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orbit, the drift time for Titan is of the order 10* years.
Comparing this value with that obtained above in the drag case,
it can be seen that the effect of tidal torques dominates that of
aerodynamic drag in the large satellite range.

The above result was obtained under the assumption that the
nebula disc remained unmodified by the tidal torques. However,
if local damping of density waves takes place (see Hourigan and
Schwarz 1984), gap clearance may occur. In this event, the
orbital angular momentum of the satellite is locked into the
transport process of the disc, resulting in serious orbital
modification of the satellite on the same timescale as disc
dispersal (Ward 1982).

In order then that the orbit of Titan is not severely disrupted,
it is necessary that the disc dispersal time is less than the orbital
drift time i.e. 7v<7p. Using the above results, this is only
possible in the case where strong turbulence is present in the
disc and o> 0(102).

Discussion

An effective method of nebula disc dispersal may be that due
to internal viscous shear stresses. The resulting viscous couple
leads to an outward flux of angular momentum and an
increasing inflow of matter, which may be accreted on to the
primary. Instead of needing to invoke a final ‘blow-off’ phase,
this accretion disc model assumes the contemporaneous removal
of the disc with the accretion of the satellites. However, when
this viscous couple operates in conjunction with the generation
of density waves by a large satellite, certain timescale restrictions
are found to emerge.

In the preceding sections, it was established that fairly rapid
removyal of the proto-Saturnian nebula on the timescale of order
10? years is required in order that severe disruption of Titan’s
orbit is avoided. This also represents an upper limit to the
timescale of satellite accretion, which may be difficult to satisfy
by previously proposed accretion mechanisms (e.g. Wetherill’s
(1980) mechanism of collisional accretion resulting from
‘pumped-up’ orbital eccentricities, which is even less efficient
in the presence of drag-inducing gas). The question must also
be raised as to whether efficient satellitesimal aggregation is
viable in the presence of such strong turbulent overturning of
the gas. It should be noted, finally, that the above strict
timescales for nebula dispersal and satellite accretion may be
relaxed somewhat if Titan is considered to be a captured body,
as proposed by Prentice (1983). This is due to the fact that the
corresponding value of the mass of the reconstructed nebula
is reduced by an order or two of magnitude if Titan’s
contribution is ignored, leading to an increased timescale of tidal
drift.
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Nebula Tides and Gap
Formation

K. Hourigan* and M. P. Schwarz, Department of
Mathematics, Monash University

Introduction

An intriguing problem in cosmogony concerns the ability of a
planetoid embedded in a nebula disc to clear a gap around its
orbit. The application of density wave theory to this problem
has demonstrated that a significant exchange of angular
momentum can take place between a planetoid and a disc
(Goldreich and Tremaine 1980). The torque exerted by the disc
on the planetoid can result in orbital drifting of the latter, which
may play an important role in the aggregation process (Hourigan
and Ward 1983). In fact, in the absence of significant
deformation of the nebula, the radial orbital drift rate of a
planetoid increases with planetoid mass. In this case, it would
be expected that only one or two planetoids would sweep out
the nebula, a situation not compatible with present observations.
The orbital drift resulting from the generation of density waves
therefore requires a limiting mechanism.

One possible resolution of this difficulty may in fact be
supplied by the density waves themselves. In the absence of a
damping mechanism, these waves transport angular momentum
to regions of the disc far from the planetoid. The nebula material
close to the planetoid is left relatively undisturbed. On the other
hand, if strong local damping is present, angular momentum
can be transferred from the density waves to the disc matter,
leading to the clearance of a gap which stabilizes the planetoid’s
orbit (Hourigan and Ward 1984). However, a further dilemma
is encountered if the gap is maintained during the process of
viscous nebula dispersal. In this case, the orbital angular
momentum of the planet is locked into the angular momentum
transfer process of the disc and can result in destabilization of
its orbit (Ward 1982).

The process of nebula truncation, or gap clearance, is
therefore highly relevant to the problems of planetary
aggregation and disc dispersal. In the present paper, mechanisms
leading to an opposing gap formation are discussed.
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Torque Density
Radial mobility of planetoids embedded in a nebula disc appears
to be possible through the action of tidal torques (Hourigan
and Ward 1984). The nebula’s response to the satellite’s
gravitational perturbations involves complex wave phenomena
capable of redistributing angular momentum. Spiral waves are
launched from the Lindblad resonances and couple to the non-
spiral potential of the planetoid to produce a mutual torque.
Waves generated at inner Lindblad resonances carry negative
angular momentum whilst the outer waves carry positive angular
momentum. If the damping length of the waves is long
compared to the resonance spacing, the torque density close to
the planetoid, where the resonances are densely packed, assumes
the continuous form (Lin and Papaloizou 1979, Goldreich and
Tremaine 1980).
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where x is the radial distance from the satellite of mass M, o,
is the local disc surface density,  is the orbital angular velocity
at radius r, and fis a constant of order unity. This expression
for the torque density is only valid for x= A, where A~c/Q is
the pressure scale height of the disc and c is the gas sound speed.
Inside this distance, the x* dependence is not maintained and
the torque density profile flattens out.

Nebula Truncation

Imbalance of the inner and outer torques resulting from
gradients in the nebula disc can lead to radial drifting of the
planetoid’s orbit. A crude estimate of the time for a planetoid
to drift a distance x is given by (Hourigan and Ward 1984).
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where M, is the solar mass and f* is the constant of order unity.

Radial drift may be terminated if sufficiently strong local
damping of the density waves occurs and a gap is cleared in
the nebula. Ignoring diffusion for the moment, smooth damping
can clear a gap of width x># (the minimum gap width
supportable by the nebula) in a time of order (Goldreich and
Tremaine 1980).
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gap
where p is the mass of the planetoid normalized to that of the
Sun.

We have constructed simple particle models of disc/planet
interactions. The nebula is represented by a two-dimensional
disc of particles, initially moving along circular orbits about
‘a central mass. A point mass representing the planet is embedded
in the disc and gravitationally disturbs the orbits of the disc
particles. Wave-damping is modelled by imposing a certain
degree of inelasticity on the collisions between disc particles.
It should be noted that the torque density is fairly insensitive
to the degree of damping (Greenberg 1983). Figure 1 shows a
snap-shot of the positions of the disc particles after 28 orbital
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revolutions of the planet of normalized mass 5 x 10, around
the central body. Initially, the particle surface density of the
disc was uniform. The effect of the gravitational encounters
between the disc and the planet is that of orbital excitation of
the disc particles. Upon damping of these excitations through
inelastic collisions, angular momentum is tranferred to particle
orbits, resulting in the clearing of a gap. The azimuthally
averaged radial density profile is shown in Figure 2 for the same
instant of time as Figure 1. The timescale of gap clearance in
this case is consistent with that obtained from equation (1), using
the present parameter values of normalized mass and gap width.
More realistic numerical models incorporating pressure gradients

Figure 1 A snap-shot of the disc particle positions after a period of 26
orbits for =5 x 10™*. The co-ordinates are normalized to the fixed radius
of the planetoid.
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Figure 2 The azimuthally averaged disc particle density versus the
normalized radius corrésponding to Figure 2.
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and shock wave development are presently being constructed.
If the nebula does possess a non-zero kinematic viscosity »,
the time scale of closure of a gap of width x by diffusion is

2
Tas 55002 o
In order that a gap can be opened, it is then required that

b
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This expression may be rewritten in terms of the normalized
mass p.

The condition to be satisfied for gap formation is then

W o> maz (Up, u,l,

Here the inertial mass limit is given by

Uy ~ fy 0 ghg,
where f> is a constant of order unity.
The viscous mass limit is
1
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It is interesting to note that for reasonable values of the nebula
parameters, the inertial mass limit u; is of the same order as
those observed throughout the planetary system. That is, one
may speculate that present planetary core dimensions may be
attained through sweeping up of planetesimals by a drifting
embryo, this process terminating as a result of gap formation
when the inertial mass limit is reached (Hourigan and Ward
1983). Furthermore, in the case of strong local damping, quite
vigorous turbulence is required to close a gap in the
neighbourhood of a body the size of Jupiter, according to the
viscous mass limit. Failure of the nebula material to be able
to flow past such a body during the dispersal stage would lead
to severe destabilization of the Jovian orbit (Ward 1982). Similar
arguments apply to Titan and the proto-Saturnian nebula
(Hourigan 1984). Therefore, the question as to whether
planetoids can open gaps in nebula discs is extremely relevant
to problems of planetary formation and orbital stability.

Wave Damping
The results of the previous section are dependent in part on
whether local wave damping does in fact take place. In its
absence, angular momentum is carried far away from the
satellite by density waves, leaving the nearby parts of the nebula
relatively undisturbed. Two possible damping agents that have
been proposed are those involving turbulent viscous action and
non-linear wave development (Goldreich and Tremaine 1980).
In the case of gaseous discs, the damping length due to
turbulent viscosity of density waves created at the most
important resonances (i.e.-near x ~ h) can be written as (Ward
1984).

R g (3)
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where o is the constant in the alpha-model of turbulent
kinematic viscosity » =ah?Q, a<1. From the expressions for
the viscous mass limit (equation (2)) and the viscous damping
length (equation (3)), it is found that a consistent solution for
gap clearing and wave damping is marginally possible in the
case of a Jovian-size body. However, such damping is unlikely
in the case of the terrestial planets.

A second mechanism that may lead to local wave damping
is that resulting from non-linear wave development. Using the
Lin-Shu dispersion relation for density waves, the non-linear
development length of density waves generated at the most
important resonances (x~ /) in a pressure-supported disc is given
by (ignoring and relatively small distance separating the
Lindblad resonance and the reflecting edge of the forbidden
zone)
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For Jupiter and the protosolar nebula, this implies a length
(Ward 1984).
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where T is the local gas temperature.

It is expected that the steepening gradients accompanying non-
linear wave development lead to much higher rates of damping.
Thus, it would appear that local wave damping and gap clearing
are plausible for a Jovian-size body. However, equation (4),
suggests that this is not the case for the smaller plantets.

Discussion

The role of density waves in transferring angular momentum
from the orbit of a planetoid to a gaseous nebula, and vice versa,
has been outlined above. Two mechanisms proposed for wave
damping, viz. turbulent viscosity and non-linear wave
development, may possibly be effective for density waves
generated in the proto-solar nebula by bodies of Jovian-size.
Their effectiveness for smaller bodies still needs to be established.
It should be noted, however, that these mechanisms have been
investigated only in the context of waves confined to the ecliptic
plane. That is, the vertical dimension of the disc is essentially
ignored in consideration of density wave development and
propagation. In the case of a gaseous nebula, further attention
needs to be paid to vertical resonances, recalling that the most
important horizontal or Lindblad resonances occur at a distance
of only a pressure scale height from the planetoid. At this
position, the disc no longer appears two-dimensional to the
planetoid. Furthermore, the exponential profile of gas density
with disc height may provide shock conditions for waves
possessing a non-zero vertical wave number. Research into these
considerations is progressing.
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The Origin of Inner Rings in
Barred Spiral Galaxies

M. P. Schwarz, Mathematics Department, Monash
University

A large number of barred spiral galaxies contain a ring-like
structure surrounding the bar. This is known as an inner ring
if the bar terminates at the ring. Structures which are not closed
but which appear to be related phenomena are given the name
pseudo-inner rings by de Vaucouleurs (1959). Inner rings can
take a variety of shapes ranging from the near circular to ones
with quite sharp corners on the bar major axis (almost diamond
shaped ¢). The average intrinsic axial ratio is found from
statistics of apparent axial ratio to be 0.8 (Schwarz 1984a, Buta
1984). Several observations suggest that inner rings are formed
by gas dynamic processes: they are almost always to some extent
spiral (i.e. not perfectly closed); HII regions are associated with
the rings; and they are blue, although in some cases there might
also be a broader redder ring at the same position (Buta 1984).
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[In early gas-poor galaxies, the inner ring is sometimes replaced
by the edge of a lens or possibly a broad stellar ring.]

In numerical simulations of gas flow in a bar field we have
shown that a ring of the above type can form just inside
corotation (CR) if the pattern speed is low enough (Schwarz
1979, 1984b). The ring will appear to be at the ends of the bar
if, as is generally believed (see e.g. Sellwood 1981), the bar
terminates near CR. The rings thus formed have sharp corners
on the bar major axis as does that in NGC 1433. Figure 1 shows
a typical example. The small ring near the inner Lindblad
resonance (I.L.R.) has been discussed previously (Schwarz
1984b) as has the formation near the outer Lindblad resonance
(O.L.R.) of a structure which we identify with outer rings (R).
Since no other convincing mechanism for the formation of inner
rings has been proposed, we attempt here to understand what
causes the rings in the gas simulations, and what affects their
shape.

The Gas Flow

The models in Figure 1 were computed exactly as described in
Schwarz (1984b) except that the bar used is a 1:4 axis ratio
homogeneous prolate spheroid ending at CR. Only the 26
components of the field are retained for this calculation —the
effect of restoring the higher harmonics is described later. The
pattern speed is €, =0.06 and the bar force is about 10% of
the axisymmetric force at CR.

Before we study the gas flow in this model in detail, we can
get an idea of what causes the ring in the simulations by varying
some of the bar parameters. For example if we move the ends
of the bar away from CR (either inward or outward) the ring
remains near CR. It is thus a resonance phenomenon and not
directly related to the bar cutoff. Of course in reality the extent

4

Figure 1 Particle distributions at times two and four bar rotations. As'in all subsequent figures, the bar lies along the x-axis, and the resonant

radii are indicated appropriately by I, C, O.



