order to characterize the energy transfer (Konstantinidis and
Balabani, 2007)

CE =

∫ 1

0
C ′

D (t)
ẋc(t)
um

d
t
Te

=

∫ 1

0
ė dτ (5)

where C ′

D (t) is the fluctuating part of the drag signal is defined as C ′

D (t) = CD (t) − CD,mean, and ẋc(t) is the relative velocity
of the body with respect to the fluid, which is assumed to be moving at the mean velocity. In the case of inline pulsation,
ẋc (t) = −uf (t) sin(2π fet); uf is the fluctuating velocity; and fe is the frequency of the inline pulsation. Eq. (5) can also
be interpreted as when drag increases during the downstroke and decreases during the upstroke, there is positive energy
transfer between the body and fluid. Themean drag does not affect the energy transfer according to Eq. (5) because themean
drag will only change the mean position at which the bluff body will undergo vibration when supported by a spring. When
CE is positive, the fluid excites the vibration and damps it when the sign is opposite. This quantity depends on the near-body
vortical events and is, hence, expected to strongly correlate with the vortex-shedding mode. For example, the P+S mode is
associated with negative damping and is, hence, not expected to be present in in-line free vibration experiments.

To the best of authors’ knowledge, it is not known whether the 2P + 2S mode and the modulated wake or the P mode
is present in in-line free vibration experiments. However, the symmetric mode (S-I mode) is known to occur in inline free
vibration (Konstantinidis and Balabani, 2007; Jauvits and Williamson, 2004). Note that several authors find a symmetric
mode at fe/fn = 3.0 and atmuch lower amplitudeswhen compared (∼0.3) to the present case. At sufficiently high amplitude,
the inline excitation imposes itself and causes a symmetric vortex-shedding mode. However, the amplitude at which the
symmetric mode appears depends on the frequency.

The rate of energy transfer for all observed vortex-shedding modes along with the timing sinusoidal pulsation is plotted
in Fig. 16. The 2P + 2S mode shows negative energy transfer, as seen in Fig. 16. This is also evident from the timing of the
plots, given in Fig. 16(a). This is due to the shedding of the pair of vortices in the latter part of the cycle. The modulated wake
also shows a similar trend. In this case, it is most likely due to the negative energy transfer that is associated with the normal
antisymmetric vortex-shedding mode. However, in the P mode, the energy transfer is positive. This positive energy transfer
is associated with the formation a pair of vortices at an earlier part of the inline excitation. As expected, the symmetric mode
transfers energy from the fluid to the bluff body. In addition, it is found that the Pmode is also associated with the same. The
rate of energy transfer for various vortex-sheddingmodes is given in Fig. 16. The figure covers all the vortex-sheddingmodes
that are observed in the present study. In Fig. 17, the relative timing of the symmetric mode that is given by Konstantinidis
and Balabani (2007) is compared with the symmetric mode observed for a square cylinder. The timing of the various stages
of vortex shedding is nearly the same, as can be observed in Fig. 17, which further confirms a positive transfer of energy.

4. Discussion

For the natural vortex sheddingmode, the spectral content of lift coefficient correlateswith the vortex shedding frequency
and the drag frequency is twice the natural vortex shedding frequency. The empirical expression expressions such as
Morison’s equation, which are used for calculating loads acting in a purely oscillatory flow it is implicitly assumed that
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Fig. 15. Mean and rms force coefficients versus driving frequency ratio for various amplitudes (a) CD,mean vs. fe/fn (b) CD,rms vs. fe/fn (c) CL,mean vs. fe/fn (d)
CL,rms vs. fe/fn .

the inline force coefficient has the same frequency as the imposed excitation. For forced vortex shedding modes, under
inline pulsatile flow with a mean component, the data available in literature correlating the vortical events with the force
coefficients are sparse and need to be examined. In the present study, we correlate the near body vortical events with the
corresponding force coefficients, for the forced vortex shedding modes of a square cylinder subjected to inline pulsatile
flow. In general, it can be expected that the stronger vortical structures which evolve nearer to the body, will leave a
stronger trail on the force coefficients according to Eq. (1). The present study indicates that not all the vortical events are
reflected in the force coefficients. This is evident from the study of 2P + 2S mode, in which the trace of ‘S’ formation is not
reflected in the force coefficients, the formation of which is not nearer to the bluff body. The slower frequency observed
in the lift spectra for modulated wake is correlated to the swinging of the wake observed, however, the higher frequency
content could not be correlated to the vortical phenomenon. During the pair formation process, in both 2P + 2S mode and P
mode, an upward pair shedding is strongly correlated with a downward mean lift coefficient and vice versa. The P mode is
characterized by the distinct zero-frequency component in the spectra which is due to the pair formation above/below the
wake centerline consistently over a large number of cycles, creating a mean lift. For 2P + 2S mode, pair formation direction
alternates, in alternate cycles and hence lift coefficient is mirror symmetric with no mean lift. The major frequency content
of the drag coefficient is always same as the imposed excitation. As a thumb rule, the mean drag, RMS drag values increase
with increasing amplitude of the pulsation through the entire region, although exceptions are possible. For example, for
symmetric vortex sheddingmode, themean drag reduces while RMS drag value increase with amplitude compared to lower
amplitude antisymmetric modes. Within the synchronization region, the RMS values of the lift and drag coefficients are
higher when compared to the nonsynchronization regions, except when the symmetric mode occurs. Similar observations
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Fig. 16. For four time-period of external pulsation (4Te), temporal variation of drag coefficient and corresponding energy exchange at Re = 100, (a)
fe/fn = 0.6, A∗

= 0.4: 2P + 2S mode; (b) fe/fn = 0.8, A∗
= 0.4: Modulated wake mode; (c) fe/fn = 1.0, A∗

= 0.4: P mode; and (d)) fe/fn = 0.9, A∗
= 0.5:

symmetric mode.
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Fig. 17. Comparison of the timing of vortex shedding with respect to inline pulsation, taken from Konstantinidis and Balabani (2007) for a circular cylinder,
and current results for a square cylinder.

have been made by Cetiner and Rockwell (2001). This can be attributed to the formation of vortical structures nearer to the
body, as is evidenced from the positions of various vorticity maxima nearer to the body, especially in the synchronization
region.

The effect near body vortical events on the energy transfer between fluid and bluff body is also examined in detail
for forced vortex shedding modes observed in the study. It is observed that the timing of vortex pair formation strongly
influences the energy transfer between the fluid and bluff body for both 2P+ 2Smode aswell as Pmode. Based on the change
in the nature of for energy transfer coefficient observed in the present study, it can be inferred that the pair vortical formation
during the downstroke likely promotes flow-inducedmotion of the bluff body,while the pair of the vortical formation during
the upstroke damps the flow-induced motion of the bluff body. The difference in the timing of pair formation of vortex pair
implies that while for P mode there is significant positive energy transfer between the fluid and bluff body, for the 2P +

2S mode the energy is negative. Singh et al. (2013) observed that the 2P mode causes a damping from the fluid and, hence,
cannot be observed in free inline vibration experiments. The dynamics of the formation of the 2Pmode, whichwas presented
by Singh et al. (2013), resembles the 2P + 2S mode that is presented here, without the formation of the S mode. From the
presented results, it can be inferred that the pair of formations in the 2Pmode should be at the end of the cycle that is similar
to the 2P+ 2Smode. Though this observation does not refute the possibility of occurrence of 2Pmode under inline vibration
experiments at a different parameter range, it can be expected that the timing of pair formation with respect to the inline
excitation is different when compared to the 2P + 2S mode.

Information regarding the timing of the formation of the vortex and its correlation with the lift and drag coefficients
are not only useful in ascertaining of the energy transfer between the bluff body and fluid but also in the understanding
the history of vortical structures that occur under bimodal vortex shedding, such as those observed by Konstantinidis et al.
(2007) or when mode competition occurs within a cycle, as observed by Cetiner and Rockwell (2001) where instantaneous
snapshots may not reveal the full history of the vortex shedding. The results presented here, in understanding the relative
timing of formation of a pair of vortices can also be helpful in flow control strategies such as the VIV suppression using
synthetic jets, to time the pulsation of the jets.
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5. Conclusions

In the present study, we investigated the correlation of force coefficients with the near body vortical events of a square
cylinder subjected to inline pulsatile flow, using Lattice Boltzmann Method. The investigation region consisted of moderate
nondimensional amplitudes of pulsation up to 0.6 and frequency ratio ranging from 0.6 to 1.4 for a fixed Re = 100. Four
canonical vortex shedding modes which were previously described for circular cylinder under different types of excitation
were observed for the square cylinder. A subharmonic region with the 2P + 2S mode, around frequency ratio 0.6 and
harmonic region with mainly P mode was found. Towards the left boundary of the synchronization region, a symmetric
mode was found at relatively lower amplitude. Outside these regions, a modulated wake was observed.

The frequency content of the spectra was correlated with the near body vortical events. It can be concluded that all
vortical events need not be reflected in the spectra of force coefficients. For 2P + 2S mode, both the lift and drag signal was
dominated by the pair vortex shedding event. For modulated wake, the slower frequency content in the lift spectra was
correlated with the swinging of the wake. For P mode, a mean lift was generated due to the persistent pair formation above
thewake centerline. The trend for lift and drag, when a vortex pair formation occurs is similar for 2P+ 2Smode, however the
direction of pair formation alternates in each cycle hence no mean lift is observed. The mean lift is responsible for the peak
observed at zero frequency, for the P mode. The force coefficients show distinct trends in different regions of parameter
space. Towards the left lock in the boundary of the harmonic region, the nature of fluid forces shows a drastic change,
especially for the symmetric mode. The mean and RMS lift is reduced and the spectra of lift are broadband implying that no
information regarding the vortical events is available in the lift coefficient. A closer inspection at the vorticity snapshots of
different modes shows that stronger vortical formation, closer to the bluff body, in the harmonic synchronization region is
responsible for the distinct behavior within that region. The analysis conducted in the present study suggests that 2P + 2S
mode is unlikely to be found in free inline vibration experiments around frequency ratio 0.6. A study on the relative timing
of the vortical pair formation shows that the for 2P + 2S mode the vortical pair formation at the end of the cycle causes a
damping from fluid while pair formation at the start of the cycle for P mode cause excitation from the fluid. This change in
the nature of energy transfer as compared to P mode and the symmetric mode is attributed to the change in the timing of
pair formation. It can be expected that a square cylinder may be prone to inline vibration around harmonic synchronization
region at higher amplitudes. Though the exact numerical quantities are unlikely to be same across different bluff body shapes
and at different Reynolds’ number, the similarity in spectra and thereby its interpretationwould still hold for vortex shedding
modes observed under different conditions. It would be surprising if one were to find that the P mode or symmetric mode
observed here, that will not cause a positive energy transfer for different bluff bodies for similar flow regimes. This inference
is drawn purely from the relative timing of the vortical event with respect to the inline excitation.

The present results imply that for a drag coefficient for the inline pulsatile flow,which is always at the imposed frequency,
irrespective of the vortex shedding mode, the use of an extended Morison’s type of correlation proposed by several authors
(see Zhou and Graham, 2000) to some extent, needs to be used with caution for inline pulsatile flow. The coefficients of
such correlations are likely to vary significantly across different regions of the parameter space of the excitation. A detailed
study of different correlations available in literature and its applicability to different regions, for different bluff bodies under
various vortex shedding conditions needs to be investigated in a future work.
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