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This article examines numerically the two-dimensional fluid–structure interaction
problem of a circular cylinder rolling under gravity along an inclined surface under
the assumption of a fixed but small gap. The motion of the cylinder is governed by
the ratio of cylinder and fluid densities and the Reynolds number based on a velocity
scale derived from the momentum balance in the asymptotic regime. For increasing
Reynolds number, the cylinder wake undergoes a transition from steady to periodic flow,
causing oscillations of the cylinder motion. The critical Reynolds number increases for
light cylinders. Whereas the time-averaged characteristics of the asymptotic rolling states
depend only on the Reynolds number, the density ratio has an additional influence on
the vibration amplitude and on the cylinder motion during a start-up transient from
rest. Light cylinders reach their final state quickly after the initial acceleration; heavier
cylinders traverse a series of quasi-steady states, including a temporary velocity overshoot,
before settling in the asymptotic regime. The amplitudes of the flow-induced vibrations
remain small over the entire parameter range, which can be attributed to the value of
the added-mass force associated with a rolling cylinder. Special attention is paid to the
influence of the small but finite gap between cylinder and wall, since lubrication theory
predicts a diverging pressure drag for a vanishing gap. The variations with gap size of the
forces, torque and added mass are explored. The gap also influences the characteristics of
the cylinder vibrations in the unsteady wake regime, in particular their amplitude.

Key words: flow–structure interactions, wakes

1. Introduction

For an isolated, stationary cylinder of diameter d placed in a uniform flow of velocity U,
the wake transitions from a steady two-dimensional state to unsteady periodic shedding of
vortices at a Reynolds number Re = Ud/ν ≈ 46 (Roshko 1954; Taneda 1956; Provansal,
Mathis & Boyer 1987; Henderson 1997, ν is the kinematic viscosity). As the Reynolds
number is increased, three-dimensional instabilities appear, in particular mode A at
Re ≈ 190 (Williamson 1988, 1996; Henderson 1997) and mode B at Re ≈ 260
(Williamson 1996; Henderson 1997).

† Email address for correspondence: mark.thompson@monash.edu
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Elastically mounted cylinders experience vortex-induced vibration (VIV) when the
wake is unsteady. Early experimental studies conducted by Feng (1968), Sarpkaya (1979)
and Williamson & Roshko (1988), complemented more recently by work and reviews from
Khalak & Williamson (1996, 1999), Govardhan & Williamson (2000) and Williamson &
Govardhan (2004), offer a comprehensive overview on the subject for Reynolds numbers
Re > 1250, where the wake is three-dimensional. Concerning the different regimes of
synchronous response, it was shown that a cylinder with low mass damping exhibits an
‘initial’, an ‘upper’ and a ‘lower’ amplitude branch, whereas in the case of high mass
damping, the upper branch is non-existent. The vortex wake exhibits a ‘2S’ mode in the
initial branch, i.e. two single vortices are shed in each cycle, and a ‘2P’ mode in the lower
and upper branches, i.e. two pairs of vortices are shed in each cycle (Williamson & Roshko
1988). The first transition from the initial to the upper branch is associated with a jump
in the vortex phase (defined as the phase between vortex force and displacement) and a
response frequency that approaches the natural frequency of the cylinder system in the
fluid medium. A distinct switch in the timing of vortex shedding is also observed as the
vortex wake mode changes from 2S to 2P, causing the amplitude of cylinder oscillations
to increase and reach a peak of about one cylinder diameter. The second transition,
from upper to lower branch, is correlated with a jump in the total phase (defined as the
phase between total force and displacement), a response frequency that passes through the
natural frequency of the cylinder system in vacuum (thus a slight increase in the response
frequency occurs) and a decrease in oscillation amplitude. Unlike the first transition, it is
not associated with a switch in timing of the shedding (Williamson & Govardhan 2004).

In the low-Re regime, where the vortex street is fully two-dimensional, one set of
experiments was performed by Anagnostopoulos & Bearman (1992) at Re = 90–150.
Amongst the numerical investigations undertaken are those by Blackburn & Karniadakis
(1993), Blackburn & Henderson (1996), Shiels, Leonard & Roshko (2001), Guilmineau &
Queutey (2002), Leontini, Thompson & Hourigan (2006), Prasanth & Mittal (2008, 2009)
and Mysa, Kaboudian & Jaiman (2016). From the latest studies, it is understood that the
branching behaviour of the cylinder VIV response starts to develop in the low-Re regime
and is therefore not a product of the three-dimensionality of the flow.

Previous studies by Taneda (1965) showed that the presence of a stationary wall near a
cylinder stabilises the wake, delaying the onset of vortex shedding to Re ≈ 100 when the
distance G to the wall is less than a critical value around G/d = 0.2–0.3 (Lei, Cheng &
Kavanagh 1999). When the wake is unsteady, the strength of the vortex shedding decreases
with decreasing gap ratio. Taneda (1965) observed a single row of vortices at G/d = 0.1,
whereas alternate vortex shedding developed at G/d = 0.6 (Taneda 1965; Zdravkovich
1985). At small gap ratios (G/d ≤ 0.1), the vortices are generated by the interaction
between the separating shear layer from the top of the cylinder and the secondary vortex
shedding from the wall boundary layer (Stewart et al. 2010b; Rao et al. 2011, 2013c). For
G/d � 0.3, three-dimensionality appears before the onset of vortex shedding, similar to
what occurs in the flow over a backward-facing step (Armaly et al. 1983).

Where near-wall VIV is possible, the dynamics of the coupled system is complex.
Numerous studies have looked into the effect of the wall on a vibrating cylinder with one
or two degrees of freedom (DOF) for its motion, namely in the transverse and streamwise
directions, for moderate to high Reynolds numbers. Experiments conducted by Fredsøe
et al. (1987) and Raghavan, Bernitsas & Maroulis (2009) showed that, unlike for the
stationary cylinder case, vortex shedding may occur even at very small gap ratios. This
was confirmed numerically by Zhao & Cheng (2011) and Wang, Hao & Tan (2013).
Tsahalis (1983) reported that the trajectory of the cylinder has an oval shape. Yang,
Gao & Wu (2008) measured that, in the turbulent regime, the vibration amplitudes

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

25
 O

ct
 2

02
0 

at
 0

4:
45

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
63

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.631


Wake dynamics and vibration of a freely rolling cylinder 903 A48-3

of a cylinder allowing 2-DOF motion near a wall increase for larger gap ratios. For
small mass ratios, Yang et al. (2009) showed that the vibration range is larger and that
the dimensionless vibration frequency is higher than for larger mass ratios. Zhao &
Cheng (2011) studied numerically the VIV of a cylinder close to a plane wall where
bounceback was also considered; they identified three vortex shedding modes, which
depend on the reduced velocity U/( fnd), where fn is the natural frequency of the system
in a quiescent fluid. Experiments of a transversely vibrating neutrally buoyant cylinder
at various heights above a plane wall (G/d = 0.05–2.5) were conducted by Wang et al.
(2013) for Re = 3000–13 000, showing that VIV exists at all gap ratios considered and
that the presence of the wall causes nonlinearities in the cylinder response. For small
gaps, the wake pattern is characterised by a single row of vortices formed in the upper
shear layer and shed periodically, whereas for high gap ratios a double-rowed vortex street
is found. At Re = 100, a numerical investigation by Tham et al. (2015) found that a third
response branch exists between the initial and lower-type branches for G/d ≤ 0.60, and
that for G/d ≥ 5 the system becomes equivalent to that of the isolated cylinder. Two- and
three-dimensional simulations at Re = 200 and 1000 and G/d = 0.9 carried out by Li
et al. (2016) showed that the wall proximity generates a mean lift force and enhances the
streamwise oscillations while reducing their frequency in comparison with the isolated
configuration.

When a rotation is imposed on the cylinder, a different flow dynamics is observed.
In an unbounded flow, the wake becomes asymmetrical (Tang & Ingham 1991) and the
elimination of one or both recirculation regions in the wake can occur, depending on the
Reynolds number and the rotation rate. The transition to unsteady flow is also affected –
it is in most cases delayed or suppressed – and a multitude of different three-dimensional
modes exist (Mittal & Kumar 2003; Radi et al. 2013; Rao et al. 2013a,b). Stewart et al.
(2010b) and Rao et al. (2011) studied cylinders rotating and translating near a wall at
various imposed rotation rates and found that prograde motion destabilises the flow,
whereas retrograde rolling delays the onset of the instability.

Using two- and three-dimensional simulations, Bourguet & Lo Jacono (2014)
investigated flow-induced vibrations of a circular cylinder free to oscillate in the transverse
direction and subjected to a forced rotation about its axis at Re = 100 and for a large range
of reduced velocities and rotation rates. They identified two novel wake patterns, named
‘T + S’ and ‘U’, associated with the largest vibration amplitudes and the low-frequency
vibration regime, respectively. The T + S pattern is characterised by a triplet of vortices
and a single vortex shed per cycle, and the U pattern by a transverse undulation of the
spanwise vorticity layers without vortex formation, indicating that flow-induced vibrations
may also occur in the absence of vortex shedding. Overall, the time-averaged displacement
and lift coefficient tend to increase with the rotation rate. Zhao, Cheng & Lu (2014) studied
numerically the VIV of a 1- and 2-DOF rotating cylinder at Re = 150 and low mass ratio.
They found that the rotation of the cylinder increases the response amplitude for the 1-DOF
motion in the transverse direction. In the 2-DOF case, the streamwise response amplitude
increases significantly with increasing rotation rate, first exhibiting one initial branch and
then two such branches at higher values. In both 1- and 2-DOF configurations, hysteresis
regions were detected in the amplitude response.

Wong et al. (2017) carried out experiments on VIV of a cylinder of low mass ratio free
to oscillate in the transverse direction with imposed rotation around its axis. Their study
showed that forced rotation can cause peak response amplitudes of up to 1.4 diameters
in the range of reduced velocities associated with the upper amplitude response branch
of a non-rotating cylinder. For higher rotation rates and for reduced velocities outside the
synchronisation range, a new chaotic wake mode ‘C(AS)’ was observed, characterised by
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the shedding of small asymmetric vortices as the wake switches between a wider and a
narrower state.

Most previous studies consider cylinders placed in a free stream without wall
interactions or rotation. In cases where the presence of a wall and the rotation of the body
were taken into account, the velocities and rotation rates were for the most part set to be
constant. A cylindrical bluff body moving freely near a surface has none of its velocity,
rotation or trajectory imposed externally, these are instead determined by the drag, lift and
torque from the motion through the surrounding fluid, as well as by gravity driving this
motion and the contact force at the wall. The resulting body and flow dynamics in such
a configuration, i.e. the translation, rotation, wake structure and flow-induced vibrations,
is largely unknown. The case of a spherical bluff body rolling freely down an incline has
received some attention in the literature; a number of experimental (e.g. Carty 1957; Jan
& Chen 1997), analytical (e.g. Chhabra & Ferreira 1999) and numerical (e.g. Zhang et al.
2017) studies have focussed mainly on the drag coefficient and the motion history of the
rolling sphere.

This paper investigates numerically the free motion of cylinders rolling without slipping
on an inclined wall under the effect of gravity, buoyancy and fluid forces, in the idealised
configuration of two-dimensional flow. This situation introduces new parameters: the
gravitational acceleration, the inclination angle of the wall and the ratio of cylinder and
fluid densities. It also changes the nature of the problem, which now involves a coupled
interaction between the fluid forces and the cylinder motion. When vortex shedding occurs,
these forces are unsteady, and the translational (and rotational) velocity of the cylinder
is not constant, leading to streamwise vortex-induced vibrations. The aim here is to
characterise the flow behaviour as a function of the governing parameters and to investigate
the flow transitions, the saturated flow states and the fluid–structure interactions.

The problem definition, equations of motion and numerical formulation are given in § 2.
Section 3 then provides a quantitative assessment of the effect of the small gap between
the cylinder and the wall, which is necessary to guarantee numerical stability and which is
known to lead to singularities in the force coefficients when its size decreases to zero. The
transition to unsteady flow is treated in § 4. The properties of the asymptotic rolling motion
and vortex-induced vibrations are presented in § 5 and compared to the constant-velocity
case. Finally, § 6 shows results concerning the initial transient when the motion starts from
rest. Section 7 contains the conclusions.

2. Problem definition

We investigate the fluid–structure interaction problem of a circular cylinder rolling
freely down a surface of constant slope under gravity through a viscous incompressible
fluid. A natural reference case for comparison is that of a circular cylinder rolling along a
surface at a constant specified velocity. The configuration, including relevant notation, is
shown in figure 1.

The uniform-rolling case has been studied previously by Taneda (1965), Stewart et al.
(2010a,b) and Houdroge et al. (2017), providing a comprehensive set of results for this
configuration. In this paper, a few simulations with uniform rolling are repeated, in order
to enable high-fidelity comparisons with the new predictions for the current problem. The
corresponding force histories and flow dynamics provide a benchmark for comparison of
the asymptotic state, allowing an assessment of the differential effects induced by the free
movement of the cylinder.

In both configurations, the simulations are performed in a frame of reference placed at
the centre of the cylinder. For the constant-velocity case, this is equivalent to the fluid and
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z

x
uc

R

L
ω

θ
|m*|g

N
T D d

FIGURE 1. Schematic of a cylinder rolling along an inclined plane of slope angle θ . Its
translational and angular velocities are uc and ω, respectively. The frame of reference (x, z)
is attached to the centre of the body, and the different forces exerted on it are illustrated: the fluid
forces (drag D, lift L and torque T), the mechanical forces (reactions of the wall on the body, N
and R) and gravity/buoyancy (|m∗|g).

wall moving past a rotating cylinder with a fixed centre of mass. In the free-rolling case,
the frame of reference is not an inertial frame.

2.1. Governing equations
The governing equations are the continuity and incompressible Navier–Stokes equations
for the motion of the fluid, along with the linear and angular momentum balance for the
motion of the cylinder.

2.1.1. Fluid equations
Let u(x, z, t) represent the time-dependent two-dimensional velocity of the fluid. For an

incompressible flow, the continuity equation is

∇ · u = 0, (2.1)

and the general form of the Navier–Stokes equation in an accelerating frame is

∂u
∂t

+ u · ∇u = − 1
ρf

∇P + ν∇2u − duc

dt
, (2.2)

where ρf is the density of the fluid, P the static pressure and uc = (uc, 0) is the velocity of
the body, which is of the sense opposite to that of the frame of reference. The last term of
(2.2) is obtained by applying Newton’s second law of motion to the centre of mass of the
body; its presence underlines the coupled nature of this problem.

2.1.2. Body acceleration equations
According to Newton’s second law,

mc ac =
∑

F , (2.3)

where mc is the mass (per unit span) of the cylinder, ac = (ẍc, z̈c) its acceleration and
∑

F
the sum of all forces exerted on the body. For the configuration described in figure 1,
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this gives

mc ẍc = |m∗|g sin θ − D − R, (2.4)

mcz̈c = −|m∗|g cos θ + N + L, (2.5)

where the buoyant mass, m∗ = mc − mf , is the mass of the cylinder in excess of that of the
fluid it displaces (mf ). Assuming that the body stays at a fixed distance from the surface,
the z-component of the acceleration is zero, which leads to the following expression for
the normal component of the reaction force exerted by the wall on the body

N = |m∗|g cos θ − L. (2.6)

2.1.3. Torque equation
The balance of angular momentum for the rolling cylinder is given by

Iω̇ =
∑

M, (2.7)

where I is the body’s moment of inertia and
∑

M is the sum of all moments acting on
the cylinder. For a cylinder of uniform density, I = 1

2 mc(d/2)2. The moments are the fluid
torque T and the torque (d/2)R applied by the contact reaction force R. With this, (2.7)
becomes

1
2

mc(d/2)2ω̇ = T + d
2

R. (2.8)

The no-slip boundary condition between the surface of the cylinder and the wall results in
a kinematic relationship between the translational velocity of the cylinder ẋc (= uc) and
its angular velocity: ẋc = (d/2)ω. Therefore ω̇ = (2/d)ẍc, giving the following expression
for the reaction force R, from (2.8):

R = 1
2

mc ẍc − 2
d

T. (2.9)

Substituting this in (2.4) provides an expression for the cylinder acceleration

ẍc ≡ duc

dt
= 2

3

[(
1 − 1

β

)
g sin θ − 4D

πd2ρc
+ 8T

πd3ρc

]
, (2.10)

where β = ρc/ρf is the ratio of the body density and the density of the fluid. The range
of β considered in this study is 0.1–200. Note that for β < 1, the cylinder is positively
buoyant, it can be considered to be rolling upwards beneath an inclined surface.

2.1.4. Non-dimensional equations
Unlike the case of a uniformly rolling cylinder, where the imposed translational velocity

provides a scale for non-dimensionalisation, the cylinder velocity is here a function of
the other problem parameters (and also of time, depending on the regime). However, a
new velocity scale V can be obtained by considering the asymptotic flow state, where a
balance exists between the fluid forces (per unit mass), which are proportional to V2, and
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Wake dynamics and vibration of a freely rolling cylinder 903 A48-7

gravitational/buoyancy forces, given by |m∗|g sin θ . This leads to the following expression
for the velocity scale:

V =
√

d
2
|β − 1|g sin θ, (2.11)

where the length scale needed for dimensional compatibility was chosen as the cylinder
radius, a choice justified a posteriori by the fact that the observed asymptotic velocities
are indeed close to V .

Scaling the lengths by the diameter d, velocities by V , time by d/V and pressure by
ρf V2 allows the governing equations to be written in terms of non-dimensional variables
(denoted by asterisks) as

∇∗ · u∗ = 0, (2.12)

∂u∗

∂t∗
+ u∗ · ∇∗u∗ = −∇∗P∗ + 1

Re∗ ∇∗2u∗ − du∗
c

dt∗
, (2.13)

du∗
c

dt∗
= 4

3β

[
1 − u∗

c
2

π
(CD − CT)

]
, (2.14)

where Re∗ = Vd/ν is a modified Reynolds number based on the new velocity scale (2.11).
The force and torque coefficients (per unit length) are defined in the usual way:

CD = D/
(

1
2 dρf u2

c

)
, (2.15)

CL = L/
(

1
2 dρf u2

c

)
, (2.16)

CT = T/
(

1
4 d2ρf u2

c

)
. (2.17)

Equations (2.12)–(2.14) for the freely rolling cylinder indicate that this fluid–structure
problem is governed by two non-dimensional parameters, in contrast to the uniformly
rolling cylinder, whose state is fully defined by just the Reynolds number. Here, the
modified Reynolds number Re∗, which involves a combination of the gravitational
acceleration (g), the slope angle (θ ) and the mass ratio (β), and separately the mass ratio β,
both determine the evolution of the flow and the cylinder motion. The asymptotic cylinder
velocity U can be obtained from (2.14). For this, the cylinder acceleration should be
zero, which leads to u∗

c = [π/(CD − CT)]1/2 = U∗. This relation remains true for unsteady
flow involving vortex shedding and flow-induced vibrations, if one considers time-mean
quantities

Ū∗ =
(

π

C̄D − C̄T

)1/2

. (2.18)

The non-dimensional asymptotic (mean) velocity is independent of β, even if the
dimensional velocity U = U∗V (or Ū = Ū∗V), as well as the amplitude of the cylinder
oscillation (see §§ 5 and 6) depend on this parameter.

In order to compare the results to those obtained for the constant-velocity case, it is
useful to also define a Reynolds number Re = Ūd/ν, based on the asymptotic (mean)
translation velocity of the cylinder.

2.2. Computational method
A description of the method used to solve the fluid flow equations (2.12) and (2.13) can be
found in Thompson et al. (2006), with relevant similar applications presented in a number
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of articles, including Thompson, Hourigan & Sheridan (1996) and Thompson, Leweke
& Williamson (2001). The extension to moving bodies and fluid–structure interactions is
discussed in Ryan, Thompson & Hourigan (2005, 2007), Leontini, Thompson & Hourigan
(2007), Rao et al. (2011) and Lee, Hourigan & Thompson (2013). For the sake of
completeness, a brief summary of the computational approach follows.

A spectral-element technique based on the Galerkin finite-element method (see
Karniadakis & Sherwin 1999) is employed to evaluate the spatial derivatives in the
two-dimensional domain. The solution variables are approximated using high-order
Lagrangian polynomial interpolants associated with Gauss–Lobatto–Legendre quadrature
points within each element.

For the time integration, a high-order three-step time-splitting scheme is used. The
three steps encompass the advection and cylinder-movement terms, the pressure term and
the diffusion term of the Navier–Stokes equations, respectively. The nonlinear terms, i.e.
the advection and cylinder acceleration terms, are treated explicitly using a third-order
Adams–Bashforth method and a semi-implicit Adams–Moulton scheme in subsequent
iterations (using estimates at the next time step from previous iterations). The (linear)
pressure and diffusion substeps are both treated implicitly; taking the divergence of the
equation for pressure and enforcing continuity at the end of the step amounts to solving a
Poisson equation for the pressure, and the second-order Crank–Nicolson scheme allows for
the diffusion term to be treated (see, e.g. Canuto et al. 2007). In practice, these substeps are
implemented by computing the lower–upper decomposition at the start of the simulation
for each of these matrix problems, so that the subsequent pressure and diffusion substeps
involve straightforward sparse matrix multiplications.

The two-dimensional mesh used is non-deformable and has significantly enhanced
resolution in the vicinity and downstream of the cylinder. After some initial optimisation
and tuning, the final mesh consisted of 1472 macro-elements, each comprising N = 5(×5)
internal collocation points. The upstream, downstream and upper boundaries are located
at x = 25d, x = −25d and z = 50d, respectively, resulting in a blockage ratio of 2 %.
This mesh is the same as the one used in a previous study on uniformly rolling cylinders
(Houdroge et al. 2017), where a full resolution and validation study was undertaken.

To avoid a mesh singularity at the point of contact between the cylinder and the wall,
a small gap of size G is imposed, in line with previous simulations of uniformly rolling
cylinders (Stewart et al. 2006, 2010b; Rao et al. 2011). Earlier studies (Jeffrey & Onishi
1981; Merlen & Frankiewicz 2011) have shown that, as the gap is reduced to zero, the
pressure before and after the contact point becomes unbounded. Merlen & Frankiewicz
(2011) examined the cylinder rolling at constant speed using a combination of lubrication
theory and finite-element simulation to predict the flow at finite Reynolds numbers. In
the limit of zero gap size, the pressure field becomes discontinuous, with the pressure
approaching positive infinity ahead of the cylinder and negative infinity behind it. In the
zero-gap limit for Stokes flow, this leads to an infinite drag force, while the positive and
negative pressure contributions cancel to give zero lift. This is not the case for finite
Reynolds numbers, where the pressure distribution associated with the non-symmetrical
upstream and downstream flow leads to a positive lift coefficient, even for very small
Reynolds numbers. This was clearly shown by Merlen & Frankiewicz (2011) for Reynolds
numbers below Re = 1. The drag prediction indicates that the cylinder should not be able
to roll with a zero gap size. The resolution of this paradox has been proffered as requiring
cavitation or release of absorbed gas in a liquid, as demonstrated in experiments by Seddon
& Mullin (2006), or compressibility effects if the fluid is a gas. Other practical factors may
also contribute, such as surface roughness (as discussed in Prokunin 2003) or cylinder and
wall straightness.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

25
 O

ct
 2

02
0 

at
 0

4:
45

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
63

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.631


Wake dynamics and vibration of a freely rolling cylinder 903 A48-9

The influence of the gap size on the pressure and force coefficients, as well as on the
added mass, are again analysed in detail in the following section, and its effect on the
freely rolling cylinder configuration is also documented in § 5. For the study of the start-up
transient in § 6, a constant gap size G/d = 0.005 was chosen as a practical compromise,
balancing the requirements for accuracy of the force components, time step restrictions
and code stability. As shown in § 3 below, and as observed in previous work on uniformly
rolling cylinders (Stewart et al. 2006, 2010b; Rao et al. 2011; Houdroge et al. 2017), the
gap size has little effect on the formation and shedding of large vortical structures away
from the gap region.

Further details on the mesh and computational method can be found in Houdroge et al.
(2017).

2.3. Linear stability analysis
The transition from steady (asymptotic) flow over the rolling cylinder to vortex shedding
and flow-induced vibrations was determined using linear stability analysis. Due to the
coupled nature of the problem, the equations for both the fluid and the cylinder have to be
solved simultaneously. The pressure p, the flow velocity u and the cylinder velocity uc can
be expressed as the sum of their steady base states P, U and Uc, and perturbations p′, u′

and u′
c, respectively

p = P + p′, u = U + u′, uc = Uc + u′
c, (2.19a–c)

where Uc = (Uc, 0). The drag and torque in the equation of motion for the cylinder (2.10)
are linear in the pressure and the flow velocity (viscous forces). Therefore, D(u, p) =
D(U + u′, P + p′) = D(U, P) + D(u′, p′) ≡ D̄ + D′, and similarly T = T̄ + T ′. Thus, the
perturbation drag is a function of the perturbation velocity and pressure, as is the
perturbation torque.

Substituting the above relations into (2.2) and (2.10), subtracting the terms
corresponding to the base flow and linearising, leads to

∂u′

∂t
+ u′ · ∇Ū + Ū · ∇u′ = − 1

ρf
∇p′ + ν∇2u′ − du′

c

dt
, (2.20)

du′
c

dt
= 8

3

[
− D′

πd2ρc
+ 2T ′

πd3ρc

]
. (2.21)

Replacing the last term in (2.20) by (2.21) gives

∂u′

∂t
= −u′ · ∇Ū − Ū · ∇u′ − 1

ρf
∇p′ + ν∇2u′ − 8

3

[
− D′

πd2ρc
+ 2T ′

πd3ρc

]
ex

= L(u′), (2.22)

which governs the stability of the coupled system. Solutions of this equation can be
decomposed into a sum of solutions of the form ũ(x, z) exp(αt), where ũ(x, z) is a spatial
eigenmode of the linear operator L(u′) and α the corresponding complex eigenvalue. The
temporal growth rate of the mode is given by σ = Re(α). The evolution of perturbations is
monitored by initialising the fields with white noise and integrating the equations forward
in time. The most dominant modes corresponding to the highest growth rates are then
extracted by applying a Krylov subspace approach, along with an Arnoldi decomposition
(see, e.g. Barkley & Henderson 1996). If max(σ ) > 0 the flow is unstable; if max(σ ) < 0
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all perturbations die out; max(σ ) = 0 corresponds to a neutrally stable state. It was found
that for mass ratios smaller than approximately 0.8, it was necessary to use a coupled
iterative solver with under-relaxation of the cylinder velocity to maintain stability of the
time-integration procedure. This same approach was used previously for vortex-induced
vibration studies of light tethered cylinders and spheres (Ryan et al. 2005; Rajamuni,
Thompson & Hourigan 2020).

One aim of the coupled stability analysis is to determine whether the ability of the
cylinder to freely roll substantially changes the flow stability from the case where the
cylinder rolls at a pre-determined fixed speed.

3. Effect of the gap size

3.1. Pressure, drag and lift
As mentioned above, the size of the gap between the cylinder and the wall has a
significant effect on the pressure forces acting on the cylinder. A series of simulations
was carried out at a finite Reynolds number of Re = 50, for which the flow is still steady
and the cylinder rolls at constant speed, in order to investigate the evolution of these
forces as the gap size approaches zero. Figure 2(a) shows the predicted distribution of
the pressure coefficient Cp = ( p − p∞)/( 1

2ρf u2
c), for various gap sizes, on the cylinder

surface in the vicinity of the gap, whose centre is located at ϕ = −90◦ (see figure 4b
for the definition of ϕ). Decreasing the gap size produces increasing pressure peaks and
movement of these peaks towards the centre of the gap. Merlen & Frankiewicz (2011)
have used lubrication theory to predict the pressure distribution in this configuration,
and proposed scalings for the pressure coefficient and the distance from the gap centre
as Cpm = 3

√
3/[2Re(G/d)3/2] and xm = d(G/d)1/2, respectively. Figure 2(b) shows the

rescaled distribution C′
p = Cp/Cpm as function of x ′ = x/xm, showing a collapse of the

data. The simulation results clearly match lubrication theory predictions of the pressure
distribution in the vicinity of the gap, providing confidence that this near singular region
is well predicted by the numerical scheme.

The variation of lift with gap size was not completely explored by Merlen & Frankiewicz
(2011). They showed that the lift coefficient increases substantially with decreasing gap
size, without showing the behaviour as the gap approaches zero. This variation, obtained
for Re = 50 in the present study, is shown in figure 3(a). The lift approaches an asymptotic
value as the gap becomes very small, consistent with the observation that the flow field
away from the gap does not appear to be strongly influenced by the gap size as it is reduced
to very small values (figure 4). Figure 3(b) shows the drag coefficient as function of gap
size. It diverges as the latter approaches zero, in line with the lubrication theory prediction
of Merlen & Frankiewicz (2011): CD = 4π/[Re(G/d)1/2].

A premise of the study reported in this paper, and of the previous numerical work
by Stewart et al. (2010b), Rao et al. (2011) and Houdroge et al. (2017), is that vortex
shedding into the wake and flow transitions are only weakly affected by the flow in the
vicinity of the gap. Evidence for this is given in figure 4. Panel (a) shows the variation of
the pressure coefficient on the cylinder surface away from the gap for two different gap
distances of G/d = 0.005 and 0.005/32. The pressure distributions are essentially identical
over the top and sides of the cylinder, but begin to diverge as the gap region is approached
(see figure 2). Since the pressure gradient along the surface is associated with surface
vorticity generation, this indicates that the outer flow does not show a strong dependency
on the gap. This is confirmed by panels (b) and (c) in figure 4 comparing the vorticity
distributions around the cylinder and in the wake for the two gap sizes. The plotted contour

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

25
 O

ct
 2

02
0 

at
 0

4:
45

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
63

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.631


Wake dynamics and vibration of a freely rolling cylinder 903 A48-11

1.0
(×104)

0.5

0

–0.5

–1.0
–80 –85 –90 –95 –100

2

1

0

–1

–2
6 4 2 0 –2 –4 –6

Cp C′
p

x′ ϕ (deg.)

Smaller gaps

(a) (b)

FIGURE 2. (a) Pressure coefficient distribution in the vicinity of the gap for different gap sizes:
G/d = 0.005/2n , n = 0, . . . , 4. (b) Rescaled distribution based on lubrication theory (see text
for details). Re = 50.
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FIGURE 3. Variation of (a) lift coefficient and (b) drag coefficient with gap size. The prediction
from lubrication theory in the limit of vanishing gap size is shown by the solid line in (b).
Re = 50.

levels are the same in both images, showing the almost identical distributions, despite the
reduction in gap size by a factor of 32. Larger differences occur inside the gap, but the
overall effect is found to be very localised.

The analysis in this section shows that while the gap size has a strong effect on the
pressure distribution in the vicinity of the gap, the influence is effectively localised to
that region and negligible elsewhere. The wake states and wake transitions are therefore
expected to depend principally on the Reynolds number only. However, the fluid–structure
interaction, in which the cylinder responds to the changing drag force as wake vortices
are formed and shed, will be affected by the gap size, because the contribution from the
gap region to the overall drag dominates the one from the remaining surface as the gap is
reduced, i.e. the variation of the wake drag over a cycle is only a fraction of the overall
drag for small gaps. These characteristics are examined further in the following sections.

3.2. Added mass
Flow-induced vibration, associated with the formation and shedding of vortices,
is expected for higher Reynolds numbers in the present configuration. Since this
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FIGURE 4. (a) Variation of pressure coefficient at the cylinder surface away from the gap
region. The plot shows almost identical distributions for distinctly different gap sizes of G/d =
0.005 and 0.005/32. Panels (b,c) show the vorticity fields in the neighbourhood of the cylinder
for these two gap sizes. Re = 50.

phenomenon depends on how easy it is to accelerate and decelerate the cylinder, it is
worth documenting the added-mass coefficient for this flow, and especially its dependence
on the size of the gap. Added mass represents the additional force needed to displace the
fluid surrounding an accelerating body, which is given by the drag this body experiences
when accelerating in an inviscid potential flow. In practice, a near-potential flow is found at
early times when a body accelerates from rest in a quiescent fluid at t = 0. Measuring the
pressure drag Dp in this situation, i.e. neglecting viscous forces, one can therefore estimate
the added-mass coefficient as

CA = lim
t→0

(
− Dp

mf ẍc

)
, (3.1)

where mf = ρf πd2/4 is the displaced fluid mass (per unit span) and ẍc the acceleration of
the rolling cylinder.
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FIGURE 5. Added-mass coefficient as a function of gap size. The solid line corresponds to the
added mass for a non-rotating cylinder adjacent to a wall. See text for further details.

This procedure was first tested by accelerating a non-rotating cylinder in a free stream
without a wall. The added-mass coefficient obtained in this way, CA = 1.00, is identical to
the theoretical potential-flow value for this case, which validates the method.

The added-mass coefficient found for the cylinder rolling near a solid boundary is shown
in figure 5 as a function of the gap size. Perhaps not surprisingly, this matches the potential
added mass for a non-rotating cylinder positioned adjacent to a wall derived by Brennan
(1982) and presented in Chung & Chen (1984), which is shown by the solid line. The gap
clearly has a strong influence on added mass, leading to an increase by a factor of 2 as
its size decreases towards zero. Note that the limiting value for zero gap size as given by
Brennan (1982) is 2.290. This high value indicates that the effective oscillatory mass is
considerable, even for nominally light cylinders, and may limit the fluid-induced vibration
response. It also suggests that the peak vibration amplitude will decrease as the gap size is
reduced. This effect is examined in § 5.3.

4. Transition to unsteadiness

In previous studies examining cylinders rolling at fixed prescribed velocities (Stewart
et al. 2010b; Rao et al. 2011; Houdroge et al. 2017), the transition from two-dimensional
steady to unsteady flow was found to occur at Re  88. The stability analysis for the freely
rolling case described in § 2.3 was used to investigate the influence of the cylinder density
ratio on this transition. Another question is whether allowing the cylinder to respond to
the incipient unsteady flow can alter the critical Reynolds number for transition. Since
the present configuration does not involve a resonance between flow unsteadiness and a
mechanical frequency, such as for an elastically mounted cylinder in a free stream (Mittal
& Singh 2005), the change in the transition Reynolds number, if any, might be expected to
be small.

Equation (2.22) indicates that the standard stability equations are modified by the
inclusion of an extra term involving the drag and torque acting on the cylinder. This
term is inversely proportional to the cylinder density, hence its contribution diminishes
as the density ratio β = ρc/ρf increases. This is consistent with the expectation that a
heavy cylinder will only exhibit a small dynamic response as the flow undergoes transition
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FIGURE 6. Non-dimensional growth rate σ (scaled by uc/d) of the most unstable periodic
mode as a function of density ratio β for different Reynolds numbers.

to unsteadiness, suggesting that the critical Reynolds number will approach that for the
fixed-rolling case. For small density ratios, the situation is less obvious.

Figure 6 shows the predicted growth rate of the dominant linear mode near transition as
a function of density ratio for different Reynolds numbers. For these calculations, a gap
size of G/d = 0.005 was adopted. A distinct but small increase in the critical Reynolds
number for light cylinders is observed. For the heaviest cylinder tested, corresponding to
β = 100, the growth rate becomes positive at Rec = 88.6 – the same critical Reynolds
number obtained for a uniformly rolling cylinder (see below). There is a smooth transition
to higher critical Reynolds numbers for lighter cylinders, asymptoting to a value of Rec 
90.8 for β < 1. Thus, there is a variation in the critical Reynolds number of ΔRec  +2
between the heaviest and lightest cylinders; a small but significant change. This indicates
that allowing the cylinder to move in response to the developing perturbation field can
actually stabilise it. On the other hand, for heavy cylinders, the increased inertia seems to
prevent the cylinder from stabilising the dominant perturbation mode.

The effect of the cylinder motion on damping the perturbation field can be seen by
evaluating the change ΔE in the area-integrated perturbation energy over one cylinder
oscillation period, which is given by

ΔE =
∫ t+T

t

∫∫
V

u′ · ∂u′

∂t
dV dt. (4.1)

Using (2.20), this expression becomes

ΔE =
∫ t+T

t

∫∫
V

u′ ·
(

−u′ · ∇Ū − Ū · ∇u′ + 1
ρf

∇p′ − ν∇2u′ − du′
c

dt

)
dV dt

= · · · +
∫ t+T

t

∫∫
V

(
−u′ · du′

c

dt

)
dV dt. (4.2)

The retained term on the right-hand side represents the energy transfer from the fluid to
the cylinder over a cycle. The term was evaluated for β = 0.2 for Re = 90, which is above
the critical Reynolds number of the fixed-rolling case. Indeed it was negative, indicating
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FIGURE 7. Bifurcation behaviour near the steady-to-unsteady transition in terms of the variation
of the amplitude of the fluctuating component of the pressure drag (C′

D,p) at saturation with
Reynolds number. These predictions are for the steady rolling case, although a similar variation
is observed for the coupled case. For a supercritical Hopf bifurcation, the expected variation is
C′

D,p ∝ (Re − Rec)
1/2. This behaviour is seen for the lower-amplitude branch close to the critical

Reynolds number, as shown in the inset plot. Points labelled (b) and (c) refer to figure 8.

that the oscillating light cylinder removes energy from the perturbation field to stabilise it
beyond that for the non-oscillating case.

As a cross-check on these predictions, the full fluid–structure problem was simulated
for a range of Reynolds numbers around the critical Reynolds number, for β = 0.2. For
Re∗ = 127 (Re = 89.9), the flow is found to be steady, whilst for Re∗ = 129 (Re = 91.7),
the saturated flow state is periodic. The lower value is above the critical number for a
steady rolling cylinder (88.6), but below the critical Reynolds number for the coupled
system predicted by stability analysis (90.8). Hence these results are consistent with the
coupled stability analysis.

The bifurcation is examined in more detail in figure 7, which shows the amplitude of the
fluctuating component of the pressure drag (C′

D,p) at saturation for the steady-rolling case
in the vicinity of onset. The variation of this amplitude follows two separate branches.
A low-amplitude branch exhibits the standard behaviour for a supercritical Hopf
bifurcation, i.e. C′

D,p ∝ (Re − Rec)
1/2 beyond the critical Reynolds number, which is here

found to be Rec  88.6 (see inset of figure 7). A second stable branch of unsteady solutions
exists for Re � 89.5. The amplitudes are significantly higher than for the initial branch, and
they evolve linearly with Reynolds number. These results show that two stable solutions
exist in the approximate interval 89.5 < Re < 92, beyond which no lower-branch solution
could be found. The dotted line in figure 7 qualitatively represents a possible unstable
branch connecting the two stable branches.

Figure 8 provides a comparison of the perturbation fields close to onset and after
saturation. These images correspond again to predictions for the steady rolling cylinder
case; similar result are found for the coupled problem. The left-hand column shows
the spanwise vorticity field at Re = 90 obtained using a steady solver (figure 8a)
and the saturated flow states at Re = 89.4 and Re = 90 (figure 8b,c), corresponding
to points (b) and (c) in figure 7, which lie on different branches of the bifurcation
plot. The right-hand column shows the dominant linear stability mode of the steady
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(a)

(b)

(c)

(d)

(e)

( f )

FIGURE 8. Vorticity fields for the steady rolling cylinder. (a) Steady solution at Re = 90; (b,c)
saturated unsteady flow at Re = 89.4 and Re = 90, respectively; (d) dominant linear instability
mode of the steady flow at Re = 90; (e, f ) perturbation at saturation for Re = 89.4 and Re = 90;
respectively. The lines are contours of the steady vorticity field for ωz = ±0.1U/d.

flow at Re = 90 (figure 8d) and the perturbation fields at saturation for Re = 89.4
and Re = 90 (figure 8e, f ), the latter two being obtained by subtracting (b,c) from (a).
These images show that, close to onset on the lower branch, the saturated perturbation
field is very similar to the dominant linear stability mode. This is not true for slightly
higher values of Re on the upper branch, for which figures 8(c) and 8( f ) show that the
saturated perturbation field has departed considerably from the linear stability mode in
figure 8(d), further illustrating the difference between the solutions of the two amplitude
branches.

Finally, there is the question of whether the steady–unsteady transition will vary
significantly as the gap size is changed. Since, the wake stability is primarily a function
of the wake flow, which is only weakly affected by the flow near the gap, it seems
probable that altering the gap should hardly affect the critical Reynolds number, for the
constant-speed case. The results from this section show that, for the fully coupled problem,
there is only a small variation from that critical Reynolds number for very light spheres.
For heavy spheres, due to their increased inertia, the effect is even smaller. As shown in
figure 13 below and discussed in detail later, the vibration amplitude appears to be close
to maximal for the current gap of G/d = 0.005. Hence, it seems probable that the change
in critical Reynolds number is also close to maximal for this gap size.

5. Asymptotic flow characteristics as function of gap size

This section presents results concerning the long-term asymptotic flow states, once the
cylinder has reached a steady or periodic state after starting to roll from rest, with special
attention to the influence of the gap size. The characteristics of the start-up transient are
treated in § 6.

5.1. Translation velocity and Reynolds number
The flow past a uniformly rolling cylinder is governed by a single non-dimensional
parameter: the Reynolds number Re = Ud/ν, based on the diameter of the cylinder and
its fixed translational speed. When comparing the results with the freely rolling case, it is
useful to resort to the asymptotic Reynolds number Re = Ūd/ν, where Ū is the time-mean
speed of the cylinder in the asymptotic state. In § 2.1.4, an alternative Reynolds number
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FIGURE 9. Relationship between the Reynolds number Re based on the asymptotic (mean)
velocity and the modified Reynolds number Re∗. The different curves correspond to different
gap ratios.

was defined specifically for the free-rolling case, based on the velocity scale V (2.11)
derived from the parameters governing this flow

Re∗ = Vd
ν

= 1
ν

√
d3

2
|β − 1|g sin θ. (5.1)

Multiple simulations were carried out for Re∗ in the range 80–300, density ratios β
between 1.2 and 10 and gap ratios G/d from 0.002 to 0.15. The relationship between
Re∗ and Re is shown in figure 9; it is found to be linear and to depend on the gap
size. The two Reynolds numbers are generally close to each other, and almost identical
for G/d = 0.05. This shows that the derived velocity scale V is a good estimate of the
asymptotic translation speed of the rolling cylinder.

These results do not depend on the density ratio β. For a fixed Re∗, β has virtually no
effect on the averaged non-dimensional quantities of the flow at saturation. The influence
of the density ratio is entirely accounted for in the non-dimensionalisation, which is based
on the momentum balance in the asymptotic state. This parameter does, however, have a
significant effect in the transient state starting from rest (see § 6).

5.2. Lift and drag
A cylinder rotating in a uniform flow experiences a lift force (Magnus 1853), which is
a direct result of the asymmetrical pressure distribution on the surface of the cylinder
generated by the rotation. The presence of a nearby wall reverses the direction of the lift if
the cylinder is sufficiently close. Stewart et al. (2010b) showed that the lift force increases
as the gap ratio is reduced from G/d = 0.01 to 0.004 at Re = 20–200 and for various
rotation rates (from normal to reverse rolling), noting that it was of positive sign, i.e.
directed away from the wall, over the entire parameter range of their study. For normal
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FIGURE 10. (a) Mean lift coefficient C̄L as a function of the gap size G/d for Re∗ = 80–300.
(b,c) Pressure and viscous components of the lift force.

rolling, Rao et al. (2015) extended the analysis to gap heights up to 4 diameters and
Reynolds numbers up to 400. One observation was that the lift force becomes negative
once the gap exceeds a certain value. This shows that the body can experience either a
repulsive or an attractive force from the wall, depending on its distance to it and on the
value of the Reynolds number.

This effect was investigated here for the freely rolling cylinder. The results are reported
in figure 10, which shows the total lift, as well as its pressure and viscous components, for
0.002 ≤ G/d ≤ 0.15 and Re∗ ≤ 300. For Re∗ < 50 (not shown), the lift force is found to
be positive for all values of G/d considered. For higher Reynolds numbers, the expected
change of sign occurs. Stewart et al. (2010b) noted that, in general, the pressure force,
rather than the viscous force, provides the dominant contribution to the lift. As the gap
is decreased, the pressure variation across it also increases, as shown in figure 3. The
low pressure at the top of the cylinder, together with the complex contribution of the
pressure in the gap region, results in a positive lift force. The current simulations show
that the change of sign of the total lift is accompanied by a similar change of sign of the
pressure lift (figure 10b). The viscous lift remains positive, but fairly constant, contributing
less to the total lift variation at a given Re (figure 10c). The wall and the gap region
lose their influence as the distance between the cylinder and the wall grows. The forward
rolling of the cylinder, combined with the incoming flow at large gap heights, generate a
lower velocity magnitude (and therefore greater pressure) on the top of the cylinder than
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FIGURE 11. Relationship between Reynolds number and critical gap height for the change of
sign of the lift force.
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FIGURE 12. Mean (a) drag coefficient and (b) torque coefficient for Re∗ ≥ 80 (see legend in
figure 10a).

at the bottom, resulting in a pressure differential that causes the lift force to be negative.
The relation between the critical gap ratio, Gc/d, at which the sign change occurs and the
Reynolds number is plotted in figure 11.

The trends of the mean drag and torque coefficients given in figure 12 show a general
decrease in magnitude as the gap ratio increases. Note that, in the chosen coordinate system
(figure 1), the fluid torque is negative for a cylinder rolling without slip. Whereas the torque
magnitude decreases with Re∗ for all gap sizes, the drag evolution reverses this tendency
at larger gaps.

5.3. Amplitude and frequency of oscillations
For Reynolds numbers above the threshold for unsteady flow, the wake of the
rolling cylinder reaches a periodic state characterised by vortex shedding (see, e.g.
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FIGURE 13. Amplitude A∗ of velocity oscillations (scaled by the mean velocity). (a) β = 1.2,
(b) β = 10.
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FIGURE 14. Non-dimensional oscillation frequency St. (a) β = 1.2, (b) β = 10. Symbols and
lines as in figure 13.

figures 21 and 22 in § 6). The resulting unsteady forces in turn lead to oscillations of the
translation velocity of the freely moving cylinder. The frequency f of these oscillations can
be expressed in non-dimensional form as a Strouhal number, St = fd/Ū. Their amplitude
A is rescaled by the mean value of the cylinder velocity: A∗ = A/Ū.

Rescaled amplitudes and Strouhal numbers were determined for a range of gap sizes,
Reynolds numbers and density ratios. The results are shown in figures 13 and 14. The gap
size has a significant effect on the flow-induced vibration characteristics. The predictions
show that as the gap is reduced from d/25 to d/6400, the vibration amplitude initially
increases to peak at a gap ratio around 0.01, before decreasing at smaller gap ratios.
Reducing the gap from 0.005d by a factor of 32 results in a reduction of the vibration
amplitude by approximately 50 % for β = 1.2, and considerably less in the β = 10 case.
The data also show that a decrease of the mass ratio from β = 10 to 1.2 results in only a
moderate overall increase of the velocity fluctuation (factor of 2). This is consistent with
the large added mass (CA ∼ 2) associated with a cylinder rolling near a wall (figure 5).

The Strouhal number varies with all three parameters as well, although for all the cases
considered it lies in the approximate range 0.05 < St < 0.07, with smaller values at higher
Reynolds numbers (except for the largest gap, G/d = 0.04). For gap ratios G/d ≤ 0.005,
the variation with this parameter is weak, especially for high mass ratios. Figure 14(b)
for β = 10, shows a collapse of the Strouhal–Reynolds number curves for G/d � 0.0025.
This is consistent with the small variation of vibration amplitude with gap ratio in this
parameter range.
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The results in this section have clearly shown that the size of the gap between the
wall and the cylinder rolling along it has a non-negligible effect on the characteristics
of the cylinder motion, the wake flow and the resulting flow-induced vibrations. In order
to explore in more detail the dependence on the other parameters, the gap ratio is fixed at
G/d = 0.005 throughout the remainder of the paper. This is in line with previous similar
studies (e.g. Stewart et al. 2010b; Rao et al. 2011) and partly motivated by numerical
constraints. Reducing the gap ratio drastically affects the maximum time step of the
numerical method, because of the increasingly singular pressure distribution. The chosen
gap size is a compromise, enabling a more extensive coverage of parameter space. It
produces a VIV response which is close to maximum for small gap ratios, as shown in
figure 13. This figure can be used to adjust the VIV predictions made in the following
section for cases with different gap sizes.

6. Flow and cylinder motion starting from rest

This section considers the overall evolution of the cylinder motion and the associated
wake flow after the body is released from rest. The gap size is fixed at G/d = 0.005 and
the two parameters governing the evolution of the system, the Reynolds number and the
density ratio, are varied.

Figure 15 gives an overview of the different behaviours for 80 ≤ Re∗ ≤ 250 and
0.8 ≤ β ≤ 100, illustrated by the time evolution of the cylinder velocity. For a given
Reynolds number, the final (non-dimensional) mean velocity is the same for all values of
the density ratio, which is expected from the choice of the scaling. However, the start-up
transient and the amplitude of flow-induced vibrations in the final state vary with β. The
period of oscillation depends primarily on the vortex shedding frequency of the uniformly
rolling case, which is only weakly modified by the vibration of the cylinder; it is nearly the
same for all values of β.

From figure 15, one can identify distinct phases in the motion history starting from rest.
Initially, the cylinder velocity increases from zero with an almost constant acceleration,
which is a function of the density ratio. Subsequently, it continues to increase and fluctuate
on a time scale not related to vortex shedding, before reaching, or oscillating around, a
constant speed.

6.1. Initial evolution
At small times, the drag force is dominated by the added mass contribution, as mentioned
in § 3.2. The equation of motion (2.10) therefore reduces to

3
2 mc ẍc = |mc − mf |g sin θ − CAmf ẍc. (6.1)

Scaling the velocity by V ′ = V/
√

(3/2)β + CA and time by τ ′ = (d/V)
√

(3/2)β + CA,
reduces (6.1) to the dimensionless equation du∗

c
′/dt∗′ = 2. Using this scaling should

result in a collapse of the dimensionless velocity–time variation at small times. This is
demonstrated in figure 16, which shows the rescaled velocity evolution at Re∗ = 200 for
three values of β. The evolutions follow the prediction of (6.1) at very small times. As the
cylinder accelerates and vortical structures develop in the wake, the effective added mass
rapidly deviates from the potential added mass. For low mass ratios, this has a large effect
on the cylinder acceleration, while for high mass ratios, the influence of the added mass is
relatively small.
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FIGURE 15. Temporal evolution of the cylinder velocity for different Reynolds numbers and
density ratios. (a) Re∗ = 80, (b) Re∗ = 160, (c) Re∗ = 200, (d) Re∗ = 250.
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FIGURE 16. Variation of the rescaled velocity with rescaled time at Re∗ = 200 for different
mass ratios, showing the collapse of the curves for small times.

6.2. Intermediate phase
For Reynolds numbers below the threshold for unsteady flow (figure 15a), the cylinder
motion reaches its asymptotic state with constant velocity after a smooth transition from
the initial acceleration phase. The duration of this transition increases with the density
ratio, as expected. When the flow is unsteady, we define the critical time t∗c as the
non-dimensional time corresponding to when the first vortex is shed into the wake,
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FIGURE 17. Characteristic time t∗c for the onset of vortex shedding, as function of Reynolds
number and density ratio.

specifically calculated from the time of the initial local maximum of the cylinder velocity.
Figure 17 contains a contour plot of t∗c as a function of Re∗ and β, and figures 18 and
19 compare the evolution of the wake from t∗ = 0 to t∗ = t∗c for two Reynolds numbers
and three density ratios. Figure 17 shows that t∗c increases as Re∗ decreases and/or β

increases; the closer to transition and/or the denser the body, the longer the duration of
the intermediate phase. Regarding the flow structure, the recirculation region that forms
and develops downstream of the cylinder prior to the shedding of vortices is quasi-steady
and characterised by two closed recirculation zones: an upper one forming around the
cylinder and being displaced away from the wall (coloured in blue), and a lower one
which is smaller and forms near the wall (coloured in red). These regions grow longer
as Re∗ decreases and/or β increases.

Low mass ratios result in the transition to unsteady periodic flow almost as soon as the
separating shear layer has rolled up into a small identifiable vortex structure. On the other
hand, large mass ratios allow a quasi-steady intermediate wake to form prior to the onset
of strong unsteadiness and vortex shedding. This elongated recirculation bubble is similar
to the solution obtained by solving the steady flow problem at the same Reynolds number.
Presumably, this happens because of the slow increase in cylinder velocity at high mass
ratios, allowing the wake to evolve slowly through a series of near-steady wake states.
During this transition, the cylinder reaches velocities well beyond the mean velocity of the
final state. This behaviour is similar to the one observed for an isolated cylinder in a free
stream. When shedding commences, it takes many cycles for the wake to shorten again,
and for the cylinder to decrease its velocity to reach the asymptotic state.

6.3. Asymptotic state
In the final state, the wake and cylinder motion are either steady (figure 15a) or periodic
(figure 15b–d). The amplitude of the velocity oscillations (figure 20) decreases as the
density ratio β increases and/or Re∗ decreases: the denser the body, the less sensitive it
is to the forces acting on it; and the weaker the vortex shedding, the lower these forces
are. Both effects lead to a weaker response and oscillation amplitude. Figures 21 and 22
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t* = 0 t* = tc
*

(a)

(b)

(c)

FIGURE 18. Initial development of the flow (vorticity contours) up to the shedding of the
first vortex at time t∗c , for Re∗ = 160 and different density ratios. (a) β = 0.2, (b) β = 50,
(c) β = 200.

t* = 0 t* = tc
*

(a)

(b)

(c)

FIGURE 19. Same as figure 18, for Re∗ = 300. (a) β = 0.2, (b) β = 50, (c) β = 200.

compare the flow evolution at β = 0.2 and 200 for Re∗ = 160 and 300, respectively, over
one shedding cycle. The shedding patterns are similar: a compact vortical structure forms
from the upper shear layer, destabilises the wall shear layer and rolls up to shed as a
counter-rotating vortex pair. One can nevertheless distinguish that for the heavier cylinder
(β = 200), the vortices are closer to the wall than for the lighter one (β = 0.2).

The Strouhal number of the unsteady asymptotic states is shown in figure 23(a) as
function of the density ratio for various Reynolds numbers. Some dependency on β can be
observed for β < 50; above this value, the Strouhal number is practically constant. Heavier
cylinders show weaker flow-induced vibrations and therefore roll with approximately
the same constant non-dimensional speed, since the latter does not depend on β. As a
consequence, the measured mean Strouhal numbers for β > 50 are in good agreement
with the results obtained for uniform rolling, as seen in figure 23(b), where the Reynolds
number Re is used for comparison purposes. The values lie between 0.05 and 0.065
for 100 < Re < 300, which is significantly lower than for a non-rotating cylinder in an
unbounded flow.

Further comparisons can be made between the asymptotic state of the freely rolling
cylinder and the case of a cylinder rolling at constant speed, again using Re. Figure 24(a–c)
compares the time-mean drag, lift and torque coefficients obtained in both cases. The
values match closely up to the transition at Re  88, where the flow becomes unsteady
and the freely rolling body begins to oscillate. In the unsteady regime, deviations of less
than 2 % for the drag and torque and 5 % for the lift occur. Using the force and torque data,
(2.18) can be used to predict the asymptotic mean velocity of the freely rolling cylinder.
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FIGURE 20. Amplitude A∗ of cylinder velocity oscillations (scaled by the mean velocity), as a
function of Reynolds number and density ratio.

(a)

(b)

FIGURE 21. Flow evolution during one shedding cycle for Re∗ = 160.
(a) β = 0.2, (b) β = 200.

(a)

(b)

FIGURE 22. Same as figure 21, for Re∗ = 300. (a) β = 0.2, (b) β = 200.

This prediction is compared to the values measured in the simulations in figure 24(d),
showing excellent agreement.

6.4. Flow-induced vibrations
In this section, we take a closer look at the various time-dependent forces acting on the
freely rolling cylinder in the unsteady regime, characterised by vortex-induced vibrations.
The top row of figure 25 shows the asymptotic oscillatory cylinder displacement around
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FIGURE 23. (a) Strouhal number as function of density ratio for different Reynolds numbers.
For β ≥ 50, the Strouhal number is practically constant. Its mean value St in this range is shown
as function of Re in (b) and compared to the uniform-rolling case.
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FIGURE 24. Mean (a) drag, (b) lift and (c) torque coefficients. The lines show the results for
uniform rolling. (d) Asymptotic mean velocity. The line represents the prediction in (2.18).

its linearly increasing mean position, X∗ = (xc − Ūt)/d, as a function of time for
Re∗ = 250. The left and right columns show results for β = 0.1 and 20, respectively. Both
displacement signals are far from sinusoidal, and the displacement for the low mass ratio is
markedly asymmetric, almost resembling a sawtooth waveform. The oscillation amplitude
is significantly greater for β = 0.1, as might be expected, with a value of ∼0.17d. For
β = 20, the amplitude is less than half this value.

Figure 25 also shows the time traces of the force components acting on the cylinder, and
their phase relationships to the displacement signal. From (2.10), the dimensional equation
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FIGURE 25. Time histories of the oscillation amplitude and force components for Re∗ = 250
and two density ratios. From top to bottom, the figure shows: X∗ – cylinder displacement with
respect to the motion at constant mean velocity; Fx,p – pressure force coefficient without added
mass; Fam – added-mass force coefficient; Fx,ν – viscous force coefficient; FT – force coefficient
from torque; total force coefficient; and vortex force coefficient. (a) β = 0.1, (b) β = 20.

of motion can be written as

3
2 mc ẍ = |mc − mf |g sin θ + Fx + 2T/d, (6.2)

where Fx = −D is fluid force in the x-direction, and T is the viscous torque. Splitting the
fluid force Fx + 2T/d into different physical contributions gives

fluid force = (Fp + CAmf ẍ) − CAmf ẍ + Fx,ν + 2T/d

= Fx,p + Fam + Fx,ν + FT . (6.3)

Here, Fx,p is the pressure force without the added-mass contribution, Fam the
(potential-flow) added-mass term associated with the acceleration of the cylinder, Fx,ν

the viscous drag force, and FT the effective forcing due to viscous torque. In an attempt
to examine contributions from irrotational and rotational flow components, Govardhan &
Williamson (2000), following Lighthill (1986), considered the total force to consist of the
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FIGURE 26. Amplitude A∗
d of the displacement oscillations (scaled by the cylinder diameter)

as a function of Reynolds number and density ratio.

potential added-mass force and a ‘vortex force’ representing all other contributions

Ftotal = Fam + Fvortex . (6.4)

For the classical VIV response of a circular cylinder, the transitions to different modes
can be identified with different jumps in the total and vortex force components as the flow
velocity is varied.

Figure 25 shows these contributions for β = 0.1 and β = 20. For both cases, the total
and vortex force signals are approximately 180◦ out of phase with the displacement signal.
This was verified by performing a Hilbert transform on each signal and subtracting the
time-dependent phases to obtain a mean value (see, e.g. Khalak & Williamson 1999). For
the low mass ratio case, the total force is small relative to the vortex force, because the
pressure force consists mainly of the added-mass component. The viscous force terms
Fx,ν and FT are relatively small in comparison, as expected, given the mean Reynolds
number of 250. The situation for β = 20 is different. Here the added mass, viscous and
viscous torque terms are an order of magnitude smaller than the pressure term, so that
the vortex and total force signals are very close. One interesting comparison concerns the
viscous torque term. The phase relationship switches between the low and high mass ratio
cases from being approximately in phase to being approximately out of phase with the
displacement signal.

Figure 26 shows a contour plot of the displacement amplitude over a wider range in the
Re∗–β parameter space. Peak amplitudes occur for 200 ≤ Re∗ ≤ 250 as β is varied over
several orders of magnitude. The largest values occur for lighter-than-fluid mass ratios, as
might be expected. However, because of the large added-mass coefficient, the oscillation
amplitudes are limited, even for very light cylinders.

7. Conclusions

We have studied the configuration of a circular cylinder rolling along an inclined
solid wall in a viscous incompressible Newtonian fluid under the influence of gravity,
through two-dimensional numerical simulations. The evolution equations for the fluid and
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cylinder motion depend on two non-dimensional parameters: a Reynolds number based on
a velocity scale derived from the balance between gravity and fluid forces in the asymptotic
state, and the ratio of cylinder and fluid densities. In addition, the size of the small but finite
gap between the cylinder and the wall, which is required by the numerical procedure, has
a notable effect on the fluid forces. It is known from lubrication theory that the drag on the
rolling cylinder diverges as the gap is reduced to zero, and the corresponding theoretical
scaling is recovered in the present simulations. The lift, torque and added-mass force also
increase with decreasing gap size, although they appear to remain finite. For small gap
size (less than 1 % of the cylinder diameter), the added mass of the rolling cylinder is
more than twice that of a non-rotating cylinder far from a wall. The gap effect remains
localised in the immediate vicinity of the location of minimum cylinder–wall separation.
The pressure distribution on the outer parts of the cylinder wall and the overall vorticity
distribution near the cylinder and in its wake are quite insensitive to variations in the gap
size, provided the latter is small enough.

Increasing the Reynolds number leads to the onset of unsteadiness in the wake of
the rolling cylinder. Whereas for heavy cylinders (large density ratios), this transition
occurs at roughly the same velocity as for a cylinder rolling at a prescribed fixed
speed, the instability threshold is found at higher Reynolds numbers in the case of light
cylinders. The fact that the cylinder is free to adjust its motion to the forces acting on
it delays the transition to unsteadiness for low density ratios. For comparison/contrast,
one may recall the case of a non-rotating elastically mounted cylinder in a free stream,
for which the added degree of freedom leads to vortex-induced vibrations at Reynolds
numbers below the threshold for unsteadiness of the fixed cylinder (Mittal & Singh
2005).

Once the wake is unsteady, the cylinder responds to the time-dependent forces with
periodic oscillations of its rolling speed. The amplitudes and frequencies of these
flow-induced vibrations depend on both the Reynolds number and the density ratio, as
well as on the gap size. In the long-term asymptotic state, the time-averaged force and
torque coefficients, as well as the wake frequency, are nearly identical to the values found
for a cylinder rolling at constant speed. This can be explained by the fact that the oscillation
amplitudes generally remain small, even for low density ratios, due to the large added mass
in this configuration.

Whereas the mean values of the forces and non-dimensional rolling speed in the
asymptotic state do not depend on the density ratio, this parameter influences the stages
leading up to this regime after a start of the motion from rest: the initial acceleration
with near-potential flow and the subsequent growth of a recirculation region before the
onset of vortex shedding. The duration of these phases, as well as the amplitudes of
the final flow-induced vibrations, are affected by the density ratio. For high values, the
initial acceleration is slower, allowing the near-wake vorticity region to grow and move
downstream. This leads to a significant overshoot of the cylinder velocity with respect to
the final asymptotic value. At low mass ratios, this phase is much shorter and without
overshoot, since shedding commences quickly.

We have not addressed the issue of cylinder lift-off from the wall, the cylinder motion
being restricted to the direction parallel to the wall in our simulations. Since the lift
(force in the direction normal to the wall) is generally positive in the range of parameters
considered here, reaching relatively large values for small gap sizes, the situation may
arise that this lift exceeds the component of gravitational/buoyancy force normal to the
wall, which would lead to a negative wall reaction force (N in (2.6)). Since this is not
possible, the cylinder does not remain at its original distance from the wall (gap), but
accelerates away from it. Using the condition N < 0 and the expression (2.18) for the
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asymptotic velocity, one can derive the following condition for lift-off:

tan θ >
C̄D − C̄T

C̄L
, (7.1)

where the right-hand side depends only on the Reynolds number. When Re∗ is fixed, the
cylinder is expected to lift off when the wall inclination angle exceeds a limit depending
on the values of the (mean) force and torque coefficients. An alternative interpretation
results from the fact that the lift is a decreasing function of the gap size: when the limit for
lift-off is reached, the cylinder will move away from the wall, but just enough so that the
lift coefficient associated with the new gap size is again below the limit for lift-off.

Following on from this discussion, the next stage would be to produce a coupled model
that allows for normal motion of the cylinder without a fixed gap. However, including this
further degree of freedom increases the problem complexity substantially; in particular,
the flow physics within the gap operates on much shorter time and length scales than
the outer flow, so a multi-scale modelling approach treating the two zones using different
approaches may provide a way forward. Even with the current model, for minute gaps
a minuscule time step is needed, resulting in extremely long integration times. Adding
this further degree of freedom also decouples the rolling and translating velocities, and
in addition, means that a time-varying mesh (or alternative approach) would be needed.
In reality, the gap thickness for an ideal cylinder is probably mostly dependent on surface
roughness, which ideally would also be included in the computational model. Finally, we
note that for smooth machined cylinders, the effective gap is likely be to significantly
smaller than the smallest gap considered in this study.

We have also not considered three-dimensional effects. As discussed in Houdroge
et al. (2017), for a cylinder rolling at fixed speed, the transition to three-dimensional
flow first occurs for the steady two-dimensional wake, at Reynolds numbers below
the instability threshold leading to two-dimensional shedding. A similar behaviour is
expected for the freely rolling cylinder if the third, spanwise dimension is added.
Three-dimensional instabilities will then interact with, and modify, the unsteady transition
and the flow-induced vibration characteristics. For the case of a cylinder starting its
motion from rest, the system traverses a series of different quasi-steady states with
increasing Reynolds number (based on the instantaneous speed). This process tends to
delay the three-dimensional transition, similar to the case of a cylinder which starts to roll
impulsively at a constant speed (Houdroge et al. 2017).
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