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• The instabilities in a supersonic impinging jet are investigated by solving 
the two-dimensional Euler equations using the piecewise parabolic method 
(PPM) and Roe's linearized Riemann solver. The predicted shock cell 
spacing agrees well with the observed and theoretical values. The frequency 
and nature of the dominant instabilities are found to be a function of the 
impingement distance. Two instability modes are possible: a symmetric (or 
varicose) mode and an asymmetric (or sinuous) mode. For two given jet exit 
Mach numbers (M = 0.98 and 1.29), the energy in, and frequency of, these 
modes are functions of impingement distance, leading to an integral staging 
due to an acoustic feedback loop. The predicted frequencies of the funda- 
mental symmetric and asymmetric instabilities agree with the theoretically 
allowed values. The staging of predicted frequencies that occurs in experi- 
mental work is also predicted. 
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INTRODUCTION 

Below a jet Mach number of 0.6, no tones are observed 
for cold jets impinging normally to a wall. The strong 
tones emitted when high-subsonic or supersonic jets im- 
pinge normal to a wall have been found to contain fre- 
quency jumps as the distance to the wall is varied gradu- 
ally [1, 2]. This staging effect is characteristic of systems 
driven by acoustic feedback. For round impinging sub- 
sonic jets, Neuwerth identified the feedback acoustic dis- 
turbances inside the jet column through analysis of high- 
speed movies. Ho and Nossier [3] investigated the feed- 
back loop and the associated acoustic tones for subsonic 
impinging jets. 

In round jets, the allowable frequencies of the helical 
neutral wave modes that propagate upstream are too high 
to match those of the instability waves of the jet at 
subsonic Mach numbers. At supersonic Mach numbers, 
frequency matching becomes possible; the stable helical 
feedback loop and the generation of impingement tones 
can be maintained. Tam and Ahuja [4] proposed that the 
feedback was achieved by a family of upstream propagat- 
ing acoustic waves of the jet flow (see Fig. 1). For subsonic 
jets, these waves can exist inside the jet; for the supersonic 
case, the acoustic waves are restricted to traveling up- 
stream outside of the jet. In the subsonic case, the insta- 
bility waves in the jet were invariably axisymmetric, 
whereas in the supersonic case both axisymmetric and 

helical modes were observed. Tam and Ahuja were able to 
predict the average impingement tone frequency at dif- 
ferent jet Mach numbers and also explain why no tones 
were observed for cold jets for Mach numbers less than 
0.6. 

In supersonic rectangular jets, although the noise spec- 
trum consists of many tones, there are only two basic tone 
frequencies [5]. The basic frequency associated with an 
antisymmetric mode is higher than the basic tone associ- 
ated with a symmetric mode. All of the other tones in the 
spectrum are found to be combination tones of the two 
basic tones and their harmonics and are generated by the 
nonlinearities of the jet flow. 

In this paper, we model the impingement process for a 
supersonic two-dimensional impinging jet, using the piece- 
wise parabolic method, with the aim of understanding the 
mechanisms involved in the feedback process. 

NUMERICAL METHOD 

The two-dimensional Euler equations for compressible 
hydrodynamics are written in conservation form. For 
Cartesian (x, y) coordinates they are 

OU OF(U) 3G(U) 
- -  + - -  + - -  O, ( l )  
Ot Ox ~y 

Address correspondence to Dr. M. Rudman, CSIRO Division of Building, Construction and Engineering, P.O. Box 56, Highett 3190, Australia. 

Experimental Thermal and Fluid Science 1996; 12:265-270 
© Commonwealth Scientific and Industrial Research Organisation (CSIRO), 1996 
Published by Elsevier Science Inc., 1996 
655 Avenue of the Americas, New York, NY 10010 

0894-1777/96/$0.00 
SSDI 0894-1777(95)00084-4 



266 K. Hourigan et al. 

Acoustic waves ~ 

Large scale ~ .  \ \ 
• instability 

Figure 1. Schematic of the feedback loop of an impinging jet. 
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Equation (1) is solved by using a PPM scheme. The PPM 
scheme is a characteristic-based method and a higher 
order extension of Godunov's method [6] as developed by 
Colella and Woodward [7]. The code used here is due to 
Gathmann [8]. The multidimensional problem posed in 
Eq. (1) is approached using direction splitting, with the 
problem decomposed into two one-dimensional hyperbolic 
problems: 

Lx(U) = 0 and Ly(U) = 0, (3) 

where 
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and 

(4) 

The solution at time level n + 2 is determined as follows: 

U n+2 = L y L x L x L y ( U n ) .  (5) 

The PPM algorithm defines a piecewise interpolation 
function for each primitive variable v i c { tg, u, v, p} that is 
parabolic over each cell. The piecewise parabolic interpo- 
lation is modified in any cell in which it would generate 
new extrema and is replaced near contact discontinuities 
with a piecewise linear distribution. This procedure en- 
sures monotonicity of the interpolation, accuracy of shock 
resolution, and stability and robustness of the algorithm. 

Once interpolation functions have been determined, 
flow variables are decomposed into three linearized (x, t) 
wave characteristics corresponding to upstream traveling 
pressure waves (where allowed), downstream traveling 
pressure waves, and convective transport by the flow. The 
decomposition is written in terms of the amplitudes and 
eigenvectors of the linear waves, and Roe's [9] linearized 
Riemann solver is applied to the state vector of conserva- 
tive variables. Finally, the conservative fluxes are deter- 
mined and applied. The scheme is fourth-order in time 
and in space where the solution is smooth, and second- 
order in space and third-order in time near discontinu- 
ities. 

Boundary Conditions 

Inflow All flow variables are specified at the inflow 
boundaries. For the jet, the inflow velocity profile is the 
basic jet velocity profile investigated by Michalke [10], [11] 
and others and shown to match well the potential core 
region of a jet by Moore [12]. The profile is given by 

u(y)  = ~ -  1 - tanh 6.25 + ~-)-~, , (6) 

where V 1 is the speed at the center of the jet at exit and d 
is the jet width. Using the formula derived by Crighton 
and Gaster [13] for zero external flow, the momentum 
thickness 0 of the jet shear layer at axial position x 
downstream of the jet exit is given by d/O = 100/(3x/d  
+ 2), giving an initial thickness of O/d = 0.02. 

Outflow All (x, t) characteristics are directed outward, 
and the flow depends neither physically nor numerically 
on the outflow boundary values. The boundary condition 
for the pressure represents a radiation condition. Negligi- 
ble reflection was detected in the simulations. 

Grid As discussed in the next section, a fine uniform 
grid of size 256 × 128 was finally used for each simulation. 
Typically the grid spacing in the transverse direction was 
comparable to the initial jet shear layer thickness and 
sufficiently fine to capture the development of the shear 
layer instabilities. 

RESULTS AND DISCUSSION 

The code has been used to model the time-dependent 
impinging jet over a range of impingement distances for 
both a subsonic and a supersonic jet of exit Mach num- 
bers 0.98 and 1.29. A key requirement in the simulations 
is ensuring that grid resolution is high enough to capture 
the smallest scales of motion involved in the feedback 
loop. The code was tested for sensitivity of the predicted 
frequencies of jet instabilities for a number of grid resolu- 
tions for the M 1 = 1.29 case. Increasing from a grid size 
of 128 × 64 to 256 × 128, the major spike in the spectra 
remained at the same frequency (increasing only slightly 
in energy), indicating that satisfactory resolution had been 
achieved. For a smaller grid of 64 × 32, the higher fre- 
quency spike had relatively small energy, indicating lack of 
resolution. The largest grid is used in all of the results 
presented here. 

For the supersonic case, the predicted instantaneous 
flow for the impingement distance h / d =  7.0 is shown in 



Figure 2. (a) Plot of predicted instantaneous flow (Schlieren 
representation) at impingement distance of h/d  = 7.0 (flow 
entering from left, M 1 = 1.29). 
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outside the jet and interact with the shear layers near the 
jet exit, as postulated by Tam and Ahuja [4]. New instabili- 
ties are triggered by the sound waves near the jet exit, 
convect toward the wall, and generate sound waves to 
complete the feedback loop. 

The power spectra for different impingement distances 
for the two different Mach number  cases are shown in 
Figs. 3-6.  In both cases, the frequency and magnitude of  
the dominant peaks are a function of  the impingement 
distance. Two numerical probes were used to measure the 
pressure fluctuations on each side of  the jet exit. The 
transfer function enabled the distinction between symmet- 
ric and asymmetric modes, which are denoted in Figs. 3-6.  
The number of  impingement tones and their amplitudes 
and frequencies are clearly a function of  the impingement 
distance as well as the Mach number. 

In terms of a simple feedback model, the feedback loop 
consists of  acoustic waves traveling outside the jet at the 
ambient speed of  sound, a, and triggering, at the receptive 
nozzle exit, jet instabilities that convect downstream with 
mean velocity V~ = aV L. The half-length of  the feedback 
loop is the impingement distance h. The loop Strouhal 
n u m b e r ,  S tL ,  is defined as f h / V  L, where V L = Vc/(1 + 
VJa) is the loop velocity. When the feedback loop is 
operating, there will be an integral number, n, of waves in 
the feedback loop, that is, St L = n. 

Figure 2. (b) Plot of predicted instantaneous velocity vectors 
at impingement distance of h/d  = 6.0. Flow entering from 
left, only every third vector in each direction plotted, same 
instant as Fig. 2a, M 1 = 1.29. 

Fig. 2 in the form of a pseudo-Schlieren plot and a 
velocity vector field. The code has captured weak shock 
cells near the jet exit. The (weak) shock cell length L of  
approximately 1.6 jet widths is consistent with the theoret- 
ical value from the linear analysis of  Tam [14], that is, 
L = 2 ( M ~ -  1)1/2d = 1.6 for M 1 = 1.29, and that ob- 
served by Norum [15]. Sound waves are seen emanating 
from the impingement region. The large-scale instabilities 
in the jet are also prominent. Analyzing the videotape 
recordings of these simulations, the sound waves travel 
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Figure 3. Power spectra (arbitrary units) for impingement 
distance h/d  = 4.2. (a) M 1 = 1.29; (b) M 1 = 0.98. A, Asym- 
metric mode; S, symmetric mode; N, a mode whose phase is 
not distinctly asymmetric or symmetric. 



268 K. Hourigan et al. 

A 

¢... 

E" 

. 0  

fie 
IJJ 

o a .  

S 

i 

5.0 diameter 

A 

) ) ! 

b 

S 

S 

0.2 0.4 0.6 

FREQUENCY 

! 

A 

0.8 .0 

Figure 4. Power spectra (arbitrary units) for impingement 
distance h/d = 5.0. (a) M 1 = 1.29; (b) M l = 0.98. A, S, N 
defined as in Fig. 3. 
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Figure 5. Power spectra (arbitrary units) for impingement 
distance hid = 6.0. (a) M 1 = 1.29; (b) M 1 = 0.98. A, S, N 
defined in Fig. 3. 

In Fig. 7, plots of the loop Strouhal number variation of 
the strongest tones with impingement distance for the two 
Mach numbers are shown. Here, best fit is obtained for 
a = 0.58, which is in the range 0.53-0.62 used by other 
researchers. The symbols indicate the relative magnitude 
of the spectral peaks for each impingement distance. 
Staging of the impingement tones (generally into integral 
values) of the loop Strouhal number is observed, reinforc- 
ing the theory that a feedback loop is operating for both 
the subsonic and supersonic cases. 

For each impingement distance, the predicted lowest 
frequency impingement tone is due to a symmetric mode. 
This is in line with the theoretical analysis of Tam and 
Norum [5], who determined that the first symmetric mode 
was always lower in frequency than the first asymmetric 
mode, as observed in their experiments. 

The results of the numerical model are in agreement 
with the theoretical analysis of Tam [14] and show the 
staging effect observed by Norum [15]. Differences arise 
due to the presence of strong shocks in the experiments, 
leading to the significant influence of the screech tone. 
Further differences in the selected frequency could arise 
from nozzle tip geometry and convergence angle. The 
initial set of results presented here indicates that the code 
is capable of providing useful insights into the coupling of 
impingement tones and jet instabilities. It is intended that 
the study be extended in the future to test the sensitivity 

of the selected impingement frequencies on nozzle shape 
and convergence angles over a wider range of impinge- 
ment distances and different jet exit Mach numbers. 

PRACTICAL SIGNIFICANCE 

Impinging jets are commonplace in industrial applications, 
including mixing and spraying, where flow steadiness is 
desirable. In the aerospace industry, rocket launches rep- 
resent a critical phase during which jet instabilities can 
lead to payload damage and loss of flight control. The 
present study seeks to understand the mechanisms leading 
to the appearance of instabilities in impinging jets. In the 
longer term, it is hoped that flow control guidelines will 
emerge from these types of studies. 

CONCLUSIONS 

The existence of acoustic feedback loops, as postulated 
previously from experiments, in impinging supersonic jets 
has been demonstrated using a high-order numerical 
method. The Strouhal number associated with the im- 
pingement tones is found to be generally integral when 
normalized with respect to the loop velocity and impinge- 
ment distance. The feedback loop consists of the genera- 
tion of acoustic waves near impingement that travel up- 
stream and excite the jet modes in the receptive region 
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Figure 6. Power spectra (arbitrary units) for impingement 
distance h / d  = 7.0. (a) M I = 1.29; (b) M 1 = 0.98. A, S, N 
defined as in Fig. 3. 

near the jet outlet. The jet instabilities then convect 
toward the wall and generate acoustic waves upon im- 
pingement. Depending on the impingement distance, both 
symmetric and asymmetric jet instability modes may be 
present, as observed experimentally. 

It is intended to broaden the study by considering 
different Mach number jet flows and comparing the re- 
sults with those obtained using a hydraulic analogy. 
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NOMENCLATURE 

a ambient sound speed, m / s  
a ratio of convection to jet exit velocities, 

dimensionless 
d jet nozzle width, m 
E total energy per unit mass, J / k g  
e internal energy per unit mass [ = E - 1 / 2 ( u  2 + 

v2)], J / k g  
F nonlinear flux operator in the x direction, kg m/s ,  

N / m  E, N / m  2, N / m s  
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Figure 7. Loop Strouhal number St L of the loudest tones 
versus impingement distance h / d  for (a) M 1 = 1.29 and (b) 
M 1 = 0.98. The numbers in the circles indicate decreasing 
magnitude of tones for each impingement distance (1 = 
largest magnitude, etc.). 

f frequency of impingement tone, Hz 
G nonlinear flux operator in the y direction, kg m/s ,  

N / m  2, N / m  2, N / m s  
h distance between nozzle and wall, m 
L shock cell length, m 

L x operator of the Euler equation solution in the x 
direction, dimensionless 

Ly operator of the Euler equation solution in the y 
direction, dimensionless 

M 1 jet exit Mach number, dimensionless 
n number of periods of sound wave in feedback loop, 

dimensionless 
p pressure, Pa 
r local fluid density, k g / m  3 

St L loop Strouhal number [ = f h / V L ]  , dimensionless 
t time, s 

U state vector of the flow, k g / m  3, kg /m2/s ,  kg/m2s, 
J / m  3 

u velocity in the axial x direction, m / s  
V~ average convection velocity, m / s  

V r loop velocity [= Vc/(1 + VJa)] ,  m / s  
V 1 jet exit velocity, m / s  
v velocity in the transverse direction, m / s  
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v i in te rpo la t ion  func t ion  o f  the  pr imi t ive  variables ,  
k g / m  3, m / s ,  m / s ,  Pa  

x axial dis tance,  m 

y t ransverse  distance,  m 

Greek Symbol  

0 m o m e n t u m  thickness  o f  the  je t  shear  layer,  m 
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