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Growth of Planetesimals in a
Gaseous Ring

K. Hourigan Department of Mathematics, Monash University

Introduction

The aggregation of a large number of planetesimals into a
single body is a problem that has proved to be a stumbling
block for many theories of planetary formation. This difficulty
has mainly arisen because of the tendency of an orbiting
stream of bodies to disperse over the equatorial plane as a
result of the combined effects of collisions and gravitational
interactions (Trulsen 1972; Brahic 1975). Once such a chaotic
distribution of orbiting bodies has developed, it is extremely
difficult for these bodies to subsequently accumulate into a
single entity. This problem does not arise, however, when
aggregation takes place within a differentially rotating gaseous
ring as proposed by Prentice (1978). It has been shown
previously (Hourigan 1977) that the gas drag overcomes the
disruptive nature of collisional interactions, resulting in the
formation of a thin concentrated torus of orbiting bodies.

The process leading to the formation of a population of
large bodies through the gravitational fragmentation of the
dense torus of grains that forms at the mean circular orbit of a
gas ring has been investigated previously (Hourigan and
Prentice 1979). As a result of this process, it can be shown
that bodies of radii in the kilometre or tens-of-kilometre range
may form at the orbit of the Earth. In the discussion below,
the further growth of these planetesimals as a result of the
accretion of infalling grains, in addition to collisions between
the planetesimals themselves, is considered.

The Model
Consider the mass distribution function n(m,¢) of the
planetesimal population at time ¢. The N, planetesimals of
total mass M,, which form as a result of the fragmentation of
the grain torus, are assumed to have a mass distribution
function which is peaked around the mean value m = Mo/N,.
This mean value 7 represents the mass of the fragments
produced by the mode of maximum instability during the
fragmentation of the grain torus. In order to reflect this initial
mass distribution, n(m,) is taken to have the initial form
n(n,0) = ame™™, where a = 4N,/m* and b = 2/m.

To investigate the evolution of the mass distribution
function, the integral form of the coagulation equation is used
(ref. Hourigan 1981):
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where A(m,m'), the coagulation coefficient, is the collision
and aggregation probability for bodies of mass m and m’, B
is the uniform mass segregation rate of the grains, and M(¢) is
the total mass of the planetesimal population at time #. The
first two terms on the right of equation (1) represent the
growth of planetesimals as a result of collisions with other
planetesimals. The last term represents the growth as a result
of the accretion of incoming grains. In order to give a
qualitatively accurate description of the accumulation process
across the whole spectrum of planetesimal sizes, the
coagulation coefficient is chosen to have the form given by
A@m,m') = (m + m')A,, where A4, is a constant (Safronov
1962).

Taking the Laplace Transform of equation (1) and solving
the resultant partial differential equation gives the result
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where N(¢) is the number of planetesimals at time ¢ and F(p,?)
is the Laplace Transform of n(m,f). For small times ¢, the
cubic equation (2) can be solved for F(p,?) and the inverse
Laplace Transform taken to given
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where 7 = 1 — N/N, and a = S0 (27)'s,
M

It can be shown from equation (3) that as time proceeds, an
increased proportion of the mass becomes concentrated in the
large bodies of the planetesimal population. In particular, the
largest body grows the most rapidly of all. The asymptotic
solution of the transformed coagulation equation (2) for small
m and for large times (f — o or 7 — 1) is given by
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Thus, after a sufficiently long time, the number of bodies N
left is small and most of the mass is concentrated in the largest
body. The statistical analysis afforded by the coagulated
equation cannot be used to adequately model the very late
stages of planetary formation when there are only a few bodies
remaining. More individual attention must then be paid to the
evolution of each planetesimal. In particular, the relative
accretion rates of the largest body of mass m, and radius r,
and the second largest body of mass m, and radius r, are given
by (ref. Hourigan 1981)



Proc. ASA 4(2) 1981

my/m, 1+h s 1

n*/m, I+ hr/n ’
where & = 3/2 gv..0M/or,B. Here, o is the spatial density of
planetesimals, v,., is the characteristic relative velocity between
bodies, 6 is a constant ~ 10, ¢ is the intrinsic density of the
planetesimals. This equation again demonstrates that the
largest body grows more-than-proportionately faster than the
second largest body, thereby increasing its mass relative to the
latter. That is, a runaway effect occurs in the accretion
process, eventually leading to the emergence of a single
dominant body amongst the population of planetesimals.

Conclusions

It has been found in the above analysis that the aggregation of
planetesimals in a gaseous ring leads naturally to the
development of a dominant body amongst the planetesimal
population. The presence of the gas in the form of a
differentially rotating ring serves to constrain the orbits of the
planetesimals and grains to within a thin toroidal region
through the action of gas drag. This situation allows for the
efficient aggregation of bodies and, as a result of the low
resultant relative velocities, the minimization of collisional
fragmentation effects.

At present, a large-scale numerical code incorporating the
effects of collisions and gravitational encounters is being
developed in order to provide a more quantitatively correct
description of the aggregation process outlined above.
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The Solar Neutrino Problem
Revisited

J. Lattanzio Department of Mathematics, Monash University

1. Introduction

The discrepancy between the observed and predicted flux of
neutrinos from the Sun is well known. Past attempts at
reconciling this difference have been unconvincing (Kuchowicz
1976, Rood 1978), and hence investigations in this area
continue.

The original reports (Reines ef a/. 1980 and Lubimov et al.
1980) of a non-zero lower limit for the neutrino rest-mass
received mixed reactions (De Rujula and Glashow 1980). At
this stage it is impossible to either confirm or deny the early
claims. However, the possibility of oscillations between the
three neutrino states (or ‘flavours’; electron, muon, tauon) has
been suggested as early as 1968 (Pontecorvo 1968) as a means
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for reducing the predicted neutrino capture rates.
Recently (Bahcall et a/. 1980) it has been shown that if the
broad energy spectrum of the solar neutrinos is included in the
calculations (an effect previously neglected) then neutrino
oscillations alone are not sufficient to reduce the predicted
capture rate to the (best-estimate) observed rate (Davis 1978).
A decrease by a factor of 2.6-4.0 is needed to explain the
observations, whilst oscillations can only give a factor of 2.
Prentice (1976, referred to as P76) suggested that if the Sun
initially possessed a metal-rich, supersonically turbulent central
core of mass fraction g. = 0.02, the predicted neutrino flux
would be lowered considerably. This core would have formed
during the very early stages of the Sun’s contraction from
interstellar densities, when grains rich in CNO ices rapidly
sank to the centre of the protosolar cloud. It was later shown
by Krautschneider (1977) that gravitational collapse from a
typical Bok globule could indeed lead to this metal-rich core.
This increased opacity in the core will make the region less
stable against convection, and for a high enough Z.,,. perhaps
the convective motions will become supersonic. This
phenomenon has been discussed elsewhere (Prentice 1973,
referred to as P73) in some detail. It is the aim of this study to
verify and extend the preliminary results given in P76 using a
modified version of the Mt Stromlo Stellar Structure Program.

2. The Effect of Turbulence

The supersonic convective turbulence gives rise to a radial
stress (see P73), not an isotropic pressure, which takes the
form

P, =BoGM(r)/r, 1)

where all symbols have their usual meaning, and 8 is the
‘turbulence parameter’. This stress increases outwardly with
radius r, and is zero at the centre.

Preliminary studies including the effects of turbulent stress
were made in P76. These were done using simple polytropic
models. An n = 1.5 polytrope was used to model the core,
and this was matched to an n = 3 polytrope for the
surrounding envelope, presumed to be radiatively stable.
Turbulent stress was confined to the high Z core. The effects
of overshooting beyond the core are also ignored in the present
paper, for the sake of comparative studies.

To isolate the effects of turbulence from those due to the
high central Z, we firstly consider models of homogeneous
abundances, and various 8. For comparative purposes we
choose values as used in P76:

X. =X, =0.752=2 =0.02q = 002,48 =0,2,5, 10

(Subscripts ‘c’ and ‘e’ refer to core and envelope, respectively.)
The core is defined as all points having g = M()/M < q..
Note that 8 = 0 for ¢ > g.. In these models the entire core is
assumed convective and supersonically turbulent, except for
the non-turbulent case § = 0.

In the convective core the abundances of all elements are
mixed to homogeneity. In the event of a convective region
developing outside the core, convective mixing is treated in the
usual manner. In no case, however, is there allowed to be
mixing of higher Z material (from the core) with the lower Z



