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The effect of rotation on horizontal convection flow in a free-surface cylindrical enclosure driven by a
radially increasing temperature profile along the base is investigated numerically and theoretically.
The governing equations of mass, momentum and energy subject to Boussinesq approximation applied
to gravity term, have been discretised using a spectral-element method for velocity and temperature
fields. Results of a scaling analysis are compared with numerical simulations at a fixed Prandtl number
Pr ¼ 6:14, Reynolds numbers up to 3200, and Rayleigh number up to 3:2� 1011 in an enclosure with
height-to-radius ratio H=R ¼ 0:4. The results show that heat transfer in rotating horizontal convection
is significantly affected by rotation, and where rotation effects are significant, Nusselt number scalings
adapted from Park and Whitehead and Stern describe the behaviour at moderate and high rotation rates,
respectively. A scaling analysis is conducted to describe the suppression of convective flow at high rota-
tion rates. Flows are characterised in terms of a rotation parameter and are divided into three regimes: a
diffusive regime with Nusselt number independent of thermal forcing and rotation, a rotation-affected
convective regime, and a convective regime unaffected by rotation at sufficiently high Rayleigh number.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Horizontal convection defines flows that are driven by temper-
ature differentials imposed along a horizontal boundary [3]. This is
in contrast to Rayleigh–Bénard convection in which the tempera-
ture differential is in the vertical direction [4,5]. Uneven heating
applied across a horizontal boundary occurs in myriad geophysical
and industrial systems, motivating further study into horizontal
convection. In addition, the effect of rotation on convection flows
is important in many industrial applications as well as in
astrophysical and geophysical flows, including meridional over-
turning circulation in the ocean [6], Earth’s core [7], as well as solar
and mantle convection [8,9]. The combination of a radially forced
horizontal convection and rotation in a cylindrical system idealises
features of geophysical flows such as polar vortices in which solar
heating of the surface has a latitudinal dependence, and this forms
the basis of the system considered in the present study.

Laboratory fluid models for the study of polar vortices (e.g.
[10,11]) have tended to feature mechanical forcing mechanisms
such as differentially rotating disks that are dissimilar to the
geophysical processes, though these models have typically fea-
tured mechanical forcing mechanisms dissimilar to atmospheric
mechanisms. In the present paper, the flow in a rotating cylindrical
container driven by horizontal convection with radial forcing is
considered. Cylinder rotation mimics Earth’s rotation, and radial
horizontal convection drives an annular fluid flux circulating
outward radially near the base and returning poleward at the top
surface. Conservation of angular momentum accelerates the angu-
lar velocity of poleward-moving fluid, spinning it into a vortex in
an analogous manner to the generation of atmospheric polar
vortices in the polar convection cell.

As a first approximation of the atmospheric system, this model
disregards beta-plane effects associated with the change in the
Coriolis effect with latitude in the vicinity of the pole [10].
Moreover, while the controlling parameters for this system are
Reynolds and Rayleigh number, the parameters of interest when
considering swirling atmospheric flows are typically the Rossby
number (relating inertial to Coriolis forces) and the Ekman number
(relating viscous to Coriolis forces). The Ekman number is related
to the reciprocal of the Reynolds number, but the Rossby number,
which relates the angular velocity of the model polar vortex to the
background rotation, is flow-dependent.
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Nomenclature

cp fluid specific heat capacity
E Ekman number
f Coriolis parameter
FT absolute base heat flux
g gravitational acceleration
g gravity vector
ĝ unit vector in direction of gravity
h boundary layer thickness scale
H depth of fluid in tank
L planar horizontal convection base length
N Brunt–Väisälä frequency
Nu Nusselt number
p pressure
Pr Prandtl number
Q 2Re=Ra2=5

r radial coordinate
R tank radius
Rd Rossby radius of deformation
Ra Rayleigh number
Re Reynolds number
t time
T temperature
Tw wall temperature

u velocity vector
ur radial velocity
uz axial velocity
uh azimuthal velocity
uh;rel azimuthal velocity relative to tank
Vmax maximum radial/horizontal boundary layer velocity
x Cartesian horizontal coordinate
z axial coordinate

Greek symbols
a volumetric expansion coefficient
c power-law exponent
dT radial temperature difference over base
DT temperature scale (base flux)
dT thermal boundary-layer thickness
dU velocity boundary-layer thickness
jT fluid thermal diffusivity
m fluid kinematic viscosity
h azimuthal coordinate
xh azimuthal component of vorticity
X angular velocity of tank
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For non-rotating horizontal convection, at high Rayleigh num-
ber, Rossby [12] demonstrated that the horizontal thermal layer
has a thickness proportional to Ra�1=5. However, in system under-
going strong rotation, the thinnest horizontal boundary layer is the
Ekman layer. Therefore, the ratio of these layers will be important
in describing the flow.

The effects of rotation on horizontal convection have been
investigated by Stern [2], Hignett et al. [13], Barkan et al. [14] in
various enclosure configurations. The dynamics of a horizontal
convection in a rotating annuls was investigated experimentally
by Hignett et al. [13]. The enclosure was rotated around its central
axis in which a radial temperature gradient was maintained along
the lower boundary in all direction from the axis. The dynamics of
the flow was described in terms of a non-dimensional parameter Q,
defined as the square of the ratio of the non-rotating thermal layer
scale to the Ekman layer scale. Their experiments focused on the
rotating regime with Q � Oð1Þ. For a large Rayleigh number, six
flow regimes were determined depending on the magnitude of
parameter Q. They found that for small Q ratio, the flow is only
weakly modified by rotation, and the scaling law for heat flux
and thermal boundary layer is similar to non-rotating case (i.e.
Rossby scaling for horizontal convection). Also, a critical value of
Q c � 3:4 were determined beyond which baroclinic instability
and waves were predicted.

Park and Whitehead [1] conducted a set of laboratory experi-
ments of rotating horizontal convection in a rectangular tank
rotated around its axis to investigate moderate rotation rates as a
model of oceanic meridional overturning circulation. They pro-
posed a scaling law for the lateral heat flux and thermal boundary
layer. When the typical values of the North Atlantic Ocean are
introduced, their scaling law predicts heat flux comparable to that
estimated by the North Atlantic when the vertical eddy diffusivity
of heat is about 1 cm2=s.

Barkan et al. [14] performed direct numerical simulations of
rotating horizontal convection in a rectangular enclosure with an
arbitrary axis of rotation for Q � 1. They extended the previous
studies by exploring the rapidly rotating regime (i.e. Q � 1), which
is more relevant to Earth’s oceans. They also discussed the genera-
tion of baroclinic eddies in this flow, as it is thought to play an
important role in the dynamics of oceanic overturning circulation.
Analysis extending the models of [15,16] applied to the rapidly
rotating case did an excellent job of predicting the inclination of
stratification in the interior. Their results demonstrated that rapid
rotation and baroclinic instability significantly modify the steady-
state compared to non-rotating horizontal convection and
therefore are essential components for the model of the overturn-
ing circulation and thermal structure of the ocean. Barkan et al.
[14] briefly considered lateral variation of the Coriolis effect, vary-
ing the Coriolis frequency linearly from zero at one side wall. They
demonstrated that for Q ¼ O 1ð Þ, the same scaling behaviour was
observed between constant-Q and laterally varying Q cases. Our
system also provides a constant Coriolis forcing term throughout
the enclosure, but the imposition of a radial horizontal thermal
forcing distinguishes the present setup from previous models.
Hence we use the term ‘‘radial horizontal convection’’ to describe
the radial imposition of thermal horizontal convection forcing in
all directions from an axis.

For horizontal convection in a rotating system, previous studies
[17,2,1] proposed scalings law for the lateral heat flux and thermal
boundary layer. These are linear scalings that disregard the effects
of baroclinic eddies [14]. Robinson and Stommel [17], Park and
Whitehead [1] used a scaling developed based on a geostrophic
balance (rotation and pressure terms balanced) in the horizontal
momentum equation and a balance between advection and verti-
cal diffusion in the buoyancy equation [17,14], whereas Stern
replaced the buoyancy-equation balance with a balance in the
energy equation between buoyancy flux and molecular dissipation.
This assumed that the flux was dominant throughout the thermal
boundary layer while dissipation was confined to the Ekman layer.

The goal of the present study is to characterise the axisymmet-
ric flow within a radial horizontal convection system subjected to
rotation, and the associated heat transfer as a function of Reynolds
and Rayleigh numbers.

The paper is organised as follows. The mathematical formula-
tion and problem definition are given in Section 2, which also pre-
sents the governing equations and parameters. A scaling analysis
yielding important relationships for the convective flow and heat
transfer on the forcing boundary is presented in Section 3. The
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methodology is presented in Section 4, which describes the numer-
ical method and model set up. Results and discussion follow in
Section 5, with conclusions drawn in Section 6.

2. Mathematical formulation

The system under consideration consists of a free surface cylin-
drical enclosure rotating with an angular velocity X. It is filled with
fluid, and a radially increasing temperature profile is imposed on
the base. The tank radius R and height H combine to define an
aspect ratio which in this study is fixed at H=R ¼ 0:4. The system
is depicted in Fig. 1.

The azimuthal velocity imposed on the impermeable base and
side wall is uh ¼ rX, where r is the radial coordinate. To model a
free surface, a stress-free condition is imposed on the top boundary
(uz ¼ @ur=@z ¼ @uh=@z ¼ 0). The side wall is thermally insulated by
imposition of a zero normal temperature gradient, and to simplify
the computational model, no heat loss is permitted through the
stress-free top surface, which is also approximated as being ther-
mally insulated. The linear temperature profile increases by dT
from r ¼ 0 to r ¼ R along the base to drive horizontal convection
in the z–r plane.

A Boussinesq approximation for fluid buoyancy is employed, in
which density differences in the fluid are neglected except through
the gravity term in the momentum equation. Under this approxi-
mation the energy equation reduces to a scalar advection–diffusion
equation for temperature which is evolved in conjunction with the
velocity field. The fluid temperature is related linearly to the den-
sity via a thermal expansion coefficient a.

The dimensionless Navier–Stokes and energy equations gov-
erning a Boussinesq fluid may be written as

r̂ � û ¼ 0; ð1Þ

@û
@t̂
¼ �ðû � r̂Þû�rp̂þ 1

Re
r̂2ûþ ĝbT Ra

Re2Pr
; ð2Þ

@bT
@t̂
¼ �ðû � r̂ÞbT þ 1

PrRe
r̂2bT ; ð3Þ
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Fig. 1. Schematic representation of the system, showing key symbols and compu-
tational domain on the meridional semi-plane.
where û; p̂; t̂; Re; Pr; ĝ and bT are the velocity vector, kinematic
static pressure, time, Reynolds number, Prandtl number, a unit vec-
tor in the direction of gravity, and temperature, respectively. In Eqs.
(1)–(3), lengths have been scaled by R, velocities by RX, time by X�1,
and temperature by dT (the imposed temperature difference across
the bottom wall). A Reynolds number characterising the tank rota-
tion rate is defined as

Re ¼ R2X
m

; ð4Þ

where m is the kinematic viscosity of the fluid. This Reynolds num-
ber relates to the Ekman number characterising the ratio of viscous
to Coriolis forces [13]

E ¼ m
2XR2 ¼

1
2Re

: ð5Þ

A horizontal Rayleigh number characterising the thermal forcing is
given by

Ra ¼ gadTR3

mjT
; ð6Þ

where g is the gravitational acceleration and jT is the thermal dif-
fusivity of the fluid.

In a rotating system the ratio between thermal boundary layer
thickness and Ekman layer thickness is important in describing the
flow [13]. The square of the ratio between these two thickness
scales [1,14] gives

Q ¼ 1
ERa2=5 ¼

2Re

Ra2=5 : ð7Þ

This ratio accounts for the importance of rotation in horizontal con-
vection. When Q > Oð1Þ, the thermal boundary layer is thicker than
the Ekman layer, and rotation is important. When Q < Oð1Þ, the
Ekman layer is thicker than the thermal boundary layer, and fric-
tional dissipation is dominant. For a description of six regimes iden-
tified for rotating thermal convection heated non-uniformly from
below in terms of Q, the reader is referred to [13]. The effects of
rotation and horizontal convection in this system are completely
described by any two of Re; Ra and Q. In this paper, both Re and
Q are used to describe the effect of rotation on the flow.

The Prandtl number of the fluid is given as

Pr ¼ m
jT
; ð8Þ

and throughout this study Pr ¼ 6:14, which approximates water at
laboratory conditions. To consider the suitability of this model for
implementation in a laboratory setting, a wide range of Rayleigh
number (3:2 6 Ra 6 3:2� 1011) and Reynolds number
(0 6 Re 6 3200) are considered in this study.

The Nusselt number, a measure of the ratio of convective to
conductive heat transfer, is defined as

Nu ¼ FT R
qcpjTdT

; ð9Þ

where the heat flux is

FT ¼ jTqcp
@T
@z
: ð10Þ

Here, @T=@z is the absolute value of the temperature flux integrated
over the base.

3. Theoretical analysis

Here we conduct a scaling analysis of the system to provide
insight into expected behaviour of the flow. Following previous
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studies into plane horizontal convection flows [12,18,19], it is
expected that the flow will establish a steady state boundary layer
on the forcing boundary. To proceed, consider steady-state
(@=@t ¼ 0) axisymmetric (@=@h ¼ 0) flow with swirl (uh – 0) in
the cylindrical container of radius R. On the bottom wall, boundary
layers (velocity and temperature) are assumed to develop with
thickness h, and we consider the case where h=R� 1.

For convenience, we conduct this analysis in a rotating frame of
reference (with angular velocity X), and we introduce uh;rel for the
dimensional azimuthal velocity relative to the rotating reference
frame. This requires Coriolis and centripetal terms to be added to
the governing equations. With constant rotation about the vertical
z-axis, the centripetal contribution is accommodated by adding
ðþrX2Þ to the radial momentum equation only. The Coriolis
contributions are accommodated by augmenting the radial and
azimuthal momentum equations with (2Xuh) and (�2Xur), respec-
tively. Writing in dimensional form and adopting the aforemen-
tioned assumptions, the governing equations become

1
r
@

@r
rurð Þ þ @uz

@z
¼ 0; ð11Þ

ur
@uz

@r
þ uz

@uz

@z
¼ � 1

q
@p
@z
þ m

1
r
@

@r
r
@uz

@r

� �
þ @

2uz

@z2

" #
� agT; ð12Þ

ur
@ur

@r
þ uz

@ur

@z
� uh;rel

2

r
¼ rX2 þ 2Xuh;rel �

1
q
@p
@r

þ m
1
r
@

@r
r
@ur

@r

� �
þ @

2ur

@z2 �
ur

r2

" #
; ð13Þ

ur
@uh;rel

@r
þuz

@uh;rel

@z
�uruh;rel

r
¼�2Xur

þm
1
r
@

@r
r
@uh;rel

@r

� �
þ@

2uh;rel

@z2 �uh;rel

r2

" #
;

ð14Þ

ur
@T
@r
þ uz

@T
@z
¼ jT

1
r
@

@r
r
@T
@r

� �
þ @

2T
@r2

" #
: ð15Þ

We conduct a scaling analysis of the governing equations as they
apply to the forcing boundary layer. In this analysis, r-derivatives
are taken to operate over the tank radius, R; z-derivatives are taken
to operate over the boundary layer thickness, h, and h=R� 1. Rep-
resentative changes in radial and azimuthal velocity, and tempera-
ture, across the boundary layers are ur; uh;rel and dT , respectively.

Beginning with the continuity equation, the order of magnitude
of each term is

O
1
r
@

@r

� �
¼ 1

r
rur

R
¼ ur

R
; ð16Þ

and

O
@uz

@z

� �
¼ uz

h
: ð17Þ

Eq. (11) dictates that these two terms must be equal and opposite.
Hence their magnitudes are equal, and

uz � ur
h
R

; ð18Þ

axial velocities are much smaller than radial velocities in the forcing
boundary layer.

Considering the temperature transport equation, the advection
terms both have orders of magnitude urdT=R. The radial derivative
part of the diffusion term is much smaller than the z-derivative
term by a factor of ðh=RÞ�2, i.e. jTdT=R2 � jTdT=h2, and is
neglected.

Balancing the convection terms with the remaining diffusion
term yields ur � jT R=h2, which can be combined with the continu-
ity result to give

ur �
R
h

uz � jT
R

h2 : ð19Þ

At this point it is pertinent to note that these scaling results are
identical to those arising from an analysis of planar horizontal con-
vection [12,20], with R replacing base length L. The radial effects
cancel in the analysis; a feature that persists through the remainder
of the analysis. The exception is a couple of instances where we use
OðrÞ ¼ R, which holds at the outer part of the enclosure. This is
justified by observation from planar horizontal convection [20,19]
that the hot end of the forcing boundary (the outer part in our radial
system) is where the convective boundary layer is most prevalent.
This result reflects the small-h=R assumption, which means that azi-
muthal curvature is negligible compared to the boundary layer
thickness away from the axis.

It can similarly be shown that the radial-derivative and radial-
velocity terms may be eliminated from the radial momentum
equation. likewise the radial-derivative diffusion term may be
neglected from the axial momentum equation, and from the
azimuthal momentum equation, the radial-derivative part of the
diffusion term and the muh;rel=r2 term may be neglected. Consider-
ing the remaining azimuthal momentum terms demonstrates that
if the Coriolis term is in balance with advection and diffusion
terms, then uh;rel=RX = constant. This means that the relative
azimuthal velocity normalised by the tank rotation speed will be
constant. Multiplying both sides by m=R and simplifying gives

uh;rel / Re
m
R
: ð20Þ

Hence in an experimental study (with constant tank radius and
fluid viscosity), it would be expected that relative azimuthal veloc-
ities are proportional to Reynolds number.

More information can be gleaned by cross-multiplying and
combining the remaining terms in the momentum equations. Sum-
ming the differentiated equations gives us a single equation that
permits us to consider the relative magnitude of terms across both
the radial and axial momentum equations,

@ur

@r
@uz

@r
þ ur

@2uz

@r
þ uz

@2uz

@r@z
þ @uz

@r
@uz

@z
þ @ur

@z
@ur

@r
þ ur

@2ur

@r@z

þ uz
@2ur

@z2 þ
@uz

@z
@ur

@z
� 1

R
2uh;rel

@uh;rel

@r

¼ � 2
q
@2p
@r@z

þ 2X
@uh;rel

@z
þ m

@3uz

@r@z2 þ m
@3ur

@z3 � ag
@T
@r
: ð21Þ

Noting that ur � jT R=h2 and uz � jT=h, we find that the axial
momentum advection terms and diffusion term are negligibility
small compared with their radial-momentum counterparts (consis-
tently h2

=R2 the size), and may therefore be discarded.
If the buoyancy is in balance with advection or diffusion terms,

then we recover PrRa h=Rð Þ5 / constant, so h=R / PrRað Þ�1=5. Hence
for a constant Prandtl number,

h
R
/ Ra�1=5: ð22Þ

This scaling of the normalised boundary layer thickness as being
proportional to Ra�1=5 is identical to that reported by Rossby
[12,18] for planar horizontal convection.

A result of some importance (to be discussed later) arises from a
balance between buoyancy and the radial-momentum Coriolis
term. This balance gives PrRa h=Rð Þ5 / RXuh;rel=u2

r , or uh;rel=ur /
PrRa ur=RXð Þ h=Rð Þ5. Hence the ratio of relative azimuthal velocity
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to radial velocity is proportional to the product of radial velocity
normalised by tank velocity (the dimensionless radial velocity in
our simulations to follow), and PrRa h=Rð Þ5. Given Eq. (22), then
uh;rel=ur / ur=RX.

Further insight may be gained by taking the difference between
the remaining terms in the cross-differentiated radial and axial
momentum equations to eliminate pressure, which yields

2
r

urxh þ uh
@uh

@r

� �
þ 2X

@uh

@z
¼ �m

@2xh

@z2 � ag
@T
@r
; ð23Þ

where the azimuthal component of vorticity, xh ¼ @ur=@z� @uz=@r,
and the continuity relation has been employed to simplify the
left-hand side.

The order of magnitude of vorticity can be deduced from its
velocity derivative components,

O xhð Þ¼max O
@ur

@z

� �
;O

@uz

@r

� �� �
¼max

ur

h
;
ur

h
h
R

� �2
" #

¼ur

h
�jT

R

h3 ;

ð24Þ

so the @uz=@r term is negligible.
Recalling that ur � jT R=h2 and uz � jT=h; uh;rel=ur / ur=RX,

evaluating the order of magnitude of each term, multiplying all
results by h5

=Rj2
T and simplifying produces some interesting

results: the buoyancy and diffusion terms are of order Pr, and the
fist advection term of order 1. However, the remaining terms,
2=rð Þuh;rel@uh;rel=@r and 2X@uh;rel=@z, each go as different functions

of ur and uh;rel. Taking the ratio of their orders of magnitude and
solving for uh;rel yields

uh;rel / ReRa1=5m=R: ð25Þ

We have earlier determined a scaling for ur , and combining these
yields

uh;rel

ur
/ PrReRa�1=5: ð26Þ

This expression demonstrates that increasing either the Prandtl
number or Reynolds number, or decreasing Rayleigh number, each
lead to an increase in the ratio uh;rel=ur . We will later show that
Eq. (26) serves to explain a stabilizing effect with increasing
Reynolds number observed in our simulations.

Insight into the allowable shapes of the thermal and velocity
boundary layers may be obtained by evaluating the reduced
governing equations at the bottom wall (where u ¼ 0), which gives

@uz

@z
¼ 0; ð27Þ

1
q
@p
@r
¼ rX2 þ m

@2ur

@z2 ; ð28Þ

1
q
@p
@z
¼ �agT; ð29Þ

@2uh;rel

@z2 ¼ 0; ð30Þ

@2T
@z2 ¼ 0: ð31Þ

In particular, Eqs. (30) and (31) show that there must be zero cur-
vature in vertical profiles of both azimuthal velocity and tempera-
ture at the bottom wall.

Finally, as described earlier, the cylindrical components become
negligible in the scaling analysis, so collecting the preceding scal-
ing relations provides results consistent with the forcing boundary
layer scalings derived for planar horizontal convection [12,20], i.e.
h
R
� Ra�1=5; ð32Þ

urR
jT
� Ra2=5; ð33Þ

uzR
jT
� Ra1=5: ð34Þ

By combining Eqs. (9) and (10), a scaling for Nusselt number is
found to be

Nu � Ra1=5; ð35Þ

which follows from Eq. (32) and Nu � dT=hð ÞR=dT � h=Rð Þ�1.
We can recover Q to demonstrate its relevance to the present

system by taking the square of the ratio of Eq. (32) to the Ekamn
layer scale

ffiffiffi
E
p� �

, i.e.

h=Rffiffiffi
E
p

� �2

¼ Ra�2=5

E
¼ Q : ð36Þ

In this paper, the predicted scalings arising from this analysis will
be tested using time-dependent, axisymmetric numerical simula-
tions described in the sections to follow.

4. Numerical methodology

A nodal spectral-element method is used to discretise the gov-
erning flow and energy Eqs. (2) and (3) in space, and a third-order
scheme based on backwards differentiation is employed for time
integration [21]. The spectral element method is similar to the
finite element method, in that the fluid domain is divided into a
mesh of individual elements. However, instead of employing a
low-order (e.g. linear) basis over each element, a high-order poly-
nomial basis is instead used, permitting very rapid convergence
with increasing polynomial degree [21]. An in-house solver is used,
and the governing equations are solved in cylindrical coordinates
[22,23].

4.1. Spatial and temporal discretisation

The computational domain in the z� r plane is broken up into
quadrilateral elements. A rectangular mesh comprising 1560 ele-
ments was constructed to discretise the meridional semi-plane.
Care was taken to ensure that the flow was resolved in the vicinity
of the walls, and particularly the heated boundary, with coarser
mesh spacing in the interior. A grid independence study deter-
mined that integrated Nusselt numbers were independent of reso-
lution to better than 0:1% with an element polynomial degree of 5,
which is used hereafter.

For time integration of Eqs. (2) and (3), the advection/convec-
tion terms are concurrently solved explicitly, followed by a
projection of the velocity field onto a divergence-free space, and
finally implicit solves for velocity components and temperature.
This procedure extends the backwards-differentiation algorithm
of [21] to the coupled temperature equation. The temperature
transport formulation of the present code has been validated in
studies on heat transfer enhancement in duct flows [24–26].

5. Results and discussion

Results are presented in three subsections. Firstly, Nusselt num-
bers as functions of Reynolds number and Rayleigh number are
reported. This is followed by consideration of the development of
unsteady flow, and interrogation of the boundary-layer velocity
profiles. Finally, the temperature and azimuthal velocity fields in
the enclosure are presented.
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5.1. Nusselt number scalings and flow regimes

Here the heat transfer through the base of the enclosure is con-
sidered. For this enclosure, the dependence of Nusselt number on
the Rayleigh number for different Reynolds numbers is shown in
Fig. 2(a). In Fig. 2(b), gradients of the log–log data are plotted. Lin-
ear regions of the data shown in Fig. 2(a) indicates a power law
relationship Nu � Rac, where the log–log gradient gives c. Accom-
panying Fig. 2 is Fig. 3, which quantifies Q for the Nu–Ra–Re data
computed in this study. A number of observations can be made
in relation to the data in Fig. 2. Consistent with experiments and
simulations of planar horizontal convection flows, for a given Rey-
nolds number the Nusselt number passes through three different
regimes as Rayleigh number is increased. For small Rayleigh num-
bers, it is found that the Nusselt number is independent of both
Rayleigh number and Reynolds number. In this regime, which is
referred to here as regime I, diffusion dominates, and the flow lacks
a distinct boundary layer adjacent to the bottom boundary. At high
Rayleigh numbers, the radially forced horizontal convection
dominates and the Nusselt number recovers its Reynolds-number
independence, while exhibiting a strong power-law dependence
on Rayleigh number with an exponent very close to the 1=5 pre-
dicted from theory (see Eq. (35)). This convection-dominated
regime is referred to as regime III. Connecting regimes I and III is
a transitional regime (regime II) where the Nusselt number
increased from its regime I value towards the convection-domi-
nated regime.
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Fig. 2. (a) A plot of log10Nu against log10Ra for different Reynolds number as
indicated. Akima splines are fitted to the data for guidance. I, II and III identify the
diffusion-dominated, intermediate, and convection-dominated regimes, respec-
tively. (b) A plot of gradient of the curves in (a), calculated using finite difference.
Gradient indicators (a) and dashed lines (b) show the theoretical scaling for
convection-dominated flow (Ra1=5), plus scalings incorporating the effect of rotation
adapted from Park and Whitehead (Ra1=3) and Stern (Ra1=2).
The threshold between regimes I and II demonstrates a depen-
dence on Reynolds number, and hence on the rate of rotation of the
system. At Re ¼ 0, the threshold between regimes I and II occurs at
Ra � 104. Modest rotation rates up to Re � 3� 101 exhibit a virtu-
ally indistinguishable threshold Rayleigh number. However, at lar-
ger rates of rotation the threshold is delayed to progressively larger
Rayleigh numbers. The explanation for this can be deduced from
the thickness of the thermal boundary layer. In the absence of rota-
tion, this layer follows Rossby’s scaling, h=R � Ra�1=5 [12], which
for a Rayleigh number of 104 and the present aspect ratio
H=R ¼ 0:4 corresponds to a thickness of approximately 40% of
the enclosure height, or h=H � O 1ð Þ. The effect of rotation is
expected to become significant beyond Q ¼ O 1ð Þ, where the sca-
lings proposed by Stern [2] and Park and Whitehead [1] each pre-
dict the thermal layer thickens to increase with rotation rate. The
respective scalings are summarised in [14] and can be written in
the present nomenclature as h=R � Q 3=4Ra�1=5 and
h=R � Q 1=3Ra�1=5. Noting that h=R ¼ h=Hð Þ H=Rð Þ, these scalings
demonstrate that h=H � Q cRa�1=5 H=Rð Þ�1, where c ¼ 3=4 or 1=3,
depending on which expression is used. In other words, for a given
aspect ratio, a higher Rayleigh number is required at higher rota-
tion rates (higher Q) to reduce the thickness below the
h=H ¼ O 1ð Þ required to enter regime II.

The question as to which of these predicted scalings, if any, are
relevant to the present system will be discussed shortly; in the
meantime the role of Q on the threshold is considered. Here the
regime I threshold is constant at Ra � 104 for Re K 32, which cor-
responds to Q < 1:6 � O 1ð Þ. By Re ¼ 100, where a noticeable delay
in the threshold Rayleigh number begins to be seen, at Ra � 104 the
rotation parameter Q ¼ 5 which is greater than O 1ð Þ, demonstrat-
ing the influence of rotation on the delay of this threshold Rayleigh
number.

Having established the importance of h=H in delineating diffu-
sive and convective regimes in horizontal convection flow, it is per-
tinent to discuss the role of the enclosure aspect ratio on these
regimes. Sheard and King [27,19] demonstrated that for planar
horizontal convection, the Nu–Ra trends were unaffected by aspect
ratio for larger aspect ratios, and only aspect ratios H=L K 1=3
exhibited an appreciable deviation from the H=L-independent data.
Here again the importance of h=H was observed: smaller aspect
ratios confined the flow, bringing the opposite boundary into
proximity with the forcing boundary layer. As with the cases with
larger Reynolds number described here, in that study a higher Ray-
leigh number was required to overcome the diffusion-dominated
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regime. In [27,19], a feature of the Nu–Ra trend at larger aspect
ratios was that no appreciable spike in gradient was observed in
their regime II; rather, the gradient smoothly increased from zero
to the 1=5 scaling. In the present study, the low-Reynolds-number
cases exhibit a small gradient spike in regime II, which suggests
that the enclosure is modestly affected by aspect ratio. It is
therefore possible that enclosures with a larger aspect ratio might
exhibit slightly different thresholds between regimes to those
reported here. Conversely, smaller aspect ratios would produce
progressively larger deviations of the thresholds to higher Rayleigh
numbers due to the aforementioned vertical confinement of the
horizontal flow.

The scaling in the convection-dominated regime III is further
illustrated by the plot of the gradients of the trends in Fig. 2(b).
The gradient data was found by interpolating Akima spline fits to
the data and determining the gradients through finite differences.
Regime I is identifiable by gradients of approximately zero; regime
III by gradients of approximately 1=5, and regime II by the range of
intermediate Rayleigh numbers where a spike in gradient is pro-
duced corresponding to the elevation in Nusselt number towards
the Ra1=5 regime. Having established that the onset of regime II is
delayed by higher rotation rates, it becomes apparent that the Rey-
nolds-number-dependence observed in the Nu–Ra data in regime II
is due to the effect of rotation, which is characterised by Q. To elu-
cidate, Fig. 3 displays the data from Fig. 2(a) with symbols shaded
by values of Q. It is seen that progressively higher Reynolds
numbers result in progressively higher values of Q being reached
within regime II, and that consistently as each data set approaches
the collapsed regime III trend, Q ! O 1ð Þ. Consistently, regime III is
characterised by cases with Q < O 1ð Þ.

To gain further insight into how the Nusselt number results
presented in Fig. 2(a) vary against the scalings suggested by Park
and Whitehead [1] and Stern [2], the reciprocal of the respective
thermal boundary layer scalings taken from the summary provided
in [14] result in Nusselt number scalings of Nu � Q�1=3Ra1=5 and
Nu � Q�3=4Ra1=5, respectively. Given that these scalings have been
developed for flows with Q > 1, they should be tested against
our data corresponding to regime II, which satisfies this criterion.
The data in Fig. 2 is recast against each of these scalings in Fig. 4.
The proposed scalings are valid where a unit gradient is produced
in the plots. In each of the plots in Fig. 4, the data has been partially
collapsed on the horizontal axis. At the left, the constant Nusselt
numbers of regime I can be seen in both figures, then the depar-
tures to regime II occur, and finally, each of the data sets reverts
to a gradient consistent with the Ra1=5 scaling of regime III, but
the regime III data no longer collapses due to the change in the
parameter plotted on the horizontal axis. These plots further rein-
force that regime III corresponds to data with Q < 1.

Prior to considering the implications of the data presented in
Fig. 4, consideration is given to the underlying Reynolds number
and Rayleigh number scalings suggested by the Nusslet number
scalings of [1,2]. Substituting Eq. (7) into the respective formulae
results in

Q�1=3Ra1=5 / Re�1=3Ra1=3; ð37Þ

from the Park and Whitehead scaling, and

Q�3=4Ra1=5 / Re�3=4Ra1=2; ð38Þ

from the Stern scaling. The slopes corresponding to the Rayleigh-
number scalings described in these relations are included in
Fig. 2(a) for guidance. It can then be noted that data at high
Reynolds numbers appears to follow a scaling of Ra1=2 as suggested
by Stern’s relationship, while at lower Reynolds numbers, a scaling
of Ra1=3 consistent with [1] is instead observed.
The boundaries between regimes are now discussed, using
information revealed from Fig. 4. Considering firstly the boundary
between regimes I and II, Fig. 2 demonstrates that at low Reynolds
numbers (Re K 32) the boundary lies at Ra � 104. With increasing
Reynolds number, rotational effects delay the onset of this regime
by thickening the thermal boundary layer [14], thus requiring pro-
gressively higher Rayleigh numbers to overcome this effect and
form the distinct boundary layer on the bottom wall occupying
regime II. Fig. 4 can be used to determine expressions for the I–II
regime boundary at higher rates of rotation. In Fig. 4(a), it can be
seen that over 32 K Re K 320, the data exhibits a departure from
the regime-I Nusselt number at log10Q�1=3Ra1=5 � 0:75. Substitut-
ing Eq. (7) and solving gives

RaI�II ¼ 2� 109=4Re � 356Re: ð39Þ

To test this relationship against Figs. 2 and 3, we substitute
Re ¼ 100 into the expression. The result yields log10Ra ¼ 4:6, consis-
tent with the corresponding behaviour in Fig. 2. Using these values
with Eq. (7) yields Q ¼ 3:0 at the threshold, which is consistent with
the trend in Q values indicated in Fig. 3.

It was earlier described that for an enclosure with H=R ¼ 0:4,
the transition from regime I to II occurs when h=H � 0:4. Using
the thickness scaling expression from [1] and substituting the
threshold value Q 1=3Ra�1=5 � 10�0:75 yields h=H � 0:45. This indi-
cates that at moderate rotation rates the boundary layer thickness
is slightly greater at the threshold of regime II.

In Fig. 4(b), Re J 100 data sets depart from the regime-I Nus-
selt number at a tightly collapsed value of log10Q�3=4Ra1=5 � 0:5.
Substituting Eq. (7) and solving gives
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RaI�II ¼ 23=2 � 10Re3=2 � 28:3Re3=2: ð40Þ

Applying this relationship to Re ¼ 3200 yields a threshold at
log10Ra ¼ 6:7 with Q ¼ 13:3, consistent with the data in Figs. 2
and 3. Geophysically relevant oceanic values of the rotation param-
eter are beyond Q ¼ Oð100Þ [14], while the highest values found in
the rotation-affected convection regime in the present study are
Q ¼ Oð10Þ. Nevertheless, the tight collapse at higher Reynolds num-
bers seen in Fig. 4(b) suggests that Stern’s scaling is appropriate for
higher rotation rates. Recalling the assumptions by which the
scalings of Park and Whitehead and Stern were constructed (see
Section 1 and [14]), the findings in Fig. 4 therefore imply that with
increasing rotation rate, the balance between advection and vertical
diffusion in the buoyancy equation that underpins non-rotating
flows carries over to moderately rotating flows, but that this ulti-
mately gives way to Stern’s energy equation balance at higher rates
of rotation.

Using the thickness scaling expression from Stern and substi-
tuting the threshold value Q 3=4Ra�1=5 � 10�0:5 yields h=H � 0:79.
This reveals that at high rotation rates the boundary layer thick-
ness is significantly greater at the threshold of regime II, and that
the effect of increasing rotation rate is to increase the boundary
layer thickness at the onset of the convective regimes.

The threshold between regimes II and III denotes the boundary
between convective flows that are influenced by rotation (regime
II) and those that are not (regime III). This threshold is elucidated
by Fig. 3, where it is shown that data with Ra J 105:5 and
Q < Oð1Þ collapse to the horizontal convection trend following
the expected Ra1=5 scaling. Hence Q ¼ 1 is adopted to define the
threshold at higher Reynolds numbers, while at lower Reynolds
numbers the threshold is described by Ra J 105:5. The intercept
between these trends occurs at Re � 79.

The aforementioned regime threshold expressions are
combined to construct the regime map shown in Fig. 5. This map
reinforces that for small Q < Oð1Þ the thresholds are independent
of Reynolds number. Additionally, the interesting regime of rota-
tion-influenced convective flow (regime II) occupies an increasing
range of Rayleigh numbers with increasing Reynolds number,
thanks to the upper and lower bounding Rayleigh numbers going
with Re5=2 and Re3=2, respectively.
5.2. Emergence of unsteady flow

Attention is now turned to the question of the stability of the
flow. The development of unsteady flow in horizontal convection
is important in the context of the overarching debate over the role
of turbulence in horizontal convection. This question is also related
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to whether a horizontal convection mechanism alone would be
sufficient to drive overturning circulation in Earth’s oceans.
Paparella and Young [28] proposed the so-called ‘‘anti-turbulence
theorem’’ in which it was argued that horizontal convection was
inherently non-turbulent. Specifically, they showed that for a fixed
Prandtl number, the volume-averaged energy dissipation goes to
zero as both kinematic viscosity and thermal diffusivity go to zero.
Siggers et al. [29] used a variational approach to determine an
upper bound on Nusselt number scaling at the 1=3 power of Ray-
leigh number in non-rotating planar horizontal convection, which
was substantially higher than the 1=5 scaling predicted and
observed in stable horizontal convection [12,20]. While the sug-
gested upper bound could have been exaggerated by insufficiently
tight bounds in the analysis, this work did nonetheless suggest the
possibility that another flow regime (such as instability or turbu-
lent convection) could result in a higher scaling exponent. Estab-
lishing the correct exponent for high-Rayleigh number horizontal
convection is important when extrapolating to geophysical scales.
Sheard and King [27,19] reported high-resolution numerical simu-
lations using a high-order spectral-element method in which the
onset of unsteady flow triggered an increase in the Nu–Ra scaling
exponent from 1=5 in the stable regime to � 0:3. Calculations
extrapolating to geophysical scales, i.e. Ra ¼ O 1031

� �
[29,30],

reveal that the 1=5 scaling produces a poleward oceanic heat trans-
port some three orders of magnitude below the oceanic value, but
that the 0:3 scaling achieves a heat transport consistent with that
in Earth’s oceans. Therefore the development of unsteady flow and
turbulence in horizontal convection is a critical question.

Scotti and White [31] revisited Paparella and Young’s anti-tur-
bulence theorem using direct numerical simulation of horizontal
convection at Rayleigh numbers up to Ra ¼ 1010 arguing that the
anti-turbulence criterion was too restrictive and that horizontal
convection did indeed become turbulent. In contrast, numerical
simulations up to Ra ¼ 1011 reported by Ilıcak and Vallis [32]
suggested that in the absence of mechanical forcing, horizontal
convection was insufficient to drive a significant overturning at
high Rayleigh numbers despite the interior flow being unsteady.
However, Gayen et al. [33] analysed the energy budget of three-
dimensional direct numerical simulations of horizontal convection
for Rayleigh numbers up to Ra ¼ 1012 and concluded that dissipa-
tion rate is not an indicator of the strength of the circulation, and
that horizontal convection was sufficient to drive energetic
circulation.

There remains quite some disagreement over the nature of
instability and onset of unsteady flow leading to turbulence in hor-
izontal convection, not least due to the high resolution needed to
accurately capture the forcing boundary layer and vertical plume
region of the flow, whose scales decrease with increasing Rayleigh
number. In [27,19] the onset of unsteady flow was found to consis-
tently emerge at Ra ¼ O 109

� �
, a value supported by the subse-

quent simulations of [30] that were progressed well beyond this
value and up to Ra ¼ 1012. How, then, is the development of
unsteady flow affected by rotation and the radial thermal forcing
in the present cylindrical system?

The onset of unsteady flow in the present system is delayed by
approximately an order of magnitude in Rayleigh number when
compared to planar non-rotating horizontal convection. While
many of the simulations exhibit some unsteady features such as
mushroom plume eruption from the forcing boundary during the
transient phase, upon reaching thermal equilibrium, a time-peri-
odic unsteadiness is first detected at Ra ¼ 1010 for all Reynolds
numbers considered here (0 6 Re 6 3200). Stable steady-state
equilibrium flows are produced for all lower Rayleigh numbers
computed in this study (Ra 6 3:2� 109). Rotation is therefore not
found to significantly affect the onset of unsteady flow over this
Reynolds number range; this is supported by the Nusselt number
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data in Fig. 2, where at Ra ¼ 1010, all of these Reynolds numbers
produce Nusselt numbers at of very close to the Reynolds-num-
ber-independent regime III. Indeed, Fig. 3 further demonstrates
that at the highest Reynolds number, Q ¼ 1:01 at this Rayleigh
number, verifying that the rotation rate is too small to be signifi-
cant. It remains an open question as to what the effect of further
increases in Reynolds number would be on the onset of unsteady
flow. However, it could be expected that the onset would be fur-
ther delayed to higher Rayleigh numbers due to higher rotation
rates thickening the thermal boundary layer and delaying the
onset of the radial convective flow. Overriding this, though, is the
potential for non-axisymmetric flow such as baroclinic instability,
which is suppressed in the present axisymmetric simulations. As
stated in Section 1, the linear stability analysis of Hignett et al. sug-
gested a critical value of the rotation parameter Qc � 3:4 beyond
which baroclinic instability would be produced. Barkan et al.
[14], who employed a Prandtl number Pr ¼ 7, estimated for their
system a critical value Q c ¼ 2:63.

Hignett et al.’s expression for critical rotation rate is

Q c P Pr
Rd

R

� �2
 !�4=11

; ð41Þ

where Rd is the Rossby radius of deformation. Noting that the enclo-
sure radius must be large enough to contain several Rossby radii of
deformation (i.e. R=Rd J 10) [14], this yields a critical rotation rate
of Qc P 2:76 with the present Prandtl number. Referring to Fig. 5, it
would therefore be expected that baroclinic instability would be
found at higher rotation rates within the regime II band, and that
at moderate Reynolds numbers, baroclinic instability may emerge
at lower Rayleigh numbers than the Ra ¼ O 1010

� �
at which instabil-

ity is seen in the non-rotating regime.
The Rossby radius of deformation Rd ¼ NH=f , where the

Brunt–Väisälä frequency N 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðg=qÞðdq=dzÞ

p
, and f ¼ 2X is the

Coriolis parameter. Under the non-dimensionalisation applied to
the present system, Hignett et al.’s criterion can be recast as

Q c P
H
R

� �2 Ra

Re2

dbT
dẑ

 !�4=11

: ð42Þ

In the present simulations, the temperature field varies both radi-
ally and axially, and as later shown, very different fields are found
across the different flow regimes. Nevertheless, to provide an
approximate indication of where baroclinic instability might
emerge, the mean vertical temperature gradient was calculated
from each simulation, and this was substituted into Eq. (42). Here
the Rossby radius of deformation is obtained from the computed
temperature fields, hence unstable values are taken as those satis-
fying Qc P 2:76. Both of these estimates demonstrated that with
increasing Reynolds number, the range of Rayleigh numbers poten-
tially supporting baroclinic instability increased. However, the
threshold calculated from the computed temperature fields corre-
sponds to a higher value of Q than that obtained assuming
R=Rd J 10. For instance, at Re ¼ 320, the computed R=Rd ¼ 10
threshold occurs at Q ¼ 6:9, and for Re ¼ 1000, at Q ¼ 7:7.

The delay in onset of unsteady flow in the present system can
be explained by the fact that the boundary-layer flow moving radi-
ally outward experiences two effects not seen in the planar convec-
tion case: the azimuthal spreading with increasing r may produce
one or both of a reduction in height (and hence boundary layer
thickness) or a reduction in velocity, as a result of the incompress-
ibility constraint. This concept is depicted in Figs. 6 and 7 a com-
parison is made for boundary layer thickness and maximum
radial/horizontal velocity in the boundary layer between radial
and planar horizontal convection. The test case had Re ¼ 0 and
Ra ¼ 108, and data is plotted over the full length of the forcing
boundary.

In both the planar and radial horizontal convection cases, the
velocity boundary layer thickness follows a similar trend, approx-
imately doubling in thickness from the cold to the hot end of the
enclosure. Moving from the cold to the hot end, the planar case
experiences a more rapid growth than the radial case initially,
and plateaus beyond x=L � 0:7. The boundary layer thickness for
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the radial case is initially approximately 10% below that of the pla-
nar case, and as it grows more gradually over the cooler part of the
base (up to r=R � 0:3), the discrepancy widens to approximately
20%. Beyond this point the gap narrows again to less than 4% at
the hot end of the base (r ! R), so it is apparent that the radial
spreading does not lead to a continuous departure of the bound-
ary-layer thickness to progressively smaller values than measured
in the planar case. However, such a behaviour is observed when
considering the maximum radial/horizontal velocity in the forcing
boundary layer. Near the cold end of the base, the planar and radial
cases each exhibit similar and small maximum velocities. Moving
towards the hot end, the planar case experiences a consistently
more pronounced maximum velocity increase compared with the
radial case. Hence for a given Rayleigh number, the azimuthal
spreading in the cylindrical system serves to decrease the peak
boundary layer velocities (and subsequently reduce the velocity
shear and horizontal thermal transport in the boundary layer). To
produce a similar convective boundary layer velocity profile in
the radial case, a higher Rayleigh number is required compared
to the planar case: it would therefore be expected that a tempo-
rally unstable regime would exist for the radial horizontal convec-
tion system at a Rayleigh number beyond Ra ¼ 1010.

To confirm that the onset of unsteady flow at equilibrium was
not significantly affected by numerical resolution, additional simu-
lations were computed with element orders ranging between 4
and 8, with no variation in the steady and time-periodic behav-
iours seen at the Rayleigh numbers bracketing the transition. Fur-
ther simulations were conducted at Re ¼ 0 up to Ra ¼ 3:2� 1011,
which found the same sequence of transitions as our correspond-
ing planar horizontal convection simulations find; a transition
from steady to time-periodic flow, followed by a subsequent tran-
sition from time-periodic to irregular time-dependent flow at a
Rayleigh number approximately one order of magnitude higher
than the original unsteady transition Rayleigh number is found.
The difference is that the corresponding critical Rayleigh numbers
are higher in the radial forcing system than for planar horizontal
convection.

5.3. Velocity and thermal boundary layers

From Fig. 2, it can be clearly shown that at intermediate Ray-
leigh numbers (between the diffusion-and convection-dominated
regimes, Nussult number decreases with increasing Reynolds num-
ber, An analogous behaviour has been observed for Rayleigh–
Bénard convection in a rotating system (see Ref. [4] and references
therein). In that system an enhancement of heat transfer is found
for modest rotation rates compared to non-rotating Rayleigh–
Bénard convection ascribed to Ekman pumping transporting fluid
from the top and bottom walls. However, this effect was sup-
pressed at higher rotation rates. In another example of the effect
of rotation in suppressing convective flow, Chandrasekhar [34],
Chandrasekhar and Elbert [35] considered convection above a
rotating plate heated from below. In those studies, a linear stability
analysis demonstrated that higher rotation rates served to inhibit
the onset of convective flow, and with this also came a reduction
in the heat transport. A point of contrast between that system
and horizontal convection flows is that horizontal convection is
present for any finite thermal forcing [20] whereas in systems with
a vertical heat flux, convective flow only develops beyond some
critical Rayleigh number. To discuss the reduction in Nusselt num-
ber with increasing Reynolds number in the present system, we
refer to Eq. (26). This ratio is key to the observed reduction in Nus-
selt number with increasing Reynolds number. The increase in
uh;rel=ur with increasing Reynolds number describes a shift in the
boundary layer velocity from the radial direction (maximising Nus-
selt number due to the effect of carrying the cooler fluid at small
radii over the hotter outer parts of the base), towards the
azimuthal direction, and as there is no temperature change in
the azimuthal direction, base heat transfer regresses to diffusion,
resulting in the reduction in Nusselt number. Hence progressively
higher Reynolds numbers require progressively higher Rayleigh
numbers to compensate for this effect, explaining the delayed
onset of the intermediate and convective regimes.

Velocity and temperature profiles extracted at a location
towards the hotter part of the base (we choose r=R ¼ 0:9) may be
interrogated to verify predictions from the scaling analysis pre-
sented in Section 3. Fig. 8 shows vertical profiles of ur ;uh;rel and T
at Rayleigh numbers of Ra ¼ 109 and Ra ¼ 106. In this figure,
dimensional velocities are normalised by a viscous velocity scale
(m=R) rather than the tank rotating velocity scale (RX) to provide
a more intuitive picture of the behaviour from the perspective of
laboratory experimentation (where typically R and m would be
fixed, while X and dT would be altered to control Re and Ra,
respectively).

Consider firstly the Ra ¼ 109 data shown in Fig. 8(a). This Ray-
leigh number is chosen as from Fig. 2 it is observed that for
Re K 1000, the flow is well into the convection-dominated
regime, and there is a limited variation in Nu with Re. In this case,
the radial velocity displays minimal sensitivity to changing Rey-
nolds number: the radial flow follows the thermal horizontal con-
vection forcing. Further evidence of the dominant role of thermal
forcing is revealed in the uh;rel data, which within the boundary
layer is consistently much smaller than the corresponding radial
velocities. Further, recall that Eq. (25) states that uh;rel is propor-
tional to Reynolds number: this is reflected here by the observed
increase in uh;rel within the boundary layer as Reynolds number is
increased. The relative temperature plot demonstrates that near
the wall a negative temperature gradient is produced; this arises
from the transport of cooler fluid from smaller r over the hotter
wall regions at larger r. Across the three figures a consistently thin
boundary layer is evident, confined approximately to the bottom
5% of the enclosure. Further from the base, occupying approxi-
mately the upper 60% of the enclosure, velocity and temperature
profiles become almost independent of z. This corresponds to the
expected diffusive discharge of fluid from the vertical plume at
the hot end of the enclosure [3]. With reference to the regime
map in Fig. 5, these four Reynolds numbers all correspond to cases
with Q < 1, and therefore they all lie within the convection-dom-
inated regime III.

Secondly, the profiles at the lower Rayleigh number Ra ¼ 106

shown in Fig. 8(b) are considered. At this Rayleigh number, Fig. 2
demonstrates that there is a strong Reynolds number dependence
on Nusselt number: as Reynolds number varies from Re ¼ 10 to
1000 the flow transitions from convection-dominated through to
diffusion-dominated behaviour. The first observation to draw is
that, as expected, the boundary layers are substantially thicker
than at Ra ¼ 109. Eq. (22) predicts that as Ra increases by a factor
of 103 from Ra ¼ 106 to 109, the boundary-layer thickness should
reduce by a factor of approximately 4:0. In fact, the measured
radial velocity profiles from Fig. 8(a) and (b) exhibit thicknesses
that differ by a factor of approximately 3:4. At Ra ¼ 106 the radial
velocity now exhibits a strong dependence on Reynolds number,
with peak boundary layer velocity decreasing by more than 10%

from Re ¼ 10 to Re ¼ 100, and then to negligibly small values for
Re ¼ 320 and beyond. From Re ¼ 10 to 100;uh;rel initially exhibits
the expected increase with Reynolds number, but at higher Rey-
nolds numbers the rapid vanishing of ur carries uh;rel down to very
small values. While it cannot be seen directly from Fig. 8(b), by
Re ¼ 1000 at Ra ¼ 106;uh;rel exceeds ur by greater than 10%: the
boundary layer is dominated by azimuthal rather than radial trans-
port. The relative temperature profile further exemplifies this
observation, with Re ¼ 10 and 100 exhibiting a local temperature
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minimum in the boundary layer consistent with a convective
boundary layer, whereas the profiles at Re ¼ 320 and beyond are
coincident and display a monotonic decrease throughout the
domain. This is consistent with a conductive process, and demon-
strates that the increase in Reynolds number (beyond some value)
serves to shut down radial horizontal convective flow in the rotat-
ing system. At this Rayleigh number, the Re ¼ 10 and 100 cases
correspond to Q < 1, and lie within the convection-dominated
regime III as per Fig. 5. Conversely, Re ¼ 320 and 1000 have
Q > 1 and hence lie within regime II. The significant change in
the velocity profiles seen here demonstrates the emerging impor-
tance of rotation as the threshold Q � 1 is exceeded.

The validity of Eq. (26) is further evidenced by considering the
ratio of azimuthal to radial wall shear stress on the forcing bound-
ary. Under the scaling analysis deployed earlier, this ratio of wall
shear stresses will have the same scaling as the ratio of uh;rel to ur

in the boundary layer (as the vertical length differentials cancel).
It would then be expected from Eq. (26) that the wall shear stress
ratio would vary linearly with Re and would vary with Ra�1=5. Fig. 9
plots the absolute values of the ratio of wall shear stresses on a log-
arithmic scale as a function of r=R. The sharp downward spikes in
each data set occurs as the azimuthal shear stress changes sign as
the relative azimuthal velocity in the boundary layer switches from
advancing to lagging the tank rotation through the Coriolis effect
(Ref. Fig. 6). The area of interest is near the hot outer wall (towards
r=R ¼ 1). In this region, an excellent agreement with the Reynolds-
number-scaling predicted by Eq. (26) is observed. In Fig. 9(a), an
almost perfect decade increase in the ratio with a decade increase
in Reynolds number, following the expected Re1 scaling. In
Fig. 9(b), a decade increase in Rayleigh number produces a
decrease in the logarithm of the wall shear stress ratio of between
0:3 and 0:5, which is a little higher than the expected interval of
0:2.

To gain further insight into how the boundary layer thickness
is affected by Rayleigh number, the velocity and thermal
boundary layer thicknesses measured at r=R ¼ 0:5 are examined.
Thicknesses were calculated from the radial velocity and temper-
ature profiles, and the results are plotted against Rayleigh num-
ber in Fig. 10. The velocity boundary layer thickness is taken as
the distance from the base to the point of maximum velocity in
the boundary layer, and the thermal boundary layer thickness is
taken to be the distance between the base and the point in the
profile where the temperature first departs 5% from the temper-
ature at the top wall. It can be noted that at low Rayleigh num-
ber, the velocity boundary layer thicknesses dU=R are Reynolds
number dependent. As Ra is further increased beyond � 109

(the convective dominated regime), the velocity boundary layer
thickness curves becomes independent of Reynolds number.
However, the thermal boundary layer thicknesses dT=R are found
to be Reynolds number independent in the diffusion regime
(Ra K 105), but remain more strongly independent of Reynolds
number in much of the convective regime. Considering an
increasing Rayleigh number, at zero Reynolds number both
dU=R and dT=R curves collapse to single trends with gradients
of approximately �1=5, which agrees well with the prediction
of Eq. (22).
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5.4. Flow structure in the diffusion and convection regimes

We now turn our attention to the flow fields within the enclo-
sure. Figs. 11 and 12 plot the temperature and relative azimuthal
velocity for Re ¼ 3:2 and 1000, respectively, at different Rayleigh
numbers. Despite the substantially different Reynolds numbers,
the Rayleigh number range is sufficient to span regime I through
to regime III in both cases. Across both figures, regime I presents
temperature fields exhibiting a smooth and gradual variation
throughout the enclosure. At the base, the isotherms are nearly
vertical, and there is no evidence of any convective boundary layer
formation. The regime II cases each exhibit a thin region above the
base where the isotherms slant away from the axis, whereas fur-
ther from the base the isotherms slant back towards the axis. This
behaviour is consistent with the development of a weak horizontal
convection boundary layer, but rotation effects have substantially
altered the overall topology of the temperature field. Regime III
presents a thin boundary layer on the base (where temperature
changes rapidly in the vertical direction), and a large region of
nearly constant-temperature fluid (Ref. Fig. 8(b)) extending from
the edge of the boundary layer to the free surface. This isothermal
region is absent in regime II.

The effect of higher Reynolds number in delaying the onset of
regimes II and III is apparent. It is interesting to compare these con-
tour plots to both the corresponding Nusselt number data in Figs. 2
and 3, and the regime map in Fig. 5.

In Ref. [14], horizontal convection was computed within a rect-
angular enclosure at high rates of rotation. Simulations in that
study where out-of-plane flow variations were suppressed (akin
to the axisymmetric solutions reported in the present paper)
showed that the flows at high rotation rates lacked a boundary
layer at the thermal forcing boundary (the top boundary in that
study), and exhibited weaker overturning circulation. That finding
is consistent with the computed flow fields presented here, where
higher rotation rates (higher Re) suppresses the convective regime
for a given Rayleigh number, and rotational effects are seen to
weaken and substantially modify the thermal convection in regime
II (where Q > 1) compared to regime III (where Q < 1).

Another notable feature from Figs. 11 and 12 pertains to the rel-
ative azimuthal velocity field. In the diffusion-dominated regime, a
region of high uh;rel is located approximately half the distance to the
side wall, gradually diminishing to zero at the axis, base and side-
wall. In regimes I and II, this positive-uh;rel region is accompanied
by a smaller negative-uh;rel region spread across the entire base.
As the convection-dominated regime III is entered, the uh;rel field
exhibits a marked change in character. The zone of higher uh;rel

expands downward, filling much of the enclosure depth with fluid
swirling faster than the tank rotation speed. Coupled with this,
demonstrated most strongly at Ra ¼ 109 in Fig. 12, there is a strong
depth-independence outside of the forcing boundary layer. There is
an ongoing interest in the study of barotropic instability in depth-
independent rotating shear layers [10,11]; the ability of this sys-
tem to produce nearly depth-independent flows at higher Reynolds
numbers and Rayleigh numbers suggest an unexpected possible
new application of this system. Additionally, in regime III the zone
of negative-uh;rel ceases to span the entire base and instead
becomes confined to the outer bottom corner of the enclosure.



Fig. 11. Contour plots of temperature (left) and azimuthal velocity relative to the
tank rotation (uh;rel , right) at Re ¼ 3:2 and Rayleigh numbers, Q-values and regime
numbers (refer to Fig. 5) as indicated, plotted on a meridional cross-section through
the centre of the tank (so that the frames meet at the symmetry axis). Dark to light
temperature contours show temperatures ranging from 0 6 T 6 dT , relative to the
bottom wall temperature at r ¼ 0, at increments of 0:05dT. Dark to light contours of
uh;rel show zero to maximum values of the relative azimuthal velocity, respectively.
Negative values are shaded white with dashed contour lines. The minimum and
maximum levels of uh;rel for Ra ¼ 102; 105; 107 and 109, respectively, are �2� 10�5

to 3:2� 10�4; �1� 10�2 to 0:14; 0 to 0:65 and 0 to 1:1.

Fig. 12. As per Fig. 11, except here Re ¼ 1000. Here the minimum and maximum
levels of uh;rel for Ra ¼ 102; 105; 107 and 109, respectively, are �1� 10�7 to
1:7� 10�6; �1� 10�4 to 1:7� 10�3; �1� 10�2 to 1:5� 10�2 and �5� 10�2 to
0:475.
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6. Conclusion

We have investigated the effect of rotation on the heat trans-
port in horizontal convection in a cylindrical system, with horizon-
tal convection forcing imposed radially. Numerical simulations and
a scaling analysis have considered the axisymmetric flow in a free
surface cylindrical enclosure with constant rotation, with the
radial temperature profile at the base driving convection in the
z� r plane. A scaling analysis of the convective forcing boundary
layer yields predictions for variation in boundary layer thickness,
Nusselt number, and velocity components with Reynolds number,
Rayleigh number and Prandtl number. Simulations at Reynolds
number up to 3200 and Rayleigh numbers up to 3:2� 1011 demon-
strate that heat transfer in rotating horizontal convection is signif-
icantly affected by rotation. Following Hignett et al. and Barkan
et al., it is helpful to characterise the flow using Q, a parameter rep-
resenting the ratio of the scales of the thermal boundary layer to
the Ekman layer.

Three regimes are identified when characterising the flow as a
function of Reynolds number (characterising rotation rate) and
Rayleigh number (characterising thermal forcing). At low Rayleigh
numbers, the flow is dominated by diffusion and the Nusselt
number is constant and independent of Reynolds number (regime
I). At higher Rayleigh numbers, convection effects become signif-
icant and the Nusselt number begins increasing with Rayleigh
number. Where Q < 1, rotation is not significant and the flow
adheres to the same scaling as found for planar horizontal con-
vection without rotation (regime III), despite the forcing acting
radially in a cylindrical enclosure, rather than linearly in a rectan-
gular enclosure. This scaling behaviour is supported by the scaling
analysis developed in Section 3. When rotation effects are
significant (regime II, Q > 1), moderate rotation rates produce
behaviour adhering to the scalings developed from Robinson
and Stommel and Park and Whitehead. At higher rotation rates,
the scaling proposed by Stern is found to describe the behaviour
very well. The applicability of these scalings is found to extend to
describing the critical Reynolds number for the onset of convec-
tive flow (the threshold between regimes I and II) as well as
describing the Nusselt number scaling within regime II. This con-
firms that at higher rotation rates, Stern’s argument holds:
namely that buoyancy flux should dominate throughout the ther-
mal boundary layer while dissipation is confined to the Ekman
layer, rather than there being a balance between advection and
vertical diffusion in the buoyancy equation.

A regime map for the axisymmetric flow as functions of Ray-
leigh number and Reynolds number is constructed, which shows
an expanding range of Rayleigh numbers over which rotation is
significant with increasing Reynolds number.

Independent of Reynolds number (up to Re ¼ 3200), unsteady
flow at thermal equilibrium is found to occur between
Ra ¼ 3:2� 109 (where the flow was consistently steady-state)
and Ra ¼ 1010 (where the flow was consistently time-periodic).
The radial nature of the thermal forcing in the present system
serves to delay the onset of unsteady flow by approximately an
order of magnitude in Rayleigh number when compared to planar
horizontal convection (where our high-resolution simulations find
unsteady flow at and beyond Ra ¼ Oð109Þ). For both planar and
radial horizontal convection forcing, the flow first transitions from
steady to time-periodic flow, then approximately an order of mag-
nitude higher in Rayleigh number, from periodic to irregular
unsteady flow.

Contour plots of temperature and relative azimuthal velocity at
multiple Rayleigh and Reynolds numbers reveal that regimes I, II
and III produce distinctively different flows.
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