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Abstract A novel, accurate and simple stereo particle

image velocimetry (SPIV) technique utilising three cam-

eras is presented. The key feature of the new technique is

that there is no need of a separate calibration phase. The

calibration data are measured concurrently with the PIV

data by a third paraxial camera. This has the benefit of

improving ease of use and reducing the time taken to obtain

data. This third camera also provides useful velocity

information, considerably improving the accuracy of the

resolved 3D vectors. The additional redundancy provided

by this third perspective in the stereo reconstruction

equations suggests a least-squares approach to their solu-

tion. The least-squares process further improves the utility

of the technique by means of the reconstruction residual.

Detailed error analysis shows that this residual is an

accurate predictor of resolved vector errors. The new

technique is rigorously validated using both pure transla-

tion and rotation test cases. However, while this kind of

validation is standard, it is shown that such validation is

substantially flawed. The case of the well-known confined

vortex breakdown flow is offered as an alternative valida-

tion. This flow is readily evaluated using CFD methods,

allowing a detailed comparison of the data and evaluation

of PIV errors in their entirety for this technique.

1 Introduction

Stereo particle image velocimetry (SPIV) is now a well-

established extension of traditional PIV (Arroyo and

Greated 1991; Willert 1997; Prasad 2000). SPIV offers

several advantages over standard (or planar) PIV in addi-

tion to the resolution of the out-of-plane components.

These advantages include the improved accuracy of in-

plane components of the velocity field due to removal of

perspective error. Recent extensions of SPIV include three-

dimensional (3D) high-speed scanning (Hori and Sakaki-

bara 2004), multi-plane SPIV (Schroder and Kompenhans

2004), dual-time SPIV for acceleration measurement

(Perret et al. 2006), and stereoscopic micro-PIV (Lindken

2006).

The three-component velocity field is reconstructed

based on two velocity fields derived from PIV. This

reconstruction process relies on both geometrical equations

based on the camera setup, and a calibration step linking

the acquired image plane to the object plane.

Following the terminology of Prasad (2000), several

techniques exist in order to reconstruct the 3D velocity

field from distorted 2D fields, namely geometric recon-

struction (Prasad and Adrian 1993), 2D calibration-based

reconstruction and 3D calibration-based reconstruction

(Soloff et al. 1997).

The calibration based methods correct the unavoidable

distortion from the image plane. The difference between

two- and 3D techniques is that the latter also involves

calibration from the object plane to a number of parallel

planes near the imaging plane. These additional calibra-

tions indirectly provide the information relating to the

imaging geometry (Prasad 2000; Prasad and Adrian 1993;

Raffel et al. 1998; Soloff et al. 1997). These calibration

based methods are sensitive to alignment errors in the
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positioning of the calibration plate relative to the mea-

surement plane. However, as described by Willert (1997)

and furthered by Wieneke (2005) and Fouras et al. (2007),

cross-correlation between cameras (of particle images

taken at the same instant) can also provide calibration

information. For example, Wieneke (2005) provides a

system to use this information to provide correction for

misalignment of the calibration plate.

Almost all calibrations utilise a target, which consists of

a discrete number of markers placed on a regular Cartesian

grid (Lawson and Wu 1997). Typically, these targets

contain in the order of 100 such markers, i.e., 10 · 10 grid.

The exact method of undertaking this calibration varies

depending on the Stereo PIV software being utilised.

However, it is largely based on the PIV algorithms them-

selves and may even require the practitioner to manually

identify markers in an image and link them to a corre-

sponding marker on the target. The uncertainty in

identifying the position of these markers by use of PIV

software is proportional to the size of these markers. The

calibration data are then fitted to a polynomial function by

least-square means (both linear and non-linear are used).

A technique that offers the advantages of the above

techniques, with even greater improvements in recon-

struction accuracy and without the requirement of the

practitioner to conduct a distinct calibration phase, has

been developed based on the work by Fouras et al. (2007).

This calibration target free technique utilises a third camera

placed in the paraxial (normal to the light sheet) position.

This technique is of greatest utility when the paraxial view

has minimal distortion or when it is not convenient to place

a calibration target in the measurement region. The paper

will be divided as follows: a description of the three camera

technique; followed by an experimental validation and an

extensive error analysis will be presented. The paper con-

cludes with a comparison of Stereo PIV measurements

using the novel technique and CFD of a confined vortex

breakdown.

2 Description of novel technique

Before PIV interrogation of the image pairs begins, PIV

interrogation of the images captured at the same instant is

undertaken to determine the distortion or calibration map.

The calibration map can be acquired with an accuracy far

outstripping that of any discrete system of large markers.

This is for two reasons. First, the ability to accurately

determine the position of any object is proportional to the

size of that object and PIV particles are smaller than the

markers on calibration targets. Second, the calibration data

can be averaged over the entire series of data acquired

under the same stereo imaging parameters. This means that

as the number of PIV measurements increases, the RMS

error of the calibration maps approaches zero. Faster con-

vergence to this zero error state can be achieved by the use

of correlation averaging (Meinhart et al. 2000). Rather than

averaging instantaneous vector fields, this technique

involves averaging the cross-correlation function before

the peak is determined.

In addition, further improvement is made by making use

of the information provided by the third paraxial camera.

During the reconstruction phase, there is now considerably

more information available than for typical two camera

SPIV. A definition of the key spatial variables can be found

in Fig. 1. Standard reconstruction solves four equations (dx

and dz component of the displacement vector from two

cameras) with three unknown terms (dx, dy and dz com-

ponents of the reconstructed vector). In reality, however,

the solution of the dx and dz components of the recon-

structed vector are almost completely de-coupled from the

solution of the dy component. (Here, as shown in Fig. 1,

the plane in which the cameras lie is the xz plane.) This

means that the solution of the dy component is, to a large

extent, simply the average of the dy component from each

camera and that the solution of the dx and dz components

of the reconstructed vector is fully constrained problem

with two equations and two unknowns. With data available

from the third camera, there are now six equations. This

allows not only further averaging for the dy component,

(reducing errors to
ffiffiffiffiffiffiffiffi

2=3
p

of the level with two cameras),

but also now allows for a least-square solution of the dx

Fig. 1 Schematic diagram of generic Stereo PIV (SPIV) configura-

tion including the co-ordinate systems used in this paper. Shown on

the figure are the x, y and z axes. The origin of the coordinate system

is the point on the laser sheet plane in the center of the imaged region

of interest, from the central camera denoted camera C. Also, two

additional cameras, denoted left (L) and right (R) for simplicity are

shown. Also shown is the Scheimpflug configuration and the

definition of the camera angles bL and bR, as well as their positions

(xL, 0, zL) and (xR, 0, yR). The paraxial camera (camera C) is held at

the angle (bC = 0) and at a fixed position (0, 0, zC) throughout the

paper
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and dz components with three equations and two

unknowns, once again improving accuracy.

The additional information also increases the redun-

dancy contained within the system. In other SPIV systems,

if the data from one image are unavailable for some reason

during the reconstruction process, such as data rejection

during PIV interrogation, a hole appears in those data, as

two geometric equations will not suffice to solve for all

three unknowns. In the three camera case, if data are

unavailable from one camera, then a solution from the

remaining two cameras is still viable. The effects of this

redundancy grow dramatically with increasing vector fail-

ure rates. For the case of 5% vector failure rates, a standard

two camera stereo will suffer a failure rate of 9.75%,

whereas a three camera technique will only suffer a 0.75%

failure rate.

Along with a definition of the key spatial variables, a

typical camera configuration for the three camera stereo

technique can be found in Fig. 1. The origin of the angles is

defined by the paraxial or central camera (here defined as

camera C). The practitioner is free to move the cameras to

any configuration they choose. This includes the popular

arrangement where cameras are symmetrically placed

about the laser sheet as opposed to being symmetrically

placed about the paraxial position as shown in the

schematic.

The entire Stereo PIV technique is described schemati-

cally in Fig. 2. All PIV interrogation is performed in real

world co-ordinates as measured by the paraxial camera C.

This means that measured data are directly utilised in the

reconstruction process without the need for any interpola-

tion. To achieve this, mapping functions (MF) for the

co-ordinate systems as measured by the stereographic

cameras, relative to the paraxial camera, are required.

These MFs are directly measured by cross-correlating the

images from the paraxial camera with matching images

(taken at the same instant in time) from each stereographic

camera in turn. These MFs are simply the displacement

vector fields of apparent motion of particles as a result of

differences of perspective between cameras. It should be

noted that, unlike other target based systems where the

number of points in the system is limited (i.e., generally in

the order of 100), here the number of points is equal to the

number of vectors to be sought (typically in the order of

64 · 64 = 4,096). These MFs are now used as inputs into

the window shifting function (WS) of the PIV software

developed by the authors (see CC loop in Fig. 2, right). The

displacement vector fields caused by the fluid motion as

measured from each of the three perspectives are now

measured. Almost all modern PIV software performs WS

to improve accuracy and dynamic range. The accuracy can

be still further improved by symmetrically shifting both

Fig. 2 Schematic diagram showing (left) the proposed target-free,

three camera Stereo PIV process. Inputs are the image pair

sets(denoted A and B) from the three cameras (here denoted L, C
and R). Each set is cross-correlated with the paraxial set (here C) in

the CC loop in order to generate the corresponding mapping functions

(MF). These MFs will in turn be used as inputs for the window

shifting (WS) for the cross-correlation of each set. Finally, the

displacement fields of each set are used in a least-square geometric

reconstruction method (LSQ) to generate the three component vector

field. Also shown (right) is the cross-correlation process (CC loop)

including WS based on the MF and multi-window iteration (MW). To

reduce peak-locking in the sub-pixel component, an additional

distortion loop is included
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windows to achieve the same relative displacement

(Meunier and Leweke 2003). The only special feature of

the PIV software required to perform this calibration is to

accept as an input to the displacement vector field of the

MF and to displace both windows in the cross-correlation

analysis by this amount.

By including the MF into the technique in this way, the

requirement to interpolate the data (either the image before

the PIV interrogation or the vectors after) is avoided pro-

vided the MF data are calculated on the same grid as that

on which the flow is to be measured. This grid is defined

from the perspective of the paraxial camera.

It can be seen in Fig. 2 that particle image distortion

(PID) is employed to reduce peak locking. This PID is

used globally (i.e., on the entire image) and not locally

(i.e., PIV interrogation window). The interpolation scheme

chosen is a bi-cubic interpolation as used by Chen and

Katz (2005). The effects of the first pass of PID are shown

in Fig. 3.

Specifically in the case of the MFs, peak locking errors

may be completely eradicated by replacing the measured

data with an analytical representation. This not only

removes peak locking but any remaining random errors.

The authors wish to stress that PIV random errors will be

small because of the averaging process described earlier

and that analytical representation is not necessarily

required. In this case a cubic representation was chosen.

The choice of a cubic dependence in x and y is arbitrary

and chosen for its simplicity and high performance (Soloff

et al. 1997).

MFðx; yÞ ¼ a0 þ a1xþ a2x2 þ a3x3 þ a4xyþ a5x2y

þ a6xy2 þ a7yþ a8y2 þ a9y3;
ð1Þ

where ai are vector valued coefficients to be determined.

Because of the large number of points, a least-squares

solution by means of a bi-conjugate gradients method

(BCG) has been used to determined the coefficients (Press

et al. 1992).

Finally, each of the three displacement fields is used in a

least-squares geometric reconstruction method (LSQ) to

generate the three component vector field on a point by

point basis. This is achieved by using the standard pinhole

model at each location on the element grid, since each

displacement vector field is calculated in the same co-

ordinates as the paraxial or center camera. The least-square

solver is implemented with singular value decomposition

as described in Press et al. 1992). More precisely, the

above formulation can be expressed as follows:

1 0 ðDx1 � x1Þ=z1

0 1 ðDy1 � y1Þ=z1
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where (xi,yi,zi) and ðDxi;DyiÞ ¼ ðgxc þ dxi
; gyc þ dyi

Þ are

the position and the measured projection of the ith camera

(measured dxi
displacement added with the grid position

(gxc, gyc) from the center of the center camera for varying

viewing angle across the image), respectively; and N is the

total number of cameras used.

Alternatively, instead of a pinhole model and a single

plane calibration technique, a practitioner employing a

more widely used technique such as that proposed in Soloff

et al. (1997) could utilise many of the advantages described

in this paper by making only minor changes to their

practice. These changes would include calibrating by tra-

versing the light sheet through their measurement volume

and solving the reconstruction equations with a least-

squares method.

3 Validation

The performance of the three camera technique was

investigated initially with two separate experiments

undertaken to test the ability of the new system to measure

the classical test cases of pure translation and pure, solid-

body rotation. Only a brief overview is given here, since a

detailed description of these experiments can be found in

Fouras et al. (2007), with the primary difference that three

cameras were used in this case as opposed to the standard

configuration of two cameras in that work.
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Fig. 3 a Probability density function (PDF) of typical sub-pixel

component of cross-correlation process. b PDF after second image

pair is globally distorted by resultant displacement field using bi-

cubic interpolation scheme. The figure shows the extent of the peak

locking and reduction caused by distortion process
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The translation experiments were carried out using two

different symmetric camera angles, as SPIV system per-

formance often varies with the camera positions (Lawson

and Wu 1997). Camera angles of bR = –bL = 30�, and

bR = –bL = 45� were chosen, as these represent typical

offsets that produce significant image distortion. The flow

field was simulated by a sheet of paper printed with a

pseudo-random pattern. This paper was fixed between glass

plates and attached to a linear traverse driven by a preci-

sion ground lead screw driven by a geared stepper motor.

The object was positioned for each image using a micro-

stepping, stepper motor controller. Images were recorded at

101 positions with a small known displacement between

each image. This allowed a flexible system of analysis; by

interrogating against different pairs, different length vec-

tors were achieved. Different vector lengths (kdx: k = 1,16)

were obtained by analysing CC(i,i + k), where i is the

frame number, k is the number of skipped frames, and CC

is the cross-correlation process (see Fig. 2). In this manner,

16 reliable data sets of increasing magnitude were

obtained. Since image quality and other PIV acquisition

and processing parameters were held constant, PIV errors

were also held constant in absolute terms. By normalising

each data set by the known displacement, 16 data sets with

varying levels of PIV accuracy were achieved.

The rotational test cases were performed by rotating a

fluid body within a cylindrical vessel. The vessel was first

accelerated to a constant rotational rate of x1 = p/4 rad/s,

and the relative fluid motion allowed to decay resulting in

solid-body rotation. The rate of decay and the continued

damping of any relative fluid motion were enhanced by the

use of a glycerine/water mixture as the working fluid. In a

manner similar to the translation case, this whole data set

was analysed twice to produce data with apparent rotation

rates of x1 = p/4 rad/s and x2 = p/2 rad/s.

As the theoretical displacements of the translation and

rotation test cases are known, statistics can be compiled

regarding errors relative to these theoretical values. The

theoretical values for the rotation case are based on the

known rotation rate, with the center of rotation determined

by least-squares fit. The global values for bias (l) and

standard deviation (r), associated with the 45� translation

case (with k = 16 corresponding to dx = 33.95 px) and the

x1 rotation case are outlined in Table 1. The values are

expressed in pixels and represent a combination of the

accuracy of the PIV as well as the stereo reconstruction

process. The values demonstrate that all three displacement

vector components were evaluated with a high degree of

precision.

Detailed results from the rotational test cases are dis-

played in Fig. 4. The figure shows the out of plane

displacements dz1, dz2 plotted as a function of r*, the

normalised radial position for x1 = p/4 and x2 = p/2 rad/s.

Solid lines indicate the theoretical dz(1,2) values. Error bars

show the localised (for each r*) standard deviation of the

measured values when compared to the theoretical ones.

The error bars clearly show that the relative errors are small

and do not vary significantly over the radius.

Figure 5 shows the probability density function (PDF)

of errors associated with dz1 case shown in Fig. 4. The

error is simply the difference between the measured and the

theoretical value. The theoretical values of dx and dy are

assumed to be zero. The solid lines shown in Fig. 5 indi-

cate Gaussian curves with standard deviations and means

taken from Table 1. The PDF envelopes closely match

Gaussian profiles indicating the Gaussian nature of the

errors. This information is of importance and will be be

utilised in the error analysis of Sect. 4.

Table 1 Table of numerical values of bias (l) and standard deviation

(r) associated with the x1 case shown in Fig. 4

l r

Translation case (%)

dx 2.12 1.15

dy – 1.21 0.71

dz 0.61 1.88

Rotation case (10–2px)

dx 1.01 5.41

dy 0.96 6.35

dz NA 7.01

As the center of rotation was fitted, the bias value for dz is necessarily

zero and hence is not included
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Fig. 4 Out of plane displacement components dz1 and dz2 plotted as a

function of r*, the normalised radial position, for the rotational cases

of x1 = p/4 rad/s and x2 = p/2 rad/s, respectively. Solid lines
indicate theoretical dz(1,2) values based on these rotation rates, with

the center of rotation determined by least-squares fit. Error bars show

the standard deviation of the measured values when compared to the

theoretical ones
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Table 2 shows the changes in the statistics shown in

Table 1 with one of the MFs set to null. The changes are

typically less than 2%. The results clearly show the

insensitivity to changes in the MF and hence the calibration

technique. The insensitivity of these results to very large

errors in the MF calls into question the very practice of

using these classical test cases to validate SPIV techniques.

The authors believe that other more complex test cases are

required to properly validate SPIV techniques. This is

supported by the findings of Scarano et al. (2005) that a

truly 3D flow configuration is required to fully test their

stereo configurations. One alternative validation case is

discussed in Sect. 5.

4 Error analysis

Several authors have derived error analysis from the

equations of the reconstruction process. The current tech-

nique differs from those techniques in that the

reconstruction process is a least-squares process and while

analytical error analysis of a least-squares process is

possible (Fouras and Soria 1998), it is limited and not

straightforward. In this case, it is more appropriate to

perform a Monte Carlo simulation to assess the sensitivity

of the reconstructed 3D vector errors to the multiple input

2D vector errors.

The input errors will be denoted as �in; which are the two

component random displacement errors as viewed from

each camera. The standard deviation of �in is defined as

rin ¼ ðrx
in; r

y
inÞ ¼ rð�inÞ: A variable rpiv which represents

the PIV measurement error of a single component as

measured by the paraxial camera is used here. Because

vector errors are proportional to particle image size, com-

ponent stereographic displacement vectors have the

following errors relative to rpiv:

rx
in ¼ rpiv= cosðbÞ;

ry
in ¼ rpiv:

ð3Þ

The output errors will be denoted as �out; which is

the three component reconstructed displacement error.

The standard deviation of �out is defined as rout ¼
ðrx

in; r
y
in; r

z
inÞ ¼ rð�outÞ:

Monte Carlo simulations were performed by creating

displacement vector fields with pseudo-random Gaussian

distributions. It was then confirmed that similar to the

errors shown in Fig. 5, the output errors were Gaussian and

proportional to the input errors. As a result, we are freed to

investigate the sensitivity or the ratio of the output error to

the input error at any arbitrary input error level. All further

simulations were conducted with the arbitrary input error

of rpiv = 0.1 px with dx and dy component errors dictated

by equations (Eq. 3). The left and right displacement fields

were used with and without the center camera displacement

field, to simulate both two and three camera technique

sensitivities, respectively.

The base case for these Monte Carlo simulations was the

symmetric 45� camera configuration. Figure 6 shows the

result of 3,600 samples (4% of total data volume used for

statistics) of the Monte Carlo simulation for the base case.

Shown in the figure is the mean (averaged across two or

three cameras as appropriate) of the norm of the input

errors, lðk�inkÞ; versus the norm of the reconstructed

errors, k�outk; for both two and three cameras, denoted with

the superscript 2c and 3c, respectively. In both cases, an
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Fig. 5 Probability density function of errors (denoted � ¼ ð�x; �y; �zÞ)
for each of three components associated with x1 case shown in Fig. 4.

Theoretical values of dx and dy are assumed to be zero. Solid lines

indicate Gaussian curves with matching values for the standard

deviation and mean. Error data closely match Gaussian profiles

indicating the Gaussian nature of the errors

Table 2 Table of numerical values of relative changes to bias (Dl)

and standard deviation (Dr) associated with the translation and

rotation case when one of the MFs are set to null

Dl (%) Dr (%)

Translation case

dx 1.90 0.03

dy 0.20 \0.01

dz 4.90 0.02

Rotation case

dx 0.98 1.13

dy 0.32 1.97

dz 0.07 0.17
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upper bound on the k�outk data is apparent. This indicates

that all cases of a high output error are the result of a high

input error. A linear fit to each scatter plot yields values for

the residual of 0.625 and 0.467 for two and three cameras,

respectively. This signifies that high values of input errors

are less likely to result in high values of output errors in the

three camera case than for the two camera case. This is

further evidenced by the fact that, overall, the k�outk data

are lower for the three camera case than the two camera

case.

Wieneke (2005) utilised the residual of the reconstruc-

tion process to identify errors in the input displacement

vectors; these data are then rejected from the process. This

is an interesting idea worth investigating. Figure 7 shows

the results from the same Monte Carlo simulation, as dis-

cussed above, as a scatter plot of the square-root of the

residual of reconstruction, v ¼
ffiffiffiffiffi

v2
p

; versus the mean of

the norm of the input errors ðlðk�inkÞÞ for two and three

cameras on the left and right, respectively. For the two

camera data (on the left), the solid line follows

lðk�inkÞ ¼
ffiffiffi

2
p

v: In this figure, we can see that for the case

of two cameras the data are upper bound by the line

lðk�inkÞ ¼
ffiffiffi

2
p

v but only weakly correlated. This indicates

that using the residual as an indicator of input errors would

be inaccurate and unreliable. For example, a low value of v
does necessarily correspond to a low value of 2clðk�inkÞ:
However, a high value of v does not at all necessarily

correspond to a high value of 2clðk�inkÞ: While this indi-

cator is not reliable for the two camera case, for three

cameras the data were more strongly correlated (the line of

best fit indicated by the solid line). This means that the

indicator is in general more accurate. This is manifested in

the fact that a high value of v corresponds to an increased

probability of a high value of 3clðk�inkÞ: However, it must

be noted that even in the three camera case, the recon-

struction residual is not reliable on an individual, point-by-

point, basis.

It is also interesting to investigate the possible correla-

tion between the residual of the reconstruction process with

errors in the reconstructed vector. Figure 8 shows the

results from the same Monte Carlo simulation, discussed

above, as a scatter plot of the residual of reconstruction, v,

versus the norm of the output errors ðk�outkÞ for two and

three cameras on the left and right, respectively. Note that
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0.4Fig. 6 Scatter plot of the norm

of the mean of the norm of the

input errors, lðk�inkÞ; versus the

norm of the reconstructed

errors, k�outk; for two and three

cameras (denoted with the

superscript 2c and 3c,

respectively) on the left and

right, respectively
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residual of reconstruction, v,

versus the norm of the input
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cameras (denoted with the

superscript 2c and 3c,

respectively) on the left and

right, respectively. The solid
lines on the graphs follow

k�ink ¼
ffiffiffi

2
p

v and the line of best

fit for the left and right,
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in the case of two cameras, the data are completely

uncorrelated, and that for the three camera configuration

the scatter plot shows only very weak correlation. This

signifies that there is little value in using v as a metric of

the output error on a point-by-point basis.

What is significant, however, is that while these values

are not very well correlated to each other on a point-by-

point basis, on an ensemble or global basis the correlation

is perfect. Figure 9 illustrates the perfect correlation

between v and both the input errors rpiv and output errors

kroutk for a 45� camera setup. This suggests that when the

pinhole model reconstruction equations are solved using a

least-squares method, the global mean of the residual, v,

may be used as an indicator of not only the input errors, but

more usefully, the errors in the reconstructed vectors.

Several further points can be made about the data in

Fig. 9. The unity slope in the log–log plot indicates that the

relationship between l(v) and the input and output errors is

linear. Furthermore, the slightly greater difference between

rpiv and kroutk; on the left figure compared to the right

shows that the three camera technique is less sensitive to

input errors.

The data from the Monte Carlo simulation can now be

analysed to calculate the sensitivity of the least-squares

reconstruction process, by comparing the global standard

deviation of the outputs errors and the reconstruction

residual to the global standard deviation of the input

errors rpiv. This analysis can be repeated for all values of

bL and bR. The results of these simulations can be seen in

Fig. 10.

For the dx projection, Fig. 10a, the sensitivity to input

errors is lowest when the cameras are placed close to the

paraxial position and symmetrically opposed to each other

(or the opposite paraxial position). However, in this case,

there appears a second area of low sensitivity along the line

of bL = bR. This counter-intuitive result can be explained

by the presence of the paraxial camera and the fact that

along this line, the errors on stereographic cameras will

cancel. This analysis assumes that errors are independent

variables and ignores the impracticality of conducting

experiments with bL & bR. One final point to note is that

the sensitivity results shown are significantly less than

those for two cameras reported in Fouras et al. (2007) and

Lawson and Wu (1997).
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0.5Fig. 8 Scatter plot of the

residual of reconstruction, v,

versus the norm of the

reconstruction errors, k�outk; for

two and three cameras on the

left and right, respectively. Note

that in the case of two cameras,

the data are completely

uncorrelated, while for the case

of three cameras the scatter plot

shows only very weak

correlation which indicates that

there is little value in using v as

a metric of the output error on a

point-by-point basis
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0Fig. 9 For a 45� camera setup,
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Plotted against the global mean

of the square-root of v2 (l(v))

are rpiv (square) and kroutk
(circle) showing a perfect

dependency for both two

camera (left) and three camera

(right) configurations. The solid
line follows a linear best fit

324 Exp Fluids (2008) 44:317–329

123



Logically the next quantity to examine for sensitivity is

dy. This is not shown in the figure, since the result is trivial.

The reconstructed dy component is effectively always

equal to the average of the dy measurements from each of

the stereographic cameras. This results in the values for the

sensitivity of 1=
ffiffiffi

2
p

for two cameras and 1=
ffiffiffi

3
p

for three

cameras.

Along the dz projection, Fig. 10b, the sensitivity to input

errors is the lowest when the cameras are placed far from

the paraxial position (i.e., close to the laser position) and

symmetrically opposed to each other (or the opposite par-

axial position). Again in this case appears a second area of

low sensitivity along the line of bL = bR, for which an

explanation similar to that for the dx projection is viable.

The form of Fig. 10c, showing the measure of the

average of rout
x and rout

z , is readily explained via the results

of the components. Of interest is that, while similar to the

two camera case (Fouras et al. 2007) with a minimum

along the line of bL – bR = 90� (which includes the sym-

metric case of b = ±45�), there is a very broad minimum

along a curved line near to bL – bR = 90�. In this case the

minimum lies at b = ±50�. This broader stereo angle is

explained by the reduction in the dx error, affording more

significance to the dz component, which is reduced by

broader stereo angles.

Finally, in Fig. 10d, we can see a plot of kroutk=lðvÞ as

a function of bL and bR. The authors wish to stress that by

calculating this value for their experimental configuration,

a practitioner has direct access to an effective estimate of

both their input and output errors. The practitioner simply

has to calculate the ensemble average of the residual v of

the least-squares reconstruction process, multiply this value

by the gradient value and they have this accurate indication

of the errors of a particular set of stereo measurements.

This is without any theoretical or computational estimate of

the displacement or velocity field. An example application

of this predictor will be presented in Sect. 5.

As described in Sect. 3, the methodology undertaken to

test the SPIV technique for translation cases allowed the

level of PIV accuracy to be controlled. By varying the

displacement of the target between images, 16 different

values of rin
x , the standard deviation of the PIV processing

error, rpiv, were achievable. This facilitated a comparison

between the standard deviation of the reconstructed stereo

error, kroutk; and rpiv. The solid lines follow the theoretical

prediction taken from the error analysis shown in Fig. 10.

This further verifies this analysis as the agreement between

experimental values and Monte Carlo simulation are

excellent.

These results are significant not only for their validation

of the Monte Carlo simulation but also when compared to

the results of other papers that describe this sensitivity for

standard two camera stereo techniques. A complete error

analysis for the standard two camera stereo system is per-

formed in Fouras et al. (2007). For the symmetric case (as is

displayed in Fig. 11), the same results have also been

reported by Lawson and Wu (1997). In Table 3 the results

for the cases of bL = –bR = 30� and bL = –bR = 45� are

compared with the results calculated in Figs. 10 and 11. The

results for the two cameras show perfect agreement with the

published values in Fouras et al. (2007) and Lawson and Wu

(1997) which both utilise different techniques. Significant
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Fig. 10 Sensitivity of the three

camera technique calculated by

numerical Monte Carlo analysis

as a function of camera angles

with one camera fixed at the

paraxial position (camera C).

a, b Show the sensitivity of the

x and z components. c is the

average of a and b. d Shows the

global mean of the residuals

from the least-square solution

(l(v)) of the 3D vector

reconstruction. The bold line
indicates the boundary of the iso

value equal to 1.0, and the iso-

values vary in steps of 0.2
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improvement in the sensitivities of the dx and dy compo-

nents are apparent when using three cameras.

5 Comparison with CFD of confined vortex breakdown

The flow within a closed cylindrical cavity with a rotating

lid is considered. This type of flow has been the focus of

earlier studies (see for example Vogel 1968; Escudier

1984; Lopez 1990; Sørensen and Christensen 1995; Spohn

et al. 1998). Surprisingly, this flow has not been measured

experimentally in a quantitative manner, with more than

two velocity components. A similar flow has been mea-

sured at FLAIR (Dusting et al. 2006), however, this was

for the particular case with a free surface. Due to the simple

geometry of the closed cavity and the existence of efficient

axisymmetric Navier–Stokes solvers, this type of problem

is highly suitable as a benchmark for all SPIV measure-

ments. The simulation presented here was produced by an

axisymmetric DNS solver. A detailed description of the

formulation and numerical implementation can be found in

Sørensen and Loc (1989).

5.1 Experimental setup

As shown in Fig. 12, the experimental apparatus consisted

of an octagonal shaped container. A circular cylinder

(radius R = 32.5 mm) was placed in its center. The aspect

ratio (height to radius), of the cylindrical cavity (H/R) is

controlled by varying the position of the top disk. The

octagonal shape allows the exterior faces of the rig to be

flat in order to reduce refraction effects that result in

optical distortion errors during the use of image-based

measurement techniques. A flat, circular disk acted as the

rotating bottom, and was located in the center of the base.

The disk was rotated by means of a stepper motor and

high-performance motion controller (National Instruments,

USA).

The Stereo PIV technique detailed in Sect. 2 was used to

measure this flow. Imaging was performed using three

PixelFly (PCO, Germany) cameras with a resolution of

1,360 · 1,024 pixels. Magnification of 20.4 px/mm resul-

ted in the relatively large field of view as shown

schematically with dashed lines in Fig. 12. The stereo

configuration used was bL = –45� and bR = 225�. Illumi-

nation was provided by a QuantaRay (SpectraPhysics,

USA) double pulsed NdYag Laser, focused into a 1 mm

thin light sheet. The tracer particles used were Sphericel

(Potters Industries, USA), silver coated hollow glass micro-

spheres with a nominal diameter of 14 lm and specific

gravity of 1.6 (Fig. 13).
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−1Fig. 11 Sensitivity of the three

camera technique measured

with bL = –bR = 30� (left) and

bL = –bR = 45� (right).
Measurements taken on the

translation experiment with 16

different displacements.

Diamond and square symbols
represent rout

z and rout
x ,

respectively. Associated solid
lines follow the theoretical

prediction taken from the error

analysis shown in Fig. 10

Fig. 12 Schematic diagram of the experimental apparatus. Left side-

view, where the dashed window shows the measured region. Right
top-view showing apparatus and position layout of the laser sheet and

the cameras. Note the octagonal shaped rig used to reduce distortion

and the symmetric layout of the cameras about the laser sheet

Table 3 Sensitivity of 3D reconstructed rout
x and rout

z to rin
x for

symmetric 30� and 45� cases with both two and three cameras

3crout
x 2crout

x 3crout
z 2crout

z

30� 0.640 1.000 1.383 1.732

45� 0.750 1.000 0.976 1.000

Note the sensitivity of the dx component is reduced while the sensi-

tivity of the dz component is unchanged
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PIV analysis was performed (see Fig. 2b) with a multi-

window iterative analysis, a final window size of

16 · 16 px and a spacing between sampling windows of

8 · 8 px. As the flow was steady images pairs were ana-

lysed using correlation averaging to produce more accurate

results.

5.2 Results and discussion

The Reynolds number based on the the radius of the cavity

and the tip speed of the rotating lid is defined as Re = xR2/

m, where m is the kinematic viscosity of the fluid. Data

presented here are taken from experiments conducted at

Re = 2,200 and H/R = 1.85. Under these conditions, the

flow is steady and contains one vortex breakdown

(Escudier 1984). For the sake of brevity, this paper will

focus on the out-of-plane component since this is the

reconstructed component.

In these types of flow, it has been found that even the

slightest imperfections in the apparatus will create asym-

metries (Thompson and Hourigan 2003). In order to

validate against an axisymmetric CFD simulation, flow

measurements have been averaged to produce symmetric

data. All experimental data are non-dimensionalised with

the previously defined characteristic scales to allow direct

comparison with numerical results.

Figure 14 shows the comparison of matched iso-con-

tours for the out-of-plane velocity component between

symmetric experimental data (in the boxed region) and

numerical data (in the surrounding region). Note the

excellent agreement between the numerical and the experi-

mental data. It should be recall that there is no smoothing

or filtering of the experimental data from the SPIV process.

The PDF of the relative error of these data is shown in

Fig. 14. As a direct result of the enforced symmetry, the

PDF shows no bias error. However, the Gaussian nature of

the errors and the low magnitude of these errors can be

clearly seen.

Tabulated data of the errors for all three velocity com-

ponents are presented in Table 4. The bias and standard

deviations indicate the high degree of accuracy to which

the flow has been measured. Also shown are the Dl and Dr
values which are the relative differences introduced by

setting one of the MFs to null. Note that unlike the trans-

lation and rotation cases shown in Table 2, the change is

significant when compared to data with the correct MFs.

This demonstrates that when the mapping process has

errors introduced, errors of similar magnitude appear in the

reconstructed errors. The confined swirling flow (combined

with its evaluation with CFD) is therefore a candidate as a

benchmark flow for Stereo PIV.

As discussed in Sect. 2, the least-squares solution not

only provides a highly accurate solution for the recon-

structed vector field but also a useful residual. In Fig. 9, it

was shown that the mean of the residual, l(v), should be an

reliable indicator of the accuracy of the experimental

-1 -0.5 0 0.5 1
0

0.5

1

1.5

Fig. 13 Comparison of matched iso-contours for the out-of-plane

velocity component between symmetric experimental data (in the

boxed region) and numerical data (in the surrounding region)

−0.2 −0.1 0 0.1 0.2

Fig. 14 Probability density function of the dz component of relative

velocity error ð�̂ ¼ ðuexp � unumÞ=maxðunumÞÞ: The Gaussian nature

of this error is clearly visible

Table 4 Table of numerical values of relative bias and standard

deviation (r) associated with the confined vortex breakdown, at

Re = 2,200, when compared to numerical simulation

l (10–2) Dl (%) r (10–2) Dr (%)

�̂x NA NA 4.38 24.06

�̂y –1.84 41.51 3.49 27.62

�̂z NA NA 2.21 54.90

Also shown are the Dl and Dr values which are the differences

introduced by setting one of the MFs to null. Note that the change is

significant when compared with data with the correct MFs
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results. For a particular configuration, Fig. 10d provides

the practitioner with kroutk=lðvÞ: Therefore it is a trivial

task to obtain a estimate of the measurement error by

multiplying this value by the l(v) valued obtained during

the application of the reconstruction process to experi-

mental data. Table 5 illustrates the usefulness of the mean

residual l(v). The accuracy of the predicted errors for the

rotational case presented in Sect. 3 and the vortex break-

down case is given. The reader will appreciate the good

agreement between the predicted and the measured error.

The measured errors are slightly underestimated, a fact

readily explained by the absence of calibration and other

systematic, non-random errors in the Monte Carlo analysis.

6 Conclusions

A novel, accurate and simple Stereo PIV technique utilis-

ing three cameras has been presented. The key feature of

the new technique is the elimination of a separate cali-

bration phase. The calibration data are measured

concurrently with the PIV data by a third paraxial camera.

This has the benefit of improving ease of use and reducing

the time taken to obtain data. These benefits can be

achieved only if the paraxial view can be imaged with

minimal distortion, which is in general the case, but for

complex geometries distortion can often be minimised, for

example, with the octagonal shaped rig as used in this

study.

The new technique is rigorously validated using both

pure translation and rotation test cases. However, while this

kind of validation is standard, it is shown that such vali-

dation is substantially limited and an improved validation

process is required.

This third camera also provides useful velocity infor-

mation, significantly improving the accuracy of the

resolved 3D vectors. It has been found that a fixed

improvement of
ffiffiffiffiffiffiffiffi

2=3
p

improvement in the accuracy of the

dy component can be achieved. Similar improvements

(which are a function of camera stereo angles) are achieved

for the dx and dz vector components.

The use of a least-squares approach to the solution of

the reconstruction equations further improves the utility of

the technique by providing a robust and useful residual.

While it has been shown that on an individual vector basis

the residual is not meaningful, thorough error analysis

shows that on a global basis this residual is an accurate

predictor of resolved vector errors. This powerful pre-

dictive tool could possibly be used in conjunction with

techniques other than that suggested here, provided it

solves the reconstruction process with a least-squares

process.
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