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Optimal transient disturbances behind a circular cylinder in
a quasi-two-dimensional magnetohydrodynamic duct flow
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Victoria 3800, Australia

(Received 7 May 2011; accepted 31 January 2012; published online 29 February 2012)

The transient response of optimal linear perturbations of liquid metal flow under a
strong axial magnetic field in an electrically insulated rectangular duct is consid-
ered. The focus is on the subcritical regime, below the onset of von Kármán vortex
shedding, to determine the role of optimal disturbances in developing wake instabil-
ities. In this configuration, the flow is quasi-two-dimensional and can be solved over
a two-dimensional domain. Parameter ranges considered include Reynolds numbers
50 ≤ Re � 2100, modified Hartmann numbers 50 ≤ Ha� � 500, and blockage ratios
0.1 ≤ β ≤ 0.4. In some instances, the optimal disturbances are found to generate
energy growth of greater than four orders of magnitude. Variation in the wake recir-
culation length in the steady flow regime is determined as a function of Reynolds
number, Hartman number, and blockage ratio, and a universal expression is proposed.
For all β, the energy amplification of the disturbances is found to decrease signifi-
cantly with increasing Hartmann number and the peak growth shifts towards smaller
times. The optimal initial disturbances are consistently located in the vicinity of the
boundary layer separation from the cylinder, and the structure of these disturbances
is consistent for all Hartmann numbers and blockage ratios considered in this study.
The time evolution of the optimal perturbations is presented, and is shown to corre-
spond to sinuous oscillations of the shear layer downstream of the wake recirculation.
The critical Reynolds number for the onset of growth at different Hartmann numbers
and blockage ratios is determined. It is found that it increases rapidly with increas-
ing Hartmann number and blockage ratio. For all β, the peak energy amplification
grows exponentially with Re at low and high Hartmann numbers. Direct numerical
simulation in which the inflow is perturbed by a random white noise confirms the
predictions arising from the transient growth analysis: that is, the perturbation ex-
cites and feeds energy into the global mode. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3686809]

I. INTRODUCTION

Magnetohydrodynamic flows through ducts under a uniform transverse magnetic field are im-
portant due to practical applications such as magnetohydrodynamic generators, pumps, metallurgical
processing, and fusion reactors. In fusion reactors, liquid metal may be used as a coolant and as
a breeder material.1 It circulates within the blanket and is exposed to a strong magnetic field used
to confine the plasma. As a result, electric currents are induced within the conducting fluid. These
currents in turn are subject to a Lorentz force due to the magnetic field, which causes changes to
the velocity profile and turbulence characteristics, and it exerts a retarding force on the flow. For a
strong magnetic field the flow is laminar, as velocity fluctuations in the direction of the magnetic
field are strongly suppressed, and heat transfer in the ducts of the blanket, where a large amount of
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heat must be removed, is significantly decreased.2 However, vortices parallel to the magnetic field
are not completely damped.3 The unsteadiness of these flow structures could be utilized to enhance
heat transfer, which could be induced by using turbulence promoters such as a circular or rectangular
cylinder placed inside the duct of a blanket. This approach has been investigated experimentally4–7

and numerically.8–10 For the case with insulated wall duct, Refs. 10 and 11 demonstrated that the
heat transfer rate under a strong axial magnetic field was improved by more than twice that of the
laminar flow.

If the Hartmann number Ha, which characterizes the ratio of (electromagnetic/viscous forces)1/2

and the interaction parameter N = Ha2/Re, which characterizes (electromagnetic/inertial force) are
both very high (i.e., Ha � 1, N � 1), electromagnetic forces dominate over viscous forces, and the
flow in a rectangular duct can be split into a core flow, separated by two thin boundary layers.12

In the core, there is a balance between pressure gradient and Lorentz force. Viscous effects are
confined to the Hartmann layers where the viscosity and Lorentz force come into balance to satisfy
the no-slip boundary condition at the walls.12 The velocity in the core varies only slightly along the
magnetic field lines, while in the vicinity of the walls perpendicular to the magnetic field it exhibits
an exponential variation. The boundary layer on the walls perpendicular to the magnetic field is
known as the Hartmann layer with a thickness that scales as δH ∼ Ha−1, while the boundary layer
along the walls parallel to the magnetic field is known as the Shercliff layer (or side layer), with a
thickness that scales as δS ∼ Ha−1/2.

The effect of the magnetic field on the development of the vortices has been investigated
theoretically13–15 and experimentally.16–20 The flow characteristics were investigated for decaying
grid turbulence,21 and later for the electromagnetically forced regimes.22 The key mechanisms are
explained by Sommeria and Moreau,15 who showed that in the core region the velocity components
perpendicular to the field are damped by strong joule dissipation, while in the Hartmann layers the
turbulent fluctuations are weakly damped in that direction.

The present paper focuses on the role of linear transient growth in the subcritical regime,
below the onset of von Kármán vortex shedding, and it consequences for the effective transition
to unsteady flow. More specifically, the base flow is linearly stable, though perturbations may
exhibit significant transient response. The critical Reynolds numbers for the transition to unsteady
flow Rec in the presence of a magnetic field can be very large; an understanding of the non-
modal growth properties of the flow may enable unsteady flow to be invoked at lower Reynolds
numbers.

Globally stable flows may still experience significant transient growth of disturbances for some
time before they eventually decay to zero.23 For purely hydrodynamic parallel shear flows (Ha = 0),
substantial transient growth has been demonstrated for the plane channel,24 pipe,25 rectangular duct,26

and abrupt geometrical expansion flows.27–30 This growth can be attributed to the non-normality of
the eigenmodes associated with many shear flows.23, 31

For cylinder wake flows without a magnetic field, the adjoint and direct eigenmodes in the region
of primary instability have been investigated numerically31, 32 to understand the sensitivity of the flow
to external disturbances. More recently, the transient response of the subcritical and supercritical
flow has been investigated.33, 34 Reference 35 also studied the transient growth in supercritical and
subcritical flow of the circular cylinder wake in an open flow. The transient growth in the subcritical
flow of the circular cylinder wake in an open flow has been investigated experimentally36 using
two-dimensional particle image velocimetry. Interestingly, the measured values of transient growth
were significantly less than those reported in numerical studies.34, 35

The effect of an applied magnetic field on the transient growth for the case of steady Hartmann
flow, i.e., channel flow of an electrically conducting fluid in the presence of a uniform magnetic field,
has been analyzed by a number of authors.37–39 The optimal modes were found to have the form
of streamwise rolls confined to the Hartmann layers. In addition it was found that energy gain of
the optimal perturbations is proportional to (Re/Ha)2, and the critical Reynolds number was much
higher than for Poiseuille flow.

More recently, Refs. 40 and 41 analyzed the optimal linear growth of perturbations in a rect-
angular duct with different aspect ratios subjected to a uniform transverse magnetic field. The
disturbances of optimal growth are confined to the Shercliff layers. The optimal perturbations are



024105-3 Optimal transient disturbances Phys. Fluids 24, 024105 (2012)

significantly damped by the magnetic field irrespective of the duct aspect ratio. They concluded that
the Hartmann boundary layers perpendicular to the magnetic field do not contribute to the transient
growth.

It is unknown how the transient response of a cylinder wake is influenced by the presence of a
strong magnetic field for MHD duct flow, and whether this may be exploited to further enhance heat
transfer within the duct.

The aim of this paper is to analyze and quantify the transient growth of infinitesimal perturbations
in a quasi-two-dimensional magnetohydrodynamic flow past a confined circular cylinder under the
influence of a strong magnetic field in the subcritical regime prior to the onset of self-sustained
wake oscillations. In particular, the dependence of the transient growth on the Hartmann number
and blockage ratio will be investigated and quantified.

II. NUMERICAL METHODOLOGY

The system under investigation is a rectangular duct confining a circular cylinder placed at
the center of the duct parallel to the transverse direction and perpendicular to the flow direction.
The out-of-plane channel depth is a, and throughout this study, the duct cross-section is taken to
have a height to depth ratio h/a = 2. The duct walls and the cylinder are assumed to be electrically
insulated. A homogeneous magnetic field with a strength B is imposed along the cylinder axis. For a
high Hartmann number, the magnetic Reynolds number Rem , which represents the ratio between the
induced and the applied magnetic field is very small. Thus, the induced magnetic field is negligible
and the resultant magnetic field is effectively the applied field in the z-direction only. Under these
conditions the flow is quasi-two-dimensional and consists of a core region, where the velocity is
invariant along the direction of the magnetic field, together with thin Hartmann layers at the walls
perpendicular to the magnetic field. The quasi-two-dimensional model has been derived in Ref. 15,
by integrating the flow quantities along the magnetic field direction, as shown in Fig. 1.

In this case the non-dimensional magnetohydrodynamic equations of momentum and
continuity9, 15 reduce to

∂u
∂t

= N − ∇ p + 1

Re
∇2u − 2

d2

a2

Ha

Re
u, (1a)

∇ · u = 0. (1b)

Here the non-linear advection term N = −(u · ∇)u, and u and p are the velocity and pressure,
respectively, projected onto the x-y plane. Non-dimensionalization is achieved by scaling lengths by

FIG. 1. Schematic diagram of the flow configuration and the extent of the computational domain (not to scale). The magnetic
field B acts in the out-of-plane direction, parallel to the cylinder axis. The quasi-two-dimensional approximation models
an out-of-plane channel depth of a. Also, δS is the thickness of the Shercliff layer, and h and d are the duct width and
cylinder diameter, respectively. The blockage ratio β = d/h. The upstream and downstream lengths are xu = 8 and xd = 25,
respectively.
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the cylinder diameter d, pressure by ρU 2
0 , where ρ is the density and U0 is the peak inlet velocity,

and time by d/U0.
The dimensionless parameters—the Reynolds and Hartmann numbers—are, respectively,

defined as

Re = U0 d

ν

and

Ha = a B

√
σ

ρν
,

where ν, σ , and B are the kinematic viscosity, magnetic permeability of the liquid metal, and the
applied magnetic field, respectively. Note that the Hartmann length scale is based on the depth of
the channel rather than the cylinder diameter.

It also makes sense to define a modified Hartmann number

Ha� = d2

a2
Ha,

since this non-dimensional parameter defines the relative influence of the magnetic damping term
to the viscous diffusion term for the quasi-two-dimensional flow. This variable is important for the
current study because the effect of varying blockage ratio, β = d/h, is examined, i.e., the cylinder
diameter (d) is varied while keeping the duct height (h) and depth (a) constant.

The methods applied for examining linear asymptotic stability and transient growth of distur-
bances are based on time integration of the linearized Navier–Stokes equations.23, 27 These equations
are derived by substituting velocity and pressure fields decomposed into a two-dimensional base
flow and infinitesimal fluctuating components u′(x, y, t) and p′(x, y, t). The linearized expansion is
based on a steady two-dimensional base flow (U), and the perturbation evolution is described by

∂u′

∂t
= −DNu′ − ∇ p′ + 1

Re
∇2u′ − 2

d2

a2

Ha

Re
u′, (2a)

∇ · u′ = 0, (2b)

where the advection term DNu′ = (U · ∇)u′ + (u′ · ∇)U.
Let A (τ ) denote the linear evolution operator over a time τ defined by Eqs. (2a) and (2b),

u′(τ ) = A (τ )u′(0).

Typically, the transient growth is defined with respect to the energy norm of the perturbation field,
derived from the L2 inner product

2E(u′) = (u′, u′) ≡
∫

u′ · u′ dv,

where E is the kinetic energy per unit mass of the perturbation, integrated over the spatial domain
(dv). Since the governing equations are linear it is sufficient to consider the initial perturbation field
u′(0) to have unit norm. The transient energy growth over interval τ is28

E(τ )

E(0)
= (u′(τ ), u′(τ )).

In terms of the operator A (τ ) and its adjoint A ∗(τ ) in the L2 inner product,

E(τ )

E(0)
= (A (τ )u′(0),A (τ )u′(0))

= (u′(0),A ∗(τ )A (τ )u′(0)),

where A ∗(τ ) is obtained by integrating the adjoint linearized Navier–Stokes equations backwards
over interval τ . The adjoint quasi-two-dimensional Navier–Stokes equations differ only slightly
from the form derived in Ref. 42 due to the addition of the Hartmann friction term.
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The adjoint equations are expressed as

∂u∗

∂t
= −DN∗u∗ − ∇ p∗ + 1

Re
∇2u∗ − 2

d2

a2

Ha

Re
u∗, (3a)

∇ · u∗ = 0. (3b)

Let λj and v j denote eigenvalues and normalized eigenfunctions of the operator A ∗(τ )A (τ ),
then

A ∗(τ )A (τ )v j = λ j v j .

The maximum possible energy growth, denoted G(τ ), over a specified time τ , is then given by the
dominant eigenvalue of A ∗(τ )A (τ ), i.e.,

G(τ ) = max(λ j ).

The global maximum is denoted by

Gmax = max(G(τ )).

Aside from the additional Hartmann friction term in the forward and adjoint equations, the direct
transient growth technique applied here is identical to that described in Ref. 27, and the linearized
eigenmode solver employed here has been validated in Refs. 43 and 44. The equations are discretised
in space using a spectral element approach.45, 46 The chosen scheme is further described in Ref. 10.

The boundary conditions are imposed on Eqs. (1a) and (1b) as follows. A no-slip boundary
condition for velocity is imposed on all solid walls. At the channel inlet, a Hartmann velocity
profile for the axial velocity is applied.47 At the exit, a constant reference pressure is imposed
and a zero streamwise gradient of velocity is weakly imposed through the Galerkin treatment of
the diffusion term of the momentum equation. A high-order Neumann condition for the pressure
gradient is imposed on the Dirichlet velocity boundaries to preserve the third-order time accuracy
of the scheme.48 During transient growth analysis, zero-velocity Dirichlet boundary conditions are
imposed on the perturbation field on all boundaries during integration of the forward and adjoint
equations.

The computational domain is divided into a grid of elements. Elements are concentrated in
areas of the domain that experience high velocity gradients. The meshes comprise between 1052
and 1484 elements, depending on blockage ratio, and details of meshes can be found in Ref. 10.
The upstream and downstream lengths xu and xd chosen for this study are 8 and 25, respectively, as
determined by the domain size study below. The dependence of energy growth on upstream domain
length is determined through the calculation of energy growth at a fixed time span of τ = 6. Tables I
and II show the effect of truncating the domain upstream length while keeping the downstream
length and the inner portion of the mesh constant. For each blockage ratio, two Reynolds numbers
are considered to ensure that the mesh chosen is adequate to resolve the solution in the subcritical
range. For β = 0.1 and Ha� = 50, Re = 200 and 580 are considered, and for β = 0.4 and Ha� = 50,
Re = 400 and 1160 are considered. It can be noted that the effect of truncating the upstream length
from 32d to 8d results in less than a 3% difference in the growth rate prediction for the four cases in

TABLE I. The effect of variation of upstream domain length on growth energy at τ = 6 across blockage β = 0.1 for Ha� = 50
for different Reynolds numbers as indicated.

β = 0.1, Re = 200 β = 0.1, Re = 580
xu G(6) % Error G(6) % Error

4 8.9665 × 10−2 5.912 1.4353 × 103 21.6
8 8.5021 × 10−2 0.427 1.2150 × 103 2.93
16 8.4665 × 10−2 0.0065 1.1858 × 103 0.469
32 8.4660 × 10−2 0.0000 1.1803 × 103 0.000
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TABLE II. The effect of variation of upstream domain length on growth energy at τ = 6 across blockage β = 0.4 for
Ha� = 50 and different Reynolds numbers as indicated.

β = 0.4, Re = 400 β = 0.4, Re = 1160
xu G(6) % Error G(6) % Error

4 6.4643 × 10−4 0.145 3.3138 × 104 0.606
8 6.4737 × 10−4 0.0004 3.3140 × 104 0.599
16 6.4737 × 10−4 0.0000 3.3313 × 104 0.0825
32 6.4737 × 10−4 0.0000 3.3340 × 104 0.0000

Tables I and II. As might be expected higher Reynolds number increases the error, while increasing
the Hartmann number decreases the error.

A grid resolution study was undertaken to determine a suitability accurate element polynomial
degree. The polynomial degree used for most simulations was Np = 7. Convergence tests were
performed on two cases, chosen at the upper end of the parameter range of this study. The first
case featured β = 0.1, Ha� = 120, and Re = 1000, and the second featured β = 0.4, Ha� = 480,
and Re = 2000. The results of these tests are shown in Table III, which shows convergence of the
normalized length of the recirculation zone behind the cylinder (measured downstream from the
aft surface of the cylinder), and the growth rate of the leading eigenmode from a linear stability
analysis.44, 49

The present transient growth analysis implementation is validated firstly for a non-
magnetohydrodynamic flow. The flow past a circular cylinder in an open flow at sub and supercritical
Reynolds numbers Re = 45 and 50 is considered for this test case, which was investigated recently
by Ref. 35. A comparison between the results of the present solver and the previous study is shown
in Fig. 2.

The respective structure and the evolution of the optimal disturbance field at Re = 50 are shown
in Figs. 2(b)–2(e). In Fig. 2(b), the vorticity of the base flow around the circular cylinder at this
Reynolds number is shown. Figure 2(c) shows the initial perturbation associated with a time interval
τ = 32. It is observed that the optimal disturbance structures are concentrated around the region of
the boundary layer separation in the near wake. In Fig. 2(d), the evolution from this optimal initial
disturbance to time t = 32 is shown. The optimal disturbance is shown to evolve to a flow structure
comprising a series of counter-rotating spanwise rollers. The disturbance structures reproduced
from Ref. 35 are virtually indistinguishable from those computed using our implementation. This,
in addition to the excellent agreement found for predicted energy growths (G) in Fig. 2(a), verifies
that our implementation is performing correctly.

Finally, a check of the transient growth analysis implementation incorporating the Hartmann
friction term is performed. For β = 0.1, Ha� = 50, and Re = 580, the predicted optimal initial
disturbances were evolved using the linearized quasi-two-dimensional Navier–Stokes solver, and
energy time histories normalized by the initial energy were recorded. Correct performance of the
transient growth solver is confirmed by the normalized energy time histories agreeing with the
corresponding predicted energy growth factors (G). Of course, since the transient growth solver

TABLE III. Convergence of the normalized circulation length LR/d and maximum growth rate σ across blockage ratio
β = 0.1, Ha� = 120 and β = 0.4, Ha� = 480 with increasing polynomial order.

β = 0.1, Re = 1000 β = 0.4, Re = 2000
Np LR/d σ LR/d σ

5 1.511 −0.04991 0.721 −0.1053
6 1.552 −0.07281 0.724 −0.1287
7 1.549 −0.09185 0.725 −0.1572
8 1.526 −0.09122 0.725 −0.1579
9 1.532 −0.09136 0.725 −0.1584
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FIG. 2. (a) Predicted energy growth (G) plotted against τ , for the flow past a circular cylinder in an open flow at Re = 45 and
Re = 50 without a magnetic field. Results using the present solver (©) and data from Ref. 35 (×) are shown. The solid and
dashed curves show a spline fit to the present data for guidance. (b)–(e) Contours of vorticity plotted at Re = 50 for the case
without magnetic field. (b) The two-dimensional base flow. (c) The predicted optimal initial condition. (d) The evolution of
the optimal disturbance at time t = τ = 32. (e) The corresponding result at τ = 32 and Re = 50 reprinted from Abdessemed
et al.35 [Physics of Fluids 21, 044103 (2009)]. Copyright 2009, American Institute of Physics. Contour levels over |ω| ≤ 1
and |ω| ≤ 0.01 are plotted in (a) and (b), respectively.

depends on the linearized two-dimensional Navier–Stokes solver, this test only validates the former
implementation relative to the latter.

Having validated the transient growth solver, this study now proceeds to investigate the transient
response of liquid metal flows in an electrically insulated rectangular duct past a circular cylinder
under a strong axial magnetic field in the subcritical regime below the onset of von Kármán vortex
shedding. Consideration is given to parameters over the ranges 50 ≤ Re ≤ 2050, 50 ≤ Ha� � 500,
and 0.1 ≤ β ≤ 0.4.

III. RESULTS: WAKE STRUCTURE AND SCALING

The base flow is characterized by a pair of symmetric counter-rotating vortices on either side
of the wake centerline, immediately behind the cylinder. Figure 3 shows isocontours of the stream
function (streamlines) at Re = 580 and different blockage ratios and Hartmann numbers. It can be
seen that an increase in the Hartmann number acts on the wake by decreasing the length of the
recirculation bubble. This is due to the dominance of the Lorentz forces which results in a damping
in a direction opposite the flow, resulting in the decrease of the wake length. Similarly, increasing
the blockage ratio was also found to decrease the wake length. For β = 0.1, the recirculation bubble

Ha = 50, β = 0.1 Ha = 200, β = 0.4

Ha = 120, β = 0.1 Ha = 480, β = 0.4

FIG. 3. Streamlines of the steady base flows at Re = 580, blockage ratios β = 0.1 (left) and 0.4 (right), and Hartmann
numbers as indicated. Flow is left to right in each frame.
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clearly still exists at Ha� = 120. At β = 0.4, additional computations (not shown) determined that
it was suppressed completely beyond Ha� � 300.

The length of the wake is of particular interest when considering the behavior of transient
disturbances in the flow, as recent studies have shown that separated shear layers (such as those
bordering the wake behind the cylinder in the present study) are particularly sensitive to transient
disturbances.27, 29, 42 Here, then, increasing the Reynolds number broadly acts to increase the wake
length, while increasing the modified Hartmann number acts to decrease the wake length. Increasing
the blockage ratio is found to only weakly act to increase the wake length. To quantify these
observations, the wake length (LR/d, taken as the distance from the aft surface of the cylinder to
the stagnation point defining the end of the recirculation bubble) was recorded at a large number
of points in the Re–Ha�–β parameter space. For a single β, LR/d increases almost linearly with
increasing Re for a constant Ha�, and decreases with Ha� for a constant Re. Reference 9 proposed
for β = 0.25 that LR/d data collapsed onto a universal curve when plotted against Re/Ha0.8, but in
this study a more general universal relationship is sought that also incorporates the blockage ratio.
A non-linear optimization was conducted to find exponents A, B, and C accurate to three significant
figures that serve to maximize the square of the correlation coefficient (r2) of a linear least-squares
fit to the LR/d data when plotted against ReAHa� BβC . The optimal exponents were determined to be
A = 0.844, B = −0.711, and C = 0.166. The universal relationship between recirculation length,
Reynolds number, Hartmann number, and blockage ratio over ranges of modified Hartmann number
50 ≤ Ha� � 500, Reynolds number 50 ≤ Re ≤ 2050, and blockage ratios 0.1 ≤ β ≤ 0.4 is thus
approximated by

L R/d = 0.282
(
Re0.844Ha�−0.711

β0.166
) − 0.709, (4)

and the pleasing collapse of the data obtained as a result of this analysis is shown in Fig. 4.
Equation (4) can be used to estimate at which values of the parameters the separation bubble

will first appear (i.e., by solving for LR/d = 0). This gives

Re = 2.983 Ha�0.842
β−0.197.

For the bookend blockage ratios considered in this study (β = 0.1 and 0.4), the separation bubble
threshold is defined by

Re = 4.692 Ha�0.842 (5)

and

Re = 3.572 Ha�0.842
, (6)

Re0.844Ha* -0.711β0.166

L
R
/d

2 4 6 8 10
0

0.5

1

1.5

2

FIG. 4. Collapse of recirculation zone lengths over ranges of modified Hartmann numbers 50 ≤ Ha� � 500, Reynolds
numbers 50 ≤ Re ≤ 2050, and blockage ratios 0.1 ≤ β ≤ 0.4 when plotted against (Re0.844Ha�−0.711β0.166).
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respectively. To illustrate the application of these relationships, Fig. 3 plots flow streamlines at
several combinations of Ha� and β, and a constant Reynolds number Re = 580. For β = 0.1, Eq. (5)
estimates critical Reynolds numbers of Re = 127 at Ha� = 50 and Re = 265 for Ha� = 120. The
plotted Reynolds number exceeds both of these critical Reynolds numbers, and therefore for both
of these cases a wake recirculation bubble would be expected. The plots in the first two frames
of Fig. 3 confirm this. For β = 0.4, Eq. (6) estimates critical Reynolds numbers of Re = 310
(less than Re = 580) at Ha� = 200 and Re = 648 (greater than Re = 580) at Ha� = 480. Hence, a
wake recirculation bubble is expected to be observed in the former case but not the latter, which
is consistent with observation of the results in Fig. 3. For the first three cases shown in Fig. 3 that
produce wake recirculation bubbles, the wake lengths estimated by Eq. (4) are LR/d = 1.85, 0.665,
and 0.494, respectively, which compare well with the wakes seen in the figure.

IV. RESULTS: TRANSIENT ENERGY GROWTH

Firstly, the results as a function of τ and Ha� for a fixed value of Re at different blockage ratios
β are presented, and subsequently the dependence on Re is considered.

A. Hartmann number dependence on optimal growth

Figure 5 shows the transient energy growth G of optimal disturbances as a function of time
interval τ for the steady base flow at four different blockage ratios over 0.1 ≤ β ≤ 0.4 at different
Hartmann numbers and Re = 400. The initial observation on these data is, though the chosen Re for
the analysis is well below the critical Reynolds number for unsteady flow at the lowest Hartmann
number Ha� = 50, there exist perturbations which grow in energy by sometimes more than a thousand
times. In addition, the significant damping effect of Hartmann number is also revealed. For example,
for β = 0.1 the peak energy growth is 60.93 and 2.72 at Ha� = 50 and Ha� = 120, respectively. For
β = 0.4, there is growth of energy by a factor of 1.86 × 103 and 7.22 × 103, respectively. For all
β, it is found that increasing Ha� leads to a significant reduction of the energy amplification of the
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FIG. 5. Plots of log10G against τ , at blockage ratio and Hartmann numbers as shown for Re = 400. The dashed-line curve
shows the locus of maximum growth as a function of τ . (a) β = 0.1; (b) β = 0.2; (c) β = 0.3; and (d) β = 0.4.
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disturbances and to a shift of the peak growth towards smaller times. This is not surprising given
that the Hartmann term acts as an extra damping in addition to viscous damping. However, for a
fixed modified Hartmann number, the global maxima of energy growth also varies significantly with
blockage ratio, being larger at higher β, and the maximum amplification occurs for larger times.
This is probably a result of the increased acceleration of the flow in the neighborhood of the cylinder
for higher blockage ratios, making the Reynolds number effectively higher for higher β, although
increasing β also shortens the separation bubble length as well.

B. Structure and evolution of optimal disturbance fields

Figure 6 plots the vorticity field of the optimal initial perturbations for the four blockages
considered in this study (as presented in Fig. 5) at modified Hartmann numbers Ha� = 50 and 120.
In each, the optimal disturbance field is localized in the region of the boundary layer separation
around the cylinder near the wake as also observed in the analysis of Refs. 32, 50, and 51 for the
case without a magnetic field (Ha = 0). The structure of the disturbance near the separation bubble
is consistent across these blockage ratios; however, at the higher blockage ratios the optimal field
does not drop away to zero towards the side boundaries. This contributes to subsequent downstream
amplification, as will be demonstrated in later plots. The perturbation initially convects along the
separating region being amplified to the peak growth state downstream of the recirculation bubble.
In Fig. 7, the resulting time interval for maximum growth, τmax, is plotted as a function of the
circulation length at Ha� = 50. It is observed that τmax increases significantly as circulation length
increases. This is commensurate with the amplifying nature of the separated shear layers in the
wake, as the disturbance travels further and grows larger as it convects down the longer wake. This
phenomenon is consistent with transient growth in several systems, including a plane channel,24

rectangular duct,25 and abrupt geometrical expansion flows.27–30

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 6. Plots of vorticity of the optimal initial perturbation at τmax and blockage ratios as labeled for Re = 400. Modified
Hartmann numbers Ha� = 50 (left) and 120 (right) are shown. The streamlines of the stable base flow are overlaid in each
case. (a) and (b) β = 0.1; (c) and (d) β = 0.2; (e) and (f) β = 0.3; and (g) and (h) β = 0.4.
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FIG. 7. Maximum τ of the energy maxima at Ha� = 50 and Re = 400 as a function of circulation length at different blockage
ratios.

FIG. 8. Contours of vorticity for β = 0.1 and Re = 400. (a) and (c) show the optimal disturbance initial condition at Ha� = 50
and 120, respectively. (b) and (d) show the development of these linear disturbances to t = τmax = 5.54 and 1.72, respectively.
Streamlines of the stable base flow are overlaid in each case. Vorticity contour levels of |ω| ≤ 0.05 are plotted in frames (a)
and (c), and levels of |ω| ≤ 0.5 are plotted in frames (b) and (d).

FIG. 9. Contours of vorticity for β = 0.4 and Re = 400. (a) and (c) show the optimal disturbance initial condition at Ha� = 50
and 120, respectively. (b) and (d) show the development of these linear disturbances to t = τmax. Contour levels are as per
Fig. 8.

Figures 8(a) and 8(c) show the vorticity of the initial perturbation for β = 0.1 at Re = 400, and
Ha� = 50 and 120, for which τmax = 5.54 and 1.72, respectively. It can be seen that independent
of Hartmann number, the optimal perturbations remain concentrated around the limiting streamline
identifying the recirculation bubble.

In Figs. 8(b) and 8(d), the evolution from this optimal initial disturbance is plotted, i.e., the
disturbance that linearly evolves from these disturbances at t = 5.54 and t = 1.72. At the peak
growth time, the disturbance flow structures present as a series of counter-rotating spanwise rollers.
However, for β = 0.4, at Ha� = 50 (see Fig. 9(b)), interaction with the channel wall boundary layers
(the Shercliff layers) occurs downstream of the cylinder. Vorticity is drawn into the channel and
interacts with the vorticity detached from the rear of the cylinder. The level of wall boundary layer
disturbance was observed to increase significantly as the blockage ratio increased from β = 0.1 to
0.4. In fact, for β � 0.2 there were no strong perturbation structures observed along the walls.
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FIG. 10. Time sequence of linear perturbation vorticity contours developed from the optimal disturbance initial condition
for β = 0.3, Re = 400, and Ha� = 50 at t = τmax. Flow from left to right. From top to bottom, frames show times t = 0, 4, 8,
12, 16, and 20. White and black representing positive and negative vorticity, respectively. Separation streamlines of the base
flow are overlaid in each case.

Consideration is now given to the time evolution of a predicted optimal disturbance from its
initial condition, through to, and beyond, τmax. Figure 10 shows a sequence of perturbation vorticity
contours that evolve from the optimal initial state at β = 0.3, Re = 400, Ha� = 50, and τ = 6.90.
At early times, the disturbance that passes through this region interacts with the boundary layer
(the Shercliff layers) detached from the walls. Then, the wave packet is amplified while traveling
downstream. The disturbances consist of a roller packet structure and the maximum rate of growth
occurs at the beginning of the sequence when the perturbation passes through the separation bubble.
This spatial pattern indicates that the energetic amplification of the perturbation is, at least initially,
analogous with convective instability: the amplitude of maximum energy growth moves in a frame
convecting with the disturbance, and the energy at the initial disturbance location and downstream
decays as the disturbance convects away.

To illustrate this, Fig. 11 shows the profiles of the vertical velocity component that evolve from
the optimal initial state for the case shown in Fig. 10. The vertical velocity component is extracted
along the line y = 0. The profiles are normalized to have absolute maximum value of unity. Again
the characteristic dynamics of convective instability are suggested. The initial disturbance decays as
the disturbance convects away. The extremely sharp fluctuation in the optimal perturbation can be
observed in the boundary layer separation near the wake. The average streamwise wavelength of the
fluctuations of the vortical structures leaving the circulation bubble at the optimal time estimated by
zero-crossing analysis is λx/d = 2.30 and 2.59, at Ha� = 50 and 120, respectively. The characteristics
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FIG. 11. Time sequence of the vertical component of the perturbation velocity (v′) profile along the channel centerline
obtained at β = 0.3, Re = 400, and Ha� = 50. The sequence evolves from the optimal disturbance achieving peak energy
growth, which had an evolution time τmax = 6.90. From top to bottom, frames show times t = 0, 4, 8, 12, 16, and 20. The
shaded region denotes the location of the cylinder.

of the optimal perturbation fields at the point of maximum growth for the case of Ha� = 50 and 120
at different blockage ratios are given in Table IV.

Figure 12 presents a sequence of the base-10 logarithm of energy contours that evolved from
the initial optimal disturbance obtained at β = 0.3, Re = 1075, Ha� = 150, and τ = 7.51. The
flow structures that give rise to these energy contours are a series of counter-rotating spanwise
rollers. Initially, the energies of the optimal disturbance are concentrated around the cylinder. Then,
the disturbance energy convects downstream along the separated shear layer and is amplified until
t = τmax. For t > τmax, there is no significant further downstream convection of the disturbance,

TABLE IV. Characteristics of the optimal perturbations at the time of maximum growth τmax for different blockage ratios at
Hartmann numbers as indicated and a Reynolds number Re = 400. Along with τmax the centroid location xc of the evolved
perturbation energy, the local axial wave length λx, and the frequency f of the perturbation.

Ha� = 50 Ha� = 120
β xc τmax λx f xc τmax λx f

0.1 2.57 5.54 2.54 0.3 1.60 1.72 1.81 0.25
0.2 3.10 6.10 2.37 0.32 1.18 1.83 2.37 0.27
0.3 4.00 6.90 2.30 0.36 1.37 2.01 2.59 0.28
0.4 4.67 8.26 2.21 0.4 1.75 2.43 2.89 0.35
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FIG. 12. (Color online) Contours of the base-10 logarithm of energy developed from the global optimum disturbance initial
condition for β = 0.3, Re = 1075, and Ha� = 150. From top to bottom, frames show times t = 0, 4, 8, 16, and 32.

which instead remains largely in place several diameters downstream of the cylinder, where it
slowly decays away. The centroid location of the energy of the global linear instability mode (a real
eigenmode computed from a linear stability analysis corresponding to a growth rate σ = −0.0402)
lies at xc ≈ 3.5. For the optimal disturbance at t = τmax and t > τmax, the centroid location of
evolved perturbation energy are xc = 4.22 and xc ≈ 3.5, respectively. These properties imply that
the action of the optimal disturbance is to perturb the leading global instability mode. This behavior
is consistent with the observation for a circular cylinder in a non-magnetohydrodynamic flow.35

C. Reynolds number dependence

The Reynolds number dependence of the maximum growth and the associated disturbances are
now considered. Figure 13 shows the predicted transient energy growth G of optimal perturbations
as a function of evolution time τ for the steady base flows. For all β, while the chosen Reynolds
numbers for the analysis are well below Rec, there exist perturbations that grow in energy by factors
of 3.81 × 102, 6.99 × 102, 2.0 × 103, and 1.89 × 104 at β = 0.1, 0.2, 0.3, and 0.4, respectively.
For all Re at Ha� = 120, it is found that increasing β leads to a significant increase of the energy
amplification and to a shift of the global maxima towards larger evolution times. For β ≤ 0.3, there
is a substantial change in the τmax of the global maxima. However, this is less pronounced for
β � 0.2, where τmax occurs consistently at smaller τ .

The critical Reynolds number for positive energy growth of optimal disturbances, Rec1, cor-
responds to the Reynolds number below which G(τ ) ≤ 1 for all τ . By inspection of this data,
this corresponds to the Reynolds number at which the gradient of G–τ data at τ = 0 is zero, as for
smaller Re, G decreases monotonically with τ . For each β, gradients were obtained for each Reynolds
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FIG. 13. Plots of the transient energy growth, G, against τ , at different blockage ratio for Reynolds numbers from
300 to 800. (a) β = 0.1, Ha* = 120, (b) β = 0.2; Ha* = 120; (c) β = 0.3, Ha* = 120; and (d) β = 0.4,
Ha* = 120.

number using polynomial curve fitting. The resulting Rec1 at Ha� = 50 and 120 for different block-
age ratios are presented in Table V. These results demonstrate that it is possible to find disturbances
which invoke positive energy growth around a circular cylinder. For all β (see Fig. 13), it can be
seen that for Re ≥ Rec1 the optimal curve has a positive slope at τ = 0 and there is a range of τ for
which the energy of an optimal disturbance increases rather than decreases from its initial value.

Figures 14(a) and 14(b) and 15(a) and 15(b) show the variations of log10Gmax and τmax as
functions of Re for different β at Ha� = 50 and 120, respectively. For all β, it is found that Gmax

grows exponentially or faster with Re at Ha� = 50 and 120. For low Hartmann numbers the growth
appears to be quadratic with Re, at least initially beyond the onset of positive amplification (though
it is noted that only 4 data points are used to determine each trend). At higher Reynolds numbers
and at higher Hartmann numbers (e.g., Fig. 15) the variation appears to be linear. This is consistent
with previous findings for non-magnetic bluff body flows.27 At the higher Hartmann number the
growth is much closer to linear from the point of positive amplification. In addition, for a given β,
there is a significant change in the asymptotic slope of the curves as Hartmann number increases
from Ha� = 50 to 120, decreasing by almost 40%. Furthermore, Gmax at Ha� = 50 increases by a
factor of approximately 8.13, 9.12, 14.7, and 33.1, and 3.72, 4.17, 5.01, and 7.76 for Ha� = 120 for
each Re increment of 100, for β = 0.1, 0.2, 0.3, and 0.4, respectively.

TABLE V. Critical Reynolds numbers for positive energy growth of optimal disturbances Rec1 for Ha� = 50 and 120 as
indicated for different blockage ratios.

β Rec1 (Ha� = 50) Rec1 (Ha� = 120)

0.1 248.53 283.43
0.2 164.49 275.78
0.3 157.46 263.37
0.4 140.69 241.55



024105-16 Hussam, Thompson, and Sheard Phys. Fluids 24, 024105 (2012)

Re

lo
g 10

G
m

ax

100 200 30

(a) (b)

0 400
0

1

2

3

4

5

 β = 0.4

0.10.2
0.3

Re

τ m
ax

100 200 300 400
0

2

4

6

8

10

FIG. 14. Maximum energy growth Gmax (a) and time of maximum of the energy maximum (b) as a function of Reynolds num-
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of Re displayed are below the critical Reynolds numbers for global instability. The asymptotic slopes of ∂ log10 Gmax)/∂Re
at β = 0.1, 0.2, 0.3, and 0.4 are 0.0091, 0.0096, 0.0117, and 0.0152, respectively.

For larger Reynolds numbers, a linear variation between τmax and Re is observed, corresponding
to the higher-Reynolds-number linear regime observed for log Gmax. The slopes of these trends only
display a very weak blockage ratio dependence compared to the Gmax variation.

V. RESPONSE OF THE FLOW TO CONTINUOUS UPSTREAM DISTURBANCES

To demonstrate the relevance of linear growth computations to a real flow in the presence of
inflow noise, direct numerical simulations have been performed. The initial state is the steady flow at
Re = 1160, Ha� = 200, and β = 0.4. This case has been chosen as it exhibits the maximum energy
growth of all the cases investigated in Sec. IV. For this purpose a random white noise with small
amplitude is added to the velocity field at the inlet to the computational domain. Therefore, we aim
to see strong evidence of disturbances growing to non-linear levels as the base flow is excited with
noise. Of course, inflow noise represents a continuous forcing while the transient growth analysis
examines the growth of discrete wavepackets, so some care make be taken with the interpretation of
the results.

In a non-magnetohydrodynamic flow, an injected disturbance decays only through the action
of viscosity. However, in these flows Hartmann damping also acts to damp disturbances. The rate
at which disturbance vorticity (ω) decays can be approximated using Eq. (15) in Ref. 10. Using

this expression for these flow conditions gives d(loge ω)
dt ≈ −0.344. If it is assumed that inflow

disturbances convect at approximately U0, then by the time a disturbance reaches the cylinder,
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FIG. 15. Maximum energy growth Gmax (a) and time of maximum of the energy maximum (b) as a function of Reynolds
number for different blockage ratios β at Ha� = 120. The values of Re displayed are again below the critical Reynolds
numbers. The asymptotic slopes of ∂ log10 Gmax/∂Re at β = 0.1, 0.2, 0.3, and 0.4 are 0.0057, 0.0062, 0.007, and 0.0089
respectively. Symbols as per Fig. 14.
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FIG. 16. Disturbance vorticity contours obtained for Re = 1160, Ha� = 200, and β = 0.4. The disturbance velocity field
was isolated by subtracting the unperturbed steady-state solution from a snapshot of the simulations perturbed by white noise.
Shown are cases computed with envelopes of white noise amplitudes of (a) 0.1U0, (b) 0.3U0, and (c) 0.5U0.

it will have decayed to just 7.5% of its original strength. This Hartmann damping would be even
stronger at lower Reynolds numbers and higher Hartmann numbers. Ultimately, this means that
upstream disturbances need to be significantly stronger in these magnetohydrodynamic flows than in
comparable non-magnetohydrodynamic channel flows to facilitate amplification of the disturbances
to non-linear levels.

Figure 16 shows the vorticity in the disturbance invoked by the addition of white noise to the
inflow. Even for low levels of random noise (e.g., a disturbance envelope of 0.1U0), a distinct pattern
of disturbance is observed behind the cylinder. This disturbance pattern appears in the vicinity of the
separation of the flow from the sides of the cylinder, and is observed to propagate downstream along
the separated shear layers in the wake, becoming broader. These flaring disturbance zones meet at
the wake centerline, and further downstream a disturbance pattern is observed which is consistent
with those observed to have evolved from the optimal initial disturbance leading to maximum energy
growth for the given parameters.

Further analysis of the system with the inflow perturbed by white noise with an amplitude of
0.5U0 is elucidated in Fig. 17. In Fig. 17(a), a simulated dye visualization image is produced45, 52

following injection of a high concentration of passive tracer particles into the flow from the vicinity
of the surface of the cylinder. Particles are evolved using an implementation53 of the high-order
particle transport algorithm of Coppola et al.54 This visualization approach reveals an instantaneous
streakline pattern in the flow, which demonstrates that at these flow and perturbation conditions
(which are below the critical Reynolds number for the onset of vortex shedding), the level of
upstream disturbance is sufficient to invoke an observable wavy disturbance downstream of the
wake recirculation bubble.

Figure 17(b) plots vorticity in the flow, which exhibits the same wavy perturbation seen in
Fig. 17(a). The flow is characterized by a pair of symmetric counter-rotating vortices on either side
of the wake centerline. The bubble length of the wake is of particular interest when considering the
behavior of transient disturbances in the flow, as separated shear layers appear to consistently act
as an amplifier of disturbances. Note that the vorticity decays relatively quickly downstream of the
wake recirculation bubble due to Hartmann damping, though waviness in the dye streak persists
further downstream. This may have significant implications for efforts to enhance mixing across
magnetohydrodynamic channel flows.

Attention is now directed to the disturbance field, which is generated by subtracting the unper-
turbed flow from the perturbed flow. In Fig. 17(c), vorticity in the disturbance field is plotted. In
comparison to the strength of vorticity structures in the wake, very weak vorticity structures can be
observed to the left of the cylinder. This demonstrates the significant degree by which disturbances
have been amplified as they convect past and downstream of the cylinder. Included for comparison
with this disturbance field are the corresponding optimal perturbation evolved to τmax and the leading
global linear instability mode (Figs. 17(f) and 17(g), respectively). Downstream of the recirculation
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FIG. 17. (Color online) Plots visualizing a computation at Re = 1160, Ha� = 200, and β = 0.4 perturbed by a random
disturbance at the inflow with an amplitude of up to 0.5U0. Frames show (a) simulated dye visualization of the disturbed
flow; (b) the vorticity field of the disturbed flow; (c) the isolated disturbance vorticity as per Fig. 16; (d) the base-10 logarithm
of the energy in the disturbance field shown in (c); (e) the base-10 logarithm of the energy of the optimal initial disturbance
computed for evolution time τmax for the unperturbed flow; (f) vorticity field of the linear optimal initial disturbance evolved
to time t = τmax; and (g) vorticity in the leading global instability mode for the unperturbed flow obtained from a linear
stability analysis. In each frame, arbitrary contour levels are plotted to elucidate the key features of the flow in each frame.

bubble a good agreement is observed across these three plots: alternating-sign vortex structures
repeating at a consistent stream-wise wavelength are observed, which decay further downstream of
the cylinder. The notable point of difference is that the white-noise disturbance field also features
diverging zones of disturbance vorticity convecting from the flow separation points either side of the
cylinder and into the wake. Whereas the optimal disturbance at τmax and the global mode correspond
to isolated disturbances in an otherwise unperturbed flow, the disturbance field is continuously fed
by upstream disturbances. The visible disturbances in the separated shear layers appear as a result of
this continuous injection of upstream disturbances, and reflect the amplifying nature of this region
of the wake flow.

The energy field of the disturbance offers an added perspective on the perturbed flow, and is
plotted in Fig. 17(d). Whereas the disturbance vorticity field compares favorably with that of the
optimal growth mode evolved to time t ≈ τmax, the energy fields are notably different. Firstly,
the disturbance energy field exhibits a clear asymmetry about the centerline downstream of the
cylinder. This asymmetry demonstrates that the disturbance has evolved to levels well beyond the
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linear regime, and is consistent with the observed waviness in Figs. 17(a) and 17(b). Secondly,
the disturbance energy field displays significant zones of energy either side of the cylinder, which
is absent from the optimal disturbance energy plots in the vicinity of τmax (see Fig. 12). This
feature bears a close similarity to the energy field of the optimal initial condition, which is shown in
Fig. 17(e). The interpretation to be drawn from this is that the weak inflow disturbances supply energy
to the optimal transient modes in the flow, which in turn lead to amplification of the disturbances
as they convect aft of the cylinder and into the wake. As the optimal mode has been shown to act
as an amplifier for the global linear instability mode (as also seen in Ref. 35), these disturbances
therefore manifest in a fashion consistent with the instability mode eventually leading to the von
Kármán vortex street.

VI. CONCLUSIONS

An investigation has been carried out into the transient growth of optimal linear perturbations
of a liquid metal magneto-hydrodynamic flow past a confined cylinder in a duct under a strong
axial magnetic field in the subcritical regime prior the onset of oscillations. Under these conditions,
the flow is quasi-two-dimensional and the modified Navier–Stokes equations are solved in a two-
dimensional domain. The majority of the numerical simulations has been performed over the range
of 50 ≤ Re � 2100, modified Hartmann numbers 50 ≤ Ha� � 500, and blockage ratios 0.1 ≤ β

≤ 0.4.
For small blockage ratio, the recirculation bubble was found to be visible up to some critical

Ha�. Beyond which it is suppressed due to the effect of the Lorentz forces, which produces a force
in the direction opposite the flow resulting in the decrease of the wake length. The recirculation
length, Reynolds number, Hartmann number, and blockage ratio were related as L R/d + 0.709
∝ Re0.844Ha�−0.711β0.166.

For all blockage ratios, for a given Reynolds number, very significant transient energy growth
was found in this regime, which suggests a potential for the design of actuation mechanisms to
promote vortex shedding and thus enhance heat transfer in these ducts. The energy amplification
of the disturbances was found to decrease significantly with increasing Hartmann number, and the
growth peaks at shorter time intervals. This is due to the reduction of perturbation kinetic energy
by Hartmann damping. The global maxima of energy was found to vary significantly with blockage
ratio, being longer at higher β. The structure of the disturbance was found to be consistent across
all the blockage ratios being tested.

The optimal disturbance was maximal in the region of the boundary layer separation around the
cylinder in the near wake. The perturbation amplifies as it convects along the separating region being
amplified to the peak growth state downstream of the recirculation bubble. The τmax was found to
increase significantly as recirculation length increases, which demonstrates the amplifying nature of
the separated shear layers in the wake consistent with many other studies.

For all Re at high Hartmann number, it was found that increasing β leads to a significant increase
of the energy amplification and to shift the global maxima towards smaller times.

The critical Reynolds number for positive energy growth of the optimal disturbance, Rec1, was
found to increase significantly with increasing blockage ratio and modified Hartmann number. The
optimal disturbances at Re ≤ Rec1 monotonically decreased with τ , while for Re ≥ Rec1 the energy
of an optimal disturbance increases rather than decreases from its initial value. For low Hartmann
number, it was found that log Gmax grows initially faster than linearly, approaching a linear variation
with Reynolds number for Re significantly greater than Rec1. This is true for all blockage ratios. On
the other hand, for higher Hartmann number the growth becomes linear for Reynolds numbers not
too far in excess of Rec1.

Direct numerical simulations in which the inflow was perturbed by white noise demonstrated
that the optimal transient growth properties of the flow could be activated by continuous upstream
random perturbations, which resulted in a significant amplification of the disturbances as they
passed around the cylinder. This was sufficient to destabilize the wake through the global instability
responsible for producing the von Kármán wake, despite the simulation being run at conditions
below the critical Reynolds number for vortex shedding.
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