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A B S T R A C T

This study experimentally investigates the influence of aspect ratio on cross-flow flow-induced
vibration (FIV) of elastically mounted oblate spheroids. The aspect ratio (𝜖 = 𝑏∕𝑎) of an oblate
spheroid, defined as the ratio of the major diameter (𝑏) in the cross-flow direction to the minor
diameter (𝑎) in the streamwise direction, was varied between 1.00 and 3.20. The FIV response
was characterized over a range of reduced velocity, 3.0 ⩽ 𝑈 ∗ = 𝑈∕(𝑓𝑛𝑤𝑏) ⩽ 12.0, where 𝑈 is
the free-stream velocity and 𝑓𝑛𝑤 is the natural frequency of the system in quiescent water. The
corresponding Reynolds number varied over the range 4730 ⩽ 𝑅𝑒 ⩽ 20 120. It was found that
in addition to the vortex-induced vibration (VIV) Mode I and Mode II responses observed for
a sphere, on increasing the aspect ratio to 𝜖 = 1.53 and 2.0, a galloping-dominated response,
denoted by G-I, was encountered at high reduced velocities. With a further increase in aspect
ratio to 𝜖 = 2.50, the body vibration exhibited an additional VIV-like response (V-I) following
the sequential appearance of Mode I, Mode II and G-I, with smooth transitions between these
modes. In the case of the largest aspect ratio considered in the present study, 𝜖 = 3.20, the
spheroid intriguingly exhibited only a pure VIV Mode I before transitioning to a VIV-dominated
mode, namely V-II. The largest vibration amplitude observed was 2.17𝑏, occurring at the highest
tested reduced velocity of 𝑈 ∗ = 12.0 for 𝜖 = 2.5. Furthermore, the maximum time-averaged
power coefficient was observed to be 0.165 for the thinnest oblate spheroid tested, 𝜖 = 3.20,
approximately 660% higher than that observed for VIV of a sphere. This shows the relevance of
geometry for FIV energy harvesting from oblate spheroids. The findings highlight the distinctive
nature of FIV responses of 3D oblate spheroids compared to 2D bluff bodies such as elliptical,
D-section, and square cylinders.

1. Introduction

The interaction between a structure and its surrounding fluid flow, often referred to as fluid–structure interaction (FSI), is of
paramount significance in numerous engineering designs and applications. It is relevant to wind turbine blades, gas pipelines, and
offshore structures. A salient and pervasive manifestation stemming from fluid–structure interaction is flow-induced vibration (FIV),
which typically occurs when an elastic or elastically-mounted bluff body becomes stimulated into oscillatory motion due to unsteady
forces imposed by the passing fluid flow. In light of potentially detrimental repercussions, FIV has been identified as a primary
factor in protracted fatigue, thereby limiting the operational lifespan of a structure and, in extreme cases, precipitating catastrophic
structural failure, as exemplified by the extensively documented collapse of the Tacoma Narrows Bridge in 1940. Notwithstanding
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the potential detrimental effects of structural vibration in numerous engineering applications, it is noteworthy to underscore its dual
nature, wherein it may also be a viable energy source for energy harvesting applications.

To date, numerous studies have been conducted to investigate FIV of bluff bodies possessing geometric symmetries, including
ircular cylinders (e.g. Brooks, 1960; Feng, 1968; Khalak and Williamson, 1996; Govardhan and Williamson, 2000; Bearman,
011), and spheres (e.g. Jauvtis et al., 2001; Govardhan and Williamson, 2005; Sareen et al., 2018a). This work aims to gain
undamental insight into underlying FSI mechanisms that govern particular FIV responses. Notably, two prevalent body-oscillator
henomena typical of FIV are vortex-induced vibration (VIV) and galloping. Comprehensive reviews are provided in articles focused
n VIV (Bearman, 1984; Sarpkaya, 2004; Williamson and Govardhan, 2004; Gabbai and Benaroya, 2005), and in books covering
IV in general (Blevins, 1990; Naudascher and Rockwell, 2005; Païdoussis et al., 2010). From a fundamental point of view, VIV
s associated with the periodic shedding of vortices from both sides of an elastic or elastically mounted body. This, in turn, exerts
nsteady forces on the body inducing structural vibration. If the vortex shedding frequency is close to the natural frequency of
he structural system, a phenomenon known as synchronization or ‘‘lock-in’’ can result. In these circumstances, the frequency of
ortex shedding synchronizes with (or locks onto) the frequency of body vibration, resulting in substantial body vibration due to
esonance. On the other hand, galloping is often referred to as a movement-induced vibration driven by aerodynamic instability
see Naudascher and Rockwell, 2005). This instability arises from the body motion, resulting in aerodynamic forcing in the same
irection as the body motion, thus supporting the oscillatory movement (see Nemes et al., 2012; Zhao et al., 2018c, 2019). Structures
acking axial symmetry (e.g., ice-coated transmission cables in winds (see den Hartog, 1932)) may be susceptible to galloping, either
ndependently or in conjunction with VIV (see Bearman et al., 1987; Nemes et al., 2012; Zhao et al., 2014, 2018a; Lo et al., 2023).
his susceptibility depends on structural properties (such as body geometry, mass ratio, and damping ratio), and flow conditions
such as flow-reduced velocity).

Of interest to the present study is the cross-flow FIV responses of oblate spheroids with cross-sectional aspect ratios varying
etween 1 and 3.20. Here, the aspect ratio is defined by 𝜖 = 𝑏∕𝑎, where 𝑎 and 𝑏 are the major body diameters in the streamwise and

cross-flow (transverse) directions, respectively, of an oblate spheroid placed at zero incidence angle. The recent findings of Lo et al.
(2023) showed that FIV of an elliptical cylinder with an elliptical ratio of 𝜖 = 5.0 exhibited substantial body vibration amplitudes
up to 7.8𝑏, suggesting tremendous potential for FIV energy harvesting.

While there has been a considerable number of studies conducted on FIV of two-dimensional (2D) elliptical cylinders
(e.g., Franzini et al., 2009; Navros et al., 2014; Leontini et al., 2018; Zhao et al., 2019; Lo et al., 2023), much less attention has been
directed to FIV of three-dimensional (3D) oblate spheroids. Thus, a notable gap exists in the literature concerning the influence of
aspect ratio on the FIV response of oblate spheroids. Furthermore, since the pioneering study on FIV energy harvesting conducted
by Bernitsas et al. (2008), there has been a growing body of research aimed at exploring novel approaches for FIV-based energy
harvesting devices.

Therefore, to fill this gap in the existing body of research, this study aims to provide a comprehensive understanding of how
aspect ratio impacts the FIV response of oblate spheroids within the range of 1 ⩽ 𝜖 ⩽ 3.20. Additionally, we aim to evaluate the
potential of spheroid FIV for energy harvesting performance.

This article describes the fluid–structure system modeling and experimental details in Section 2. The results and discussion,
including FIV responses and FIV energy harvesting performance of all tested spheroids, are presented in Section 3. Finally,
conclusions are drawn in Section 4.

2. Experimental methodology

2.1. Modeling of the fluid–structure system

The fluid–structure system is represented by a linear mass–spring–damper oscillator system subject to an oncoming free-stream
flow. As illustrated in Fig. 1, the body oscillator is constrained to move only in the cross-flow (𝑦) direction, and the governing
equation of motion can be expressed as

𝑚𝑦̈ + 𝑐𝑦̇ + 𝑘𝑦 = 𝐹𝑦, (1)

where 𝑚 denotes the total oscillating mass, 𝑐 represents the structural damping, 𝑘 is spring stiffness, 𝑦 is the transverse displacement
and 𝐹𝑦 represents the total transverse fluid force.

2.2. Experimental details

The present experiments were conducted in a recirculating water channel facility within the Fluids Laboratory for Aeronautical
and Industrial Research (FLAIR) at Monash University (Australia).

Fig. 2 presents a three-view schematic of the experimental set-up, and Fig. 3 shows photographs of the corresponding three
views, illustrating key components of the set-up.

This study involved five oblate spheroid models covering a range of aspect ratio, 𝜖 ∈ {1.0, 1.5, 2.0, 2.5, 3.20}. These spheroid
models were manufactured from Renshape 460, a medium-high density polyurethane with an identical major cross-sectional axis
length of 𝑏 = 50 ± 0.20mm. The different aspect ratios were achieved by modifying the streamwise diameter 𝑎, thereby varying the
afterbody of the spheroids. Here, the afterbody is defined as the portion of the bluff body located downstream of flow separation
2
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Fig. 1. Schematic of the problem studied: an oblate spheroid is elastically mounted and constrained to oscillate transversely to the oncoming freestream. Here,
𝑐 is the structural damping factor; 𝑘 is structural stiffness; 𝑚 is the total oscillating mass; 𝑈 is the free-stream velocity. The fluid forces, 𝐹𝑥 and 𝐹𝑦, are the
streamwise and transverse forces, respectively, acting on the body.

Fig. 2. A schematic showing the experimental setup in (𝑎) top view, (𝑏) side view, and (𝑐) back view.

The spheroids were vertically supported by a steel rod with a diameter of 2mm, resulting in a diameter ratio of 25 between the
major diameter of the spheroid and the support rod. The distance between the upper part of the surface spheroid and the free surface
was set to 55mm, giving an immersion depth of the spheroid of ℎ = 1.1𝑏. This fully submerged configuration limits the free-surface
effects, as previously demonstrated by Sareen et al. (2018b), Rajamuni et al. (2021) for the case of a sphere. The support rod was
vertically integrated into a low-friction air-bearing rig (see Zhao et al., 2018a, 2019). Additionally, an eddy-current-based damper
device was incorporated into the air-bearing rig to adjust the structural damping. Further details of this damper device can be found
in the studies of Soti et al. (2018), Zhao et al. (2022a), Han et al. (2023a).

Table 1 presents the structural properties of the five spheroid models under investigation, encompassing aspect ratio (𝜖),
geometric dimensions (𝑎 and 𝑏), total oscillating mass (𝑚), displaced fluid mass (𝑚 = 4𝜋𝑎2𝑏∕3), and structural damping ratio with
3
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Fig. 3. Photographs showing the experimental set-up in (𝑎) top view, (𝑏) side view, and (𝑐) back view.

Table 1
Structural properties for the oblate spheroids tested.
𝜖 b [mm] a [mm] m [g] 𝑚𝑑 [g] 𝑚∗ 𝐶𝐴 𝜁 𝑓𝑛𝑎 [Hz] 𝑓𝑛𝑤 [Hz]

1.00 50.00 50.00 837.50 65.40 12.81 0.590 0.0195 0.685 0.669
1.53 50.00 32.50 824.30 42.50 19.40 0.482 0.0140 0.687 0.679
2.00 50.00 25.00 815.10 32.60 25.00 0.446 0.0105 0.693 0.687
2.50 50.00 20.00 809.50 26.10 31.02 0.381 0.00801 0.687 0.683
3.20 50.00 15.62 804.80 20.40 39.45 0.337 0.00545 0.706 0.703

Table 2
Values of the mass-damping parameter for all
oblate spheroids tested.
𝜖 (𝑚∗ + 𝐶𝐴)𝜁

1.00 0.2613
1.53 0.2783
2.00 0.2671
2.50 0.2515
3.20 0.2725

consideration of added mass effects (𝜁 = 𝑐∕(2
√

𝑘(𝑚 + 𝑚𝐴))). Additionally, it provides the natural frequencies in quiescent air (𝑓𝑛𝑎)
and water (𝑓𝑛𝑤). As shown in Table 2, a nearly constant mass-damping parameter, (𝑚∗ + 𝐶𝐴)𝜁 = 0.2516–0.2772, was employed to
facilitate a close comparison between results across the five different aspect ratios. In this expression, the mass ratio is represented
as 𝑚∗ = 𝑚∕𝑚𝑑 , and the added mass coefficient is defined by 𝐶𝐴 = 𝑚𝐴∕𝑚𝑑 , with 𝑚𝐴 = ((𝑓𝑛𝑎∕𝑓𝑛𝑤)2 − 1)𝑚 representing the assumed
added mass in potential flow (see Lighthill, 1986; Govardhan and Williamson, 2000). The natural frequencies 𝑓𝑛𝑎 and 𝑓𝑛𝑤) were
determined through free-decay tests conducted in still air and water, respectively.

2.3. Data acquisition and processing methods

The data acquisition was achieved via a computer workstation equipped with a multi-function data acquisition device (USB-
6218, National Instruments, USA) and customized LabVIEW software applications. This allowed control of the water flow speeds
and automation of experimental measurements.
4
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The body displacement was measured using a linear encoder (model: RGH24; Renishaw, UK) with a resolution of 1 μm, over
linear range of ±200mm. From the well-resolved displacement signal, the total transverse force 𝐹𝑦 was derived based on the

overning equation of motion in (1). Zhao et al. (2014, 2018b, 2022b) has validated this method for determining the transverse
orce.

To visualize the flow dynamics in the near wake of the immersed oblate spheroids, particle image velocimetry (PIV) measure-
ents were conducted in the equatorial plane. Micro-hollow spheres with a diameter of 13 μm, and a specific weight of 1.1 g cm−3

ere added into the flow to quantify the planar wake vorticity fields. A 5 W continuous laser beam (model: MLL-N-532-5 W, China)
hat produced a 3 mm thick laser sheet was used to illuminate particles in the horizontal plane (i.e., the 𝑥-𝑦 plane). To capture the

wake structure, a high-speed camera (model: Dimax S4, PCO AG) with a resolution of 2016 × 2016 pixel2 was used with a 52mm
Nikon lens. This gave a magnification factor of 5.42 pixels/mm. To process the photos and extract the velocity and vorticity fields,
in-house software developed and validated by Fouras et al. (2008) was employed to correlate interrogation windows of size 16 × 16
pixel2 with an overlap of 50% to obtain velocity fields. This corresponded to a velocity vector field of 125 × 125 vectors for the 𝑥-𝑦
plane.

In the present experiments, the imaging of the near wake was conducted with a sampling rate of 60Hz for a total of 6200 image
pairs in each dataset. To study the evolution of the vorticity structures in the wake, the vector fields were sorted into 48 bins based
on the spheroid displacement, resulting in more than 60 image frames for each phase bin. To highlight the larger-scale structures of
interest in this study, the phase-averaged vorticity fields were slightly smoothed using Gaussian smoothing to remove short-length
scale structures.

The dynamic response was investigated over a range of reduced velocities, specifically within 3.0 ⩽ 𝑈∗ = 𝑈∕(𝑓𝑛𝑤𝑏) ⩽ 12.0, where
𝑈 represents the free-stream velocity. The corresponding Reynolds number range was 4730 ⩽ 𝑅𝑒 = 𝑈𝑏∕𝜈 ⩽ 20 120, with 𝜈 denoting
the kinematic viscosity of the fluid. Furthermore, all measurements were acquired at a sampling frequency of 100Hz, encompassing
more than 60 vibration cycles.

3. Results and discussion

The main objective of this study is to investigate the effect of aspect ratio (1.00 ⩽ 𝜖 ⩽ 3.20) on the FIV response of oblate
spheroids. This section presents the vibration amplitude and frequency responses, variations of fluid force coefficients, and their
relative phases with respect to the body displacement as a function of reduced flow velocity. Additionally, flow visualizations from
PIV measurements of the near wake are included to help differentiate between vibration modes based on the wake structures.
Furthermore, the potential implications for FIV energy harvesting performance is presented.

3.1. Vibration amplitude and frequency responses

Fig. 4 shows the normalized vibration amplitude responses (𝐴∗
10 = 𝐴10∕𝑏) as a function of reduced velocity (𝑈∗) for the five

aspect ratios: 𝜖 ∈ [1.00, 1.53, 2.00, 2.50, 3.20]. Here, 𝐴10 denotes the average of the top 10% amplitude peaks. Along with this, the
orresponding logarithmic-scale power-spectral density (PSD) contours depicting the normalized body vibration frequency responses
i.e., 𝑓 ∗

𝑦 = 𝑓𝑦∕𝑓𝑛𝑤) are also provided. To gain further insight into the fluid forcing frequency and FIV response regimes, Figs. 5 and 6
resent corresponding PSD contours of the normalized lift frequency (i.e., 𝑓 ∗

𝐶𝑦
= 𝑓𝐶𝑦

∕𝑓𝑛𝑤) and the normalized vortex force frequency
i.e., 𝑓 ∗

𝐶𝑣
= 𝑓𝐶𝑣

∕𝑓𝑛𝑤), respectively. The PSD contour plots are constructed by applying a Fourier transform (FT) of the time series at
ach reduced velocity, 𝑈∗. Subsequently, the resulting spectrum is normalized by the maximum power component. An advantage
f the normalization is that the dominant frequencies at any value of 𝑈∗ are visible on the plot, as well as depicting changes in the
requencies as a function of 𝑈∗. This process is repeated for every 𝑈∗, and eventually, the contour plot is achieved by stacking the
pectra. More details on how these PSD contour plots are computed can be found in Zhao et al. (2014).

Moreover, Fig. 7 shows the root-mean-square (rms) coefficients of the total transverse and vortex forces varying with reduced
elocity, which are denoted by 𝐶𝑟𝑚𝑠

𝑦 = 𝐹𝑦∕(
1
8𝜌𝑈

2𝜋𝑏2) and 𝐶𝑟𝑚𝑠
𝑣 = 𝐹𝑣∕(

1
8𝜌𝑈

2𝜋𝑏2), respectively, for the five aspect ratios under
investigation. Additionally, the relative phases of these fluid forces to body displacement are presented: the total phase (𝜙𝑡) signifies
the phase angle between the total transverse force (𝐹𝑦) and the body displacement (𝑦), and the vortex phase (𝜙𝑣) represents the
phase angle between the vortex force (𝐹𝑣) and the body displacement (𝑦).

The instantaneous relative phase angles between the fluid force components and the oblate spheroids displacements were
calculated using the Hilbert transform (HT) (Hahn, 1996), following the same procedure outlined by Khalak and Williamson
(1999), Zhao et al. (2014). Analyzing the phases to identify distinct vibration regimes has been extensively used in FIV studies
of two-dimensional bluff bodies (e.g. Bishop and Hassan, 1964, Bearman and Currie, 1979, Gu et al., 1994, Govardhan and
Williamson, 2000), and three-dimensional bodies (e.g. Govardhan and Williamson, 2005, Sareen et al., 2018a, McQueen et al.,
2020). These studies have illustrated that either a jump or rapid change in the phases occurs when the dynamic response of the
oscillating bluff body is typically associated with a change in the mode of vortex formation within the synchronization region. In
particular, Govardhan and Williamson (2005) demonstrated that the transition between vibration modes (i.e., Mode I and Mode II)
in the case of the elastically mounted (or tethered) sphere can be attributed to a jump in the vortex phase, 𝜙𝑣.

In the present study, different FIV response modes are identified through an overall assessment of the vibration response,
frequency response and fluid forces (specifically, the transverse lift and vortex force), coefficients of the fluid forces, and the relative
5
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Fig. 4. Variation of the vibration amplitude response (𝐴∗
10) as a function of the reduced velocity (𝑈 ∗), for various aspect ratios (𝜖). Power spectrum contours of

the normalized body vibration frequency (𝑓 ∗
𝑦 ) are shown in (𝑏)-(𝑓 ) individually for each 𝜖 case.

It is worth noting that the values of the mass-damping parameter, (𝑚∗ + 𝐶𝐴)𝜁 , are maintained nearly constant across all 𝜖 cases
(as indicated in Table 2) to focus on the influence of aspect ratio.

From Fig. 4(𝑎), it is evident that the amplitude response exhibits a strong dependency on the aspect ratio. In the sphere case
(𝜖 = 1.00), the present results for the amplitude and frequency response, in general, agree well with previous experimental studies
of VIV of spheres conducted by Govardhan and Williamson (2005), Sareen et al. (2018a), despite differences in Reynolds numbers
and mass ratios across these studies. In this case, the frequency response indicates the presence of a sustained lock-in region of VIV
occurring at 𝑈∗ ≃ 5.0 and persisting up to the highest examined reduced velocity 𝑈∗ = 12.0. Within this region, the body vibration
frequency is synchronized with the vortex shedding frequency, as reflected by both the frequency responses of the total transverse
and vortex forces (i.e. 𝑓 ∗

𝑦 = 𝑓 ∗
𝐶𝑦

= 𝑓 ∗
𝐶𝑣

) in Figs. 5(𝑏) and 6(𝑏), respectively.
Following analyses of the total and vortex phases of Govardhan and Williamson (2005), Sareen et al. (2018a), the lock-in region

is divided into distinct sub-regions: Mode I, Mode II and a transition region between these two modes. Mode I starts at the onset of
the lock-in region, with the vortex phase (𝜙𝑣) increasing from ∼ 50◦ to ∼ 100◦ at 𝑈∗ ≈ 7.6 as it reaches the transition region (see
Fig. 7(𝑑)). As 𝑈∗ is further increased in the transition region, the vortex phase sees a continuous increase to a plateau of ∼ 150◦
commencing at 𝑈∗ ≈ 11, signifying transition to Mode II.

Additionally, Fig. 7(𝑎, 𝑏) show the variations of 𝐶𝑟𝑚𝑠
𝑦 and 𝐶𝑟𝑚𝑠

𝑣 as a function of 𝑈∗. It can be seen that 𝐶𝑟𝑚𝑠
𝑦 exhibits an abrupt

jump up at the beginning (the onset of lock-in) of Mode I and subsequently decreases steadily as the response transitions to Mode
II. Furthermore, a global maximum for 𝐶𝑟𝑚𝑠

𝑣 is observed at 𝑈∗ = 10, corresponding to the largest vibration in Mode II. These results
are consistent with previous experiments on VIV of an elastically mounted sphere (e.g., Govardhan and Williamson, 2005; Sareen
et al., 2018a).

Remarkably, with the deformation of the sphere into an oblate spheroid with 𝜖 = 1.53, while observing both Mode I and Mode II
as for the sphere case, a distinct galloping-dominated response regime, denoted by G-I, emerges at high reduced velocities beyond
10.2, followed by a desynchronization region.

For this 𝜖, as illustrated in Figs. 5(𝑐) and 6(𝑐), Mode I occurs over the reduced velocity range of 4.7 ⩽ 𝑈∗ ⩽ 6.5, where the dominant
frequencies of the fluid forces, 𝑓 ∗ and 𝑓 ∗ , are synchronized with the body displacement frequency, namely 𝑓 ∗ ≅ 𝑓 ∗ ≅ 𝑓 ∗.
6
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Fig. 5. Variation of the vibration amplitude response (𝐴∗
10) as a function of the reduced velocity (𝑈 ∗), for various aspect ratios (𝜖). Power spectrum contours of

the normalized transverse lift frequency (𝑓 ∗
𝐶𝑦

) are shown in (𝑏)-(𝑓 ) individually for each 𝜖 case. M-I: pure VIV Mode-I; M-II: pure VIV Mode-II; V-I : VIV-dominated
V-I mode; V-II : VIV-dominated V-II mode; G-I: Galloping-dominated-I; T: Transition.

Additionally, as displayed in Fig. 7, the onset of Mode I is associated with a sharp jump in the r.m.s. values of the fluid force
coefficients (𝐶𝑟𝑚𝑠

𝑦 from 0.05 to 0.22, and 𝐶𝑟𝑚𝑠
𝑣 from 0.05 to 0.18). It can be observed that the values of the fluid force phases remain

almost constant over this 𝑈∗ range, 𝜙𝑡 ≈ 30◦ and 𝜙𝑣 ≈ 50◦. The value of 𝐶𝑟𝑚𝑠
𝑦 reaches a peak value of 0.37 at 𝑈∗ = 6.2 before

progressively reducing as the vibration mode transitions towards Mode II. In addition, there is a noticeable sharp jump in the total
phase from 𝜙𝑡 ≈ 30◦ at 𝑈∗ = 6.2 to approximately 55◦ at 𝑈∗ = 6.6, while the vortex phase increases from 𝜙𝑣 ≈ 50◦ at 𝑈∗ = 6.2 to
approximately 75◦ at 𝑈∗ = 6.6. This indicates a rapid transition between the two VIV modes, Mode I and Mode II.

Mode II covers the range of reduced velocity 6.6 ⩽ 𝑈∗ ⩽ 9.2, where 𝐶𝑟𝑚𝑠
𝑣 remains almost constant at 0.2. In addition, it can be

seen that the phases increase progressively at the start of Mode II towards their highest values: 𝜙𝑡 ≈ 145◦ and 𝜙𝑣 ≈ 150◦. It can also
be seen in the frequency contour plots (Figs. 5–6) that in the Mode II regime, there is a change in the frequency response, with the
appearance of a second-harmonic (𝑓 ∗

𝐶𝑣
= 𝑓 ∗

𝐶𝑦
≃ 2) and third-harmonic (𝑓 ∗

𝐶𝑣
= 𝑓 ∗

𝐶𝑦
≃ 3) components.

Notably, the vibration amplitudes in these two modes are significantly larger than the sphere counterparts — the local peak
amplitude is observed to be 𝐴∗

10 = 0.7, a 75% increase over that (𝐴∗
10 ≃ 0.4) of the sphere case. As 𝑈∗ is further increased to the

desynchronization region (spanning 9.2 ⩽ 𝑈∗ ⩽ 10.2), the body vibration is almost suppressed (𝐴∗
10 ⩽ 0.05), and the frequency

responses of both body vibration and fluid forcing (i.e., 𝑓 ∗
𝐶𝑦

and 𝑓 ∗
𝐶𝑣

) exhibit prevalent broadband noise following the Strouhal
frequency trend for a fixed body. It is noteworthy that at the onset of the second synchronization region, there is a sudden decrease
in the magnitudes of the fluid force coefficients, with 𝐶𝑟𝑚𝑠

𝑦 dropping from 0.15 to 0.05 and 𝐶𝑟𝑚𝑠
𝑦 from 0.22 to 0.05. Additionally,

there is also a sharp jump in the phases, as shown in Fig. 7, indicating another transition in vibration modes. Upon further increase
in 𝑈∗, the body vibration reemerges, marked by another jump in the magnitudes of the fluid force coefficients, along with a sharp
jump in the phases, displaying a monotonically increasing amplitude trend with 𝑈∗ that follows a linear growth beyond 𝑈∗ = 11.
The maximum vibration amplitude observed is 𝐴∗

10 = 1.33 at the highest tested reduced velocity 𝑈∗ = 12.0. This linear growth of
𝐴∗
10 is associated with 𝜙𝑡 ≈ 75◦ (Fig. 7(𝑐)), indicating that the total transverse force leads the body velocity (𝑦̇) by approximately

15◦, thereby favoring the enhancement of body vibration.
7
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Fig. 6. Variation of the vibration amplitude response (𝐴∗
10) as a function of the reduced velocity (𝑈 ∗), for various aspect ratios (𝜖). Power spectrum contours of

the normalized vortex force frequency (𝑓 ∗
𝐶𝑣

) are shown in (𝑏)-(𝑓 ) individually for each 𝜖 case.

It is pertinent to note that galloping is categorized as a type of movement-induced excitation (MIE) (see Naudascher and Rockwell,
2005). This vibration mechanism is characterized typically by a linear increase of the vibration amplitude with increasing reduced
velocity and with the dominant frequency of body vibration significantly lower than that of vortex shedding. Galloping can occur
for short bluff bodies (i.e., those with a sufficiently small length-to-height ratio) placed in a cross-flow direction and possessing only
one degree of freedom (1-DOF), either transverse or torsional.

Consequently, the G-I regime for 𝜖 = 1.53 is classified as a galloping-dominated response mode. On the other hand, both frequency
responses of 𝑓 ∗

𝐶𝑦
and 𝑓 ∗

𝐶𝑣
in Figs. 5(𝑐) and 6(𝑐), respectively, show a strong third harmonic component in the G-I mode, similar to

the galloping response of a D-section cylinder as observed in the study of Zhao et al. (2018a). This indicates that multiple vortices
are shed per body vibration cycle, suggesting that a 3D oblate spheroid may be susceptible to movement-induced vibration akin to
2D bluff bodies with axial asymmetries, such as D-sections and square cylinders. Flow visualizations are provided in Section 3.2–3.3
to show that high-order harmonic frequency components of the fluid forces are linked to a greater number of vortices shed per
oscillation cycle.

It is interesting to note that in galloping response of 2D bluff bodies like D-section and square cylinders with low mass ratios
(e.g., Zhao et al., 2018a; Nemes et al., 2012; Zhao et al., 2014), the dominant component of 𝑓 ∗

𝐶𝑦
or 𝑓 ∗

𝐶𝑣
could be its third harmonic

or other higher-order harmonics. However, in the present 3D spheroid case, the dominant frequency of 𝑓 ∗
𝐶𝑦

remains consistent with
that of the body vibration 𝑓 ∗

𝑦 . Further investigation is required to ascertain whether the present G-I mode is driven by the same
mechanism as the conventional pure galloping mode. This necessitates further work involving careful, precise force measurements
on a stationary body for quasi-steady analysis (see Zhao et al., 2018a), along with a detailed examination of the 3D wake structure
of the G-I response mode. Nevertheless, the G-I regime exhibits features similar to those in two-dimensional square or D-section
cylinders under galloping oscillations. Here, the amplitude response displays a monotonic increase with reduced velocity beyond
a certain threshold, unlike VIV, where the vibration is self-limiting (see Nemes et al., 2012; Zhao et al., 2014). The emergence of
desynchronization followed by the galloping-dominated G-I regime was unforeseen, especially considering that in the sphere case,
the body vibration exhibited robustness with significant amplitudes persisting up to high reduced velocities.
8
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Fig. 7. Variation of the transverse lift force coefficient (𝐶𝑟𝑚𝑠
𝑦 ) in (𝑎), the vortex force coefficient (𝐶𝑟𝑚𝑠

𝑣 ) in (𝑏), the total phase (𝜙𝑡) in (𝑐), and vortex phase (𝜙𝑣)
n (𝑑), all as functions of the reduced velocity 𝑈 ∗.

As the spheroid body was further deformed to 𝜖 = 2.00 and 2.50, the amplitude and frequency responses exhibit notable
ifferences from those observed for 𝜖 = 1.53. As can be seen from Figs. 4–6, synchronization of the dominant frequency of the
ody vibration (𝑓 ∗

𝑦 ) and fluid forcing (𝑓 ∗
𝐶𝑦

and 𝑓 ∗
𝐶𝑣

) is evident for both 𝜖 = 2.00 and 2.50, commencing with the onset of Mode I
and persisting up to the highest tested reduced velocity of 𝑈∗ = 12.0. This is distinctly different from the 𝜖 = 1.53 case, which sees
a desynchronization region occurring over 9.2 ⩽ 𝑈∗ ⩽ 10.2. Here, the (intermediate) desynchronization region exhibited by 𝜖 = 1.53
might be caused by structural damping. Perhaps a decrease in the damping ratio could potentially eliminate the desynchronization
region, resulting in a continuous transition between the VIV and the galloping-dominated regimes.

A closer examination of the 𝑓 ∗
𝐶𝑦

and 𝑓 ∗
𝐶𝑣

responses, as shown respectively in Figs. 5 and 6, reveals that in the case of 𝜖 = 2.00,
the synchronization region can be divided into three sub-regions associated with Mode I (4.6 ⩽ 𝑈∗ < 5.6), Mode II (6 < 𝑈∗ < 7.4),
nd G-I mode (𝑈∗ > 7.4). The onset of Mode I is notably characterized by a sudden jump in both 𝐶𝑟𝑚𝑠

𝑦 and 𝐶𝑟𝑚𝑠
𝑣 at 𝑈∗ = 4.7 (Fig. 7).

ubsequently, within the Mode I regime, 𝐶𝑟𝑚𝑠
𝑦 reaches a global maximum value of 0.27 at 𝑈∗ = 5.6, coinciding with the largest

ibration in this regime. On the other hand, 𝜙𝑡 remains almost constant at approximately 50◦ throughout the entire Mode I regime.
dditionally, as illustrated in Fig. 5(𝑑) and Fig. 6(𝑑), both 𝑓 ∗

𝐶𝑦
and 𝑓 ∗

𝐶𝑣
display second- and third-harmonic components, which are

onsiderably weaker in power compared to the dominant component at the body vibration frequency.
With a further increase in the reduced velocity beyond 6, 𝐶𝑟𝑚𝑠

𝑦 decreases progressively, indicating the transition towards Mode
I. This transition region, denoted by T, can be identified by the rapid jump in the total and vortex phases over the range of
.6 < 𝑈∗ < 6.0, where 𝜙𝑡 sharply increases from 60◦ to 80◦ and 𝜙𝑣 from 90◦ to 125◦. Mode II regime covers the reduced velocity
ange of 6.00 ⩽ 𝑈∗ ⩽ 7.6, where 𝜙𝑡 continuously increases from 80◦ to 125◦ and 𝜙𝑣 from 125◦ to 150◦. One interesting feature of
ode II is that 𝐶𝑟𝑚𝑠

𝑣 remains almost constant at 0.20 over the entire regime.
With a further increase in 𝑈∗ beyond 7.4, the FIV response f 𝜖 = 2.00 undergoes a second transition to a galloping-dominated

ode, as denoted by G-I. As can be seen in Fig. 7, this transition regime is associated with a sharp change in both the total and
ortex phases over the reduced velocity range of 7.6 ⩽ 𝑈∗ ⩽ 8.2: 𝜙𝑡 drops sharply from 125◦ to 60◦ and 𝜙𝑡 from 150◦ to 110◦.
nterestingly, this transition sees the appearance of a relatively strong third harmonic and a weak second harmonic in both 𝑓 ∗

𝐶𝑦
and

∗

9

𝐶𝑣
.
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Eventually, the galloping-dominated mode (G-I) takes place for 𝑈∗ > 8.2 in the present experiments. In this regime, the vibration
amplitude increases rapidly, following a nearly linear trend with 𝑈∗. The maximum 𝐴∗

10 value in the G-I regime is observed to be 2.04
at 𝑈∗ = 12.0 (the highest value tested), seeing a 53% increase over 𝜖 = 1.53. On the other hand, as shown in Fig. 5(𝑑) and Fig. 6(𝑑),
he frequency responses of the fluid forces exhibit a weak second-harmonic component and a relatively strong third-harmonic
omponent, while their dominant components coincide with that of the body vibration frequency.

For 𝜖 = 2.50, the synchronization region can also be divided into various sub-regions: Mode I (4.8 ⩽ 𝑈∗ < 5.3), Mode II
5.6 ⩽ 𝑈∗ < 6.4), G-I mode (7.4 ⩽ 𝑈∗ < 9.0), and V-I (𝑈∗ > 9.6) mode (a VIV-dominated response).

While the identifications of the Mode I, Mode-II, and G-I regimes are similar to the previous case of 𝜖 = 2.00, the present 𝜖 = 2.50
ase sees an additional V-I mode following the G-I regime. Unlike the G-I mode, the V-I mode is characterized by the appearance
f a relatively strong third harmonic (𝑓 ∗ ≃ 3) in both 𝑓 ∗

𝐶𝑦
and 𝑓 ∗

𝐶𝑣
, but with a much weaker second harmonic (𝑓 ∗ ≃ 2) compared

o the G-I mode, as shown in Figs. 5 and 6. Consequently, as depicted in Fig. 5(𝑎), the 𝐴∗
10 response in V-I mode displays a lower

ate of increase with 𝑈∗ compared to that of G-I mode, implying that the second harmonic of the fluid forcing frequency can have
favorable effect on the body vibration. This lower rate of increase is associated with a gradual increase in 𝜙𝑡 from approximately
08◦ at 𝑈∗ = 9 to approximately 139◦ at 𝑈∗ = 12.0, which implies that the FIV mechanism responsible for the structure vibration
an be linked to a VIV-dominated response rather than a galloping-dominated response. The maximum 𝐴∗

10 value observed in V-I
ode is 2.17. Additionally, as 𝜖 is increased from 1.53 to 2.50, it is evident that both Mode I and Mode II regions shrink but with
oticeable increases in local peak 𝐴∗

10 values. The above results highlight that the body aspect ratio affects the FIV response in the
alloping-dominated regions and in the VIV-dominated modes.

As the body aspect ratio is further increased to 𝜖 = 3.20, representing the largest deformation from the sphere and with the
mallest afterbody among all tested cases, the FIV response exhibits two synchronization regimes: Mode-I (over 4.8 ≲ 𝑈∗ ≲ 6.5) and
-II (over 7 ≲ 𝑈∗ ≲ 9.3), as illustrated in Fig. 5(𝑓 ) and Fig. 6(𝑓 ). The characteristics of Mode-I in this 𝜖 case resemble those observed

or 𝜖 = 1.53, in terms of the curve shape of the amplitude response, harmonic components in both 𝑓 ∗
𝐶𝑦

and 𝑓 ∗
𝐶𝑣

. The vibration mode
-II displays variations of 𝜙𝑡 and 𝜙𝑣 different from the one presented by Mode II, and from their frequency responses, mode V-II

s characterized because of a strong contribution of the second harmonic, which is weak for Mode II for 𝜖 = 1.53. Additionally, as
iscussed in sections 3.2–3.3, the wake structure in mode V-II differs from the one displayed by mode II. However, of interest, the
ibration amplitudes are substantially larger than those of 𝜖 = 1.53. For instance, the peak amplitude is observed to be 𝐴∗

10 ≃ 1.70
at 𝑈∗ = 8.0 in V-II, representing an increase of 143% compared to the peak 𝐴∗

10 in Mode-II for 𝜖 = 1.53.
Furthermore, it is noteworthy that in the very recent experimental study on FIV of an elliptical cylinder with 𝜖 = 5.0 conducted

y Lo et al. (2023), a 2D elliptical cylinder with an even smaller afterbody exhibits profound combined VIV and galloping effects
ith substantially large amplitudes (𝐴∗

10 ≈ 8) occurring at similar 𝑈∗ values. This suggests that for the case of bluff bodies with a
onsiderably reduced afterbody, the mechanisms governing the FIV of 3D thin oblate spheroids show some similarities to those of
IV of 2D thin elliptical cylinders.

In summary, the results above demonstrate a significant influence of aspect ratio on the FIV response of spheroids as a function
f reduced velocity. Across all 𝜖, Mode I with a pure VIV response is observed. Moreover, for the cases of 𝜖 ∈ [1.53, 2.00, 2.50], the
blate spheroids experience galloping-dominated responses above certain reduced velocities. Furthermore, the cases 𝜖 = [2.00, 3.20]
xhibit new VIV-dominated regimes, characterized by the amplitude of vibration being higher than conventional VIV for the sphere
ase. The results also suggest that the mechanisms governing FIV of 3D oblate spheroids are similar from those in FIV of 2D elliptical
ylinders, even though there is a significant difference between the three-dimensional flow structures of 3D spheroids and those of
D elliptical cylinders.

.2. VIV-dominated vortex formation modes

To gain a better understanding of the fluid–structure interaction, this subsection presents PIV measurements conducted at selected
educed velocities, as indicated in Fig. 8, serving as representative examples for the different FIV response regimes.

.2.1. Mode-I
Fig. 9 shows phase-averaged PIV snapshots for Mode I at various reduced velocities for 𝜖 = 1.00, 1.53, 2.00, 2.50 and 3.20. For each

, as illustrated by the red points on the sine waves showing the position in the cycle, four phase-averaged PIV snapshots (selected
rom 48 phases) are presented in columns. The horizontal dashed lines denote the centerline of the zero flow condition, while the
ertical bars denote the vibration ranges.

As illustrated in Fig. 9, all oblate spheroid cases (except for the sphere 𝜖 = 1.00) in the Mode-I regime exhibit a 2(P+S) wake
attern, characterized by a pair (P) of opposite-sign vortices along with one single (S) vortex shed per half body vibration cycle.
ote the nomenclature for the wake patterns in this study aligns with the terminology introduced by Williamson and Roshko (1988).
he sphere case exhibits a 2P mode, consisting of a counter-rotating vortex pair shed during each half-body vibration cycle. This
bservation aligns with the previous findings on VIV of spheres as reported by Govardhan and Williamson (2005), Sareen et al.
2018a). For the oblate spheroids, for example, when 𝜖 = 1.53, a pair (P1) of opposite-sign vortices (depicted as anti-clockwise in red
or positive and clockwise in blue for negative) along with a single (S1) negative vortex are being shed at the body’s highest vibration
osition; conversely, at the body’s lowest vibration position in the second half vibration cycle, another pair (P2) of opposite-sign
ortices along with a single (S2) positive vortex are shed. Despite the increase in vibration amplitude with 𝜖 in this response regime,
he 2(P+S) wake mode remains consistently observed.
10
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Fig. 8. Revisit of the amplitude responses as a function of reduced velocity for all the aspect ratios tested, with black dots indicating the reduced velocity values
where PIV measurements were conducted for various FIV response regimes.

Fig. 10 presents sample time traces of the body displacement and the coefficients of lift and vortex forces, together with their
ower spectral density, for the corresponding 𝜖 cases in Fig. 9. As shown in the left column of Fig. 10, the time traces indicate that

both 𝐶𝑦 and 𝐶𝑣 are generally in phase with the body displacement (𝑦∗) for all 𝜖 cases. This aligns with the results in Fig. 7, where
both 𝜙𝑡 and 𝜙𝑣 are less than 90◦ for Mode I in all 𝜖 cases. Interestingly, on the other hand, the PSD plots for the spheroids reveal
ignificant second and third harmonics in both the lift and vortex forces, in contrast to the sphere case. This aligns with a change
n wake mode when the sphere is deformed into the oblate spheroids.

.2.2. Mode-II
As illustrated in Fig. 11, all oblate spheroid cases in the Mode-II regime exhibit a 2(P+S) wake pattern, which is similar to Mode

, while the sphere case displays a 2P pattern in agreement with the previous findings of Govardhan and Williamson (2005), Sareen
t al. (2018a). For example, 𝜖 = 1.53 in Fig. 11(𝑏) displays the wake structure at 𝑈∗ = 7.40. It can be observed that the wake
eflection angle increases and the shear layers become more elongated than in the Mode I case (Fig. 9(𝑏)). As the oblate spheroid
scends, a clockwise vortex (S1) forms from the upper shear layer, followed by counter-rotating vortices (P1). Similarly, during the
ownward motion, an anti-clockwise vortex (S2) forms from the lower shear layer, followed by another pair (P2). This mode exhibits

a 2(P+S) wake pattern per oscillation cycle, differing from Mode I primarily in the timing of the vortical structure formation.
Additionally, Fig. 12 demonstrates that all non-unity 𝜖 cases share common features in the time traces of the fluid forces. As it

can be seen, both the lift and vortex forces are notably out of phase with the body displacement, differing from the Mode-I cases in
Fig. 10. On the other hand, the PSD plots shows the presence of multiple peaks related to the harmonic components of 𝑓 ∗ ≃ 2 and
3. Interestingly, the second and third harmonic contributions are equally powerful in this vibration regime. Despite the increase in
vibration amplitude with 𝜖 in this response regime, the 2(P+S) wake mode remains consistently observed for oblate sphere wakes.

.2.3. Mode V-I
Figs. 13 shows a 6P pattern observed in PIV sample measurements for 𝜖 = 2.50 at 𝑈∗ = 11.60 within the V-I regime. Unlike Modes

and II, this VIV-dominated regime displays a distinctly different wake mode characterized by three pairs (P) of counter-rotating
ortices shed per half oscillation cycle, termed the 6P mode. Particularly noteworthy are significant changes in the power spectra
f 𝐶𝑦 and 𝐶𝑣, as shown in Fig. 14, where their third harmonics appear to be much stronger than their second harmonics, which is
istinct from Modes I and II. On the other hand, the periodic time traces of 𝐶𝑦 and 𝐶𝑣 indicate an out-of-phase relationship (≈ 140◦

n Fig. 7) with the body displacement, implying that this 6P wake mode is associated with a VIV response, rather than a galloping
esponse.

.2.4. Mode V-II
Figs. 15 shows the sample PIV measurements for 𝜖 = 2.50 at 𝑈∗ = 11.60 within the V-II regime. As illustrated, this wake

ode displays a 2(2P+S) pattern, consisting of two pairs (P) of counter-rotating vortices and one single vortex (S) shed per half
scillation cycle. In addition, from Fig. 16, both the lift and vortex forces exhibit harmonic components at 𝑓 ∗ ≈ 2 and 3, with their
econd harmonic being the second strongest frequency component. On the other hand, the profile of the lift (𝐶 ) is nearly in-phase
11
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Fig. 9. Wake patterns visualized from PIV spot measurements in the Mode-I regime for all 𝜖 cases: (𝑎) 𝜖 = 1.00, 𝑈 ∗ = 6.00, (𝑏) 𝜖 = 1.53, 𝑈 ∗ = 5.60, (𝑐) 𝜖 = 2.00,
𝑈 ∗ = 5.40, (𝑑) 𝜖 = 2.50, 𝑈 ∗ = 5.00, and (𝑒) 𝜖 = 3.20, 𝑈 ∗ = 5.10. The normalized vorticity range is 𝜔∗ = 𝜔𝐷∕𝑈 ∈ [−3, 3], with 𝜔 being the vorticity.
12
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Fig. 10. Sample time traces of the body displacement (𝑦∗), and the coefficients of the total transverse force (𝐶𝑦) and the vortex force (𝐶𝑣) within the Mode-I
regime, along with the corresponding PSD plots for (𝑎) 𝜖 = 1.00 at 𝑈 ∗ = 6.00, (𝑏) 𝜖 = 1.53 at 𝑈 ∗ = 5.60, (𝑐) 𝜖 = 2.00 at 𝑈 ∗ = 5.40, (𝑑) 𝜖 = 2.50 at 𝑈 ∗ = 5.00, and
𝑒) 𝜖 = 3.20 at 𝑈 ∗ = 5.10. Note that the time traces are plotted as a function of the dimensionless time 𝜏 = 𝑡𝑓𝑛𝑤 and the power spectrum as a function of 𝑓 ∗.
he red dots in the power spectrum indicate multiple harmonic contributions. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

ith the body vibration (𝜙𝑡 ≈ 40◦), while the vortex force is considerably out-of-phase with the body vibration (𝜙𝑣 ≈ 90◦). These
haracteristics are distinct from those observed in the V-I mode for 𝜖 = 2.50. Nevertheless, due to the lift force being predominantly
n phase with the body displacement, this wake mode is considered a VIV-dominated mode.

In summary, the PIV measurements together with frequency analysis reveal changes in the wake mode in different FIV response
egimes for the spheroids. It has been demonstrated that all the elliptical ratios tested (1.00 ⩽ 𝜖 ⩽ 3.20) display a pure VIV mode
Mode I. Furthermore, the second VIV mode, Mode II, was observed to occur for the cases of 1.00 ⩽ 𝜖 ⩽ 2.50. Interestingly, two
dditional VIV-dominated modes were observed to occur: a V-I mode for 𝜖 = 2.50 and a V-II mode for 𝜖 = 3.20. The V-I mode
anifests as a 6P pattern, associated with the dominant frequency at 𝑓 ∗ ≃ 1 and second strongest component at 𝑓 ∗ ≃ 3 in both
∗
𝐶𝑦

and 𝑓 ∗
𝐶𝑣

. Conversely, the V-II mode displays a 2(2P+S) pattern, with the second harmonic (𝑓 ∗ ≃ 2) being the second strongest
omponent in both 𝑓 ∗

𝐶𝑦
and 𝑓 ∗

𝐶𝑣
.

.3. Galloping-dominated vortex formation mode: Mode G-I

Fig. 17 presents sample PIV vorticity fields for representative cases within the galloping-dominated G-I regime for 𝜖 = 1.53 at
∗ = 11.60, 𝜖 = 2.00 at 𝑈∗ = 10.00, and 𝜖 = 2.50 at 𝑈∗ = 8.00. All cases here are observed to exhibit a 2(2P+S) wake pattern,

haracterized by two pairs (P) of opposite-sign vortices and a single vortex shed per half-body vibration cycle. Compared to the
revious VIV-dominated modes, a notable increase in the elongation of shear layers coupled with large body vibrations is observed.
t can be observed that there is a strong interaction between elongated and opposite sign shear layers, resulting in a high number
f vortical structures shed per oscillation cycle.

Fig. 18 shows sample time traces of the structural and fluid dynamics corresponding to the above PIV cases. In all cases, both 𝐶𝑦
nd 𝐶𝑣 display their dominant frequency matching the body vibration frequency at 𝑓 ∗ ≃ 1, along with a significant third harmonic
omponent at 𝑓 ∗ ≃ 3. This frequency response is similar to the case of the V-I regime for 𝜖 = 2.50 at 𝑈∗ = 11.60 (Fig. 14). Despite the
imilarity in the 2(2P+S) pattern observed in V-II and G-I modes, the total phase 𝜙 is found to be approximately 100◦, suggesting
13
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Fig. 11. Wake patterns visualized from PIV spot measurements in the Mode-II regime for all 𝜖 cases: (𝑎) 𝜖 = 1.00, 𝑈 ∗ = 11.00, (𝑏) 𝜖 = 1.53, 𝑈 ∗ = 7.40, (𝑐) 𝜖 = 2.00,
∗ = 7.00, and (𝑑) 𝜖 = 2.50, 𝑈 ∗ = 5.80. The normalized vorticity range is 𝜔∗ = 𝜔𝐷∕𝑈 ∈ [−3, 3]. A 2(P+S) pattern is observed in PIV spot measurements in the
ode-II regime for all oblate spheroid cases in (𝑏)–(𝑑).

hat the transverse lift is nearly in phase with the body movement velocity, favoring body vibration and leading to a galloping
esponse.

.4. Potential implications for FIV energy harvesting performance

This subsection evaluates the potential FIV energy harvesting performance for the spheroids tested. In practice, power extraction
rom cross-flow FIV involves using a power generator that functions as a damper. The instantaneous power output of the energy
arvester based on cross-flow FIV is given by 𝑃 = 𝐅𝑦 ⋅ 𝐲̇, and the dimensionless power output coefficient for an oblate spheroid can
e defined by

𝐶 = 𝑃
/(1𝜌𝑈∗3𝜋(𝑏2∕4)

)

. (2)
14
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Fig. 12. Sample time traces of the body displacement (𝑦∗), and the coefficients of the total transverse force (𝐶𝑦) and the vortex force (𝐶𝑣) within the Mode-II
egime, along with the corresponding PSD plots for (𝑎) 𝜖 = 1.00 at 𝑈 ∗ = 11.00, (𝑏) 𝜖 = 1.53 at 𝑈 ∗ = 7.40, (𝑐) 𝜖 = 2.00 at 𝑈 ∗ = 7.00, and (𝑑) 𝜖 = 2.50 at 𝑈 ∗ = 5.80.

Fig. 13. A 6P pattern is observed in PIV spot measurements for 𝜖 = 2.50 at 𝑈 ∗ = 11.60 in V-I regime. The normalized vorticity range is 𝜔∗ = 𝜔𝐷∕𝑈 ∈ [−3, 3].
15
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w

Fig. 14. Sample time traces of the body displacement (𝑦∗), and the coefficients of the total transverse force (𝐶𝑦) and the vortex force (𝐶𝑣) for 𝜖 = 2.50 at
𝑈 ∗ = 11.60 within the V-I regime, along with the corresponding PSD plots.

Fig. 15. A 2(2P+S) pattern is observed in PIV spot measurements for 𝜖 = 3.20 at 𝑈 ∗ = 8.00 within the V-II regime. The normalized vorticity range is 𝜔∗ = 𝜔𝐷∕𝑈
∈ [−3, 3].

Fig. 16. Sample time traces of the body displacement and the fluid forces (𝐶𝑦 and 𝐶𝑣), together with their frequency power spectra, for 𝜖 = 3.20 at 𝑈 ∗ = 8.00
ithin the V-II regime.
16
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Fig. 17. A 2(2P+S) pattern is observed in PIV spot measurements within the G-I regime for: (𝑎) 𝜖 = 1.53, 𝑈 ∗ = 11.60, (𝑏) 𝜖 = 2.00, 𝑈 ∗ = 10.00, (𝑐) 𝜖 = 2.50,
∗ = 8.00. The normalized vorticity range is 𝜔∗ = 𝜔𝐷∕𝑈 ∈ [−3, 3].

his expression defines the energy conversion of the flow energy passing across the frontal area of an oblate spheroid into extractable
nergy. The power extraction performance is commonly assessed by its temporal-average power output coefficient over a period of
ime 𝑡 (typically over many vibration cycles) (Zhao et al., 2022a):

𝐶𝑃 = 1
𝑡 ∫

𝑡

0
𝐶𝑃 (𝑡) 𝑑𝑡. (3)

Fig. 19 presents the variation of 𝐶𝑝 as a function of 𝑈∗ for all 𝜖 cases tested, where nearly constant mass-damping values
𝑚∗ + 𝐶𝐴)𝜁 ≈ 0.2634 are employed (see Table 2). Notably, the maximum 𝐶𝑃 increases with 𝜖 from 1.00 to 3.20. Furthermore, as

shown in Fig. 20, the case 𝜖 = 3.20 attains a maximum value of 𝐶𝑃 = 0.165 at 𝑈∗ = 6.1 over the VIV-dominated response. This
value represents a significant enhancement of 660%, compared to the maximum value of 𝐶𝑃 = 0.025 observed in the sphere case.
It is noteworthy that the potential energy harvesting performance in the G-I mode seems to be more robust than the VIV modes
(both Mode I and Mode II) and the V-I mode, as demonstrated by the case of 𝜖 = 2.00, where the time-averaged power coefficient
remains nearly constant at 𝐶𝑃 = 0.11 through its G-I regime, in comparison with case of 𝜖 = 2.50, where 𝐶𝑃 decreases gradually

ith increasing 𝑈∗ in its V-I regime.
To provide deeper insight into the influence of the mass-damping parameter (𝑚∗ + 𝐶𝐴)𝜁 on the power extraction performance,

ig. 21 presents variations of the maximum time-averaged power coefficient 𝐶𝑃𝑚𝑎𝑥 as a function of (𝑚∗ +𝐶𝐴)𝜁 for all tested 𝜖 cases.
t should be noted that each 𝐶𝑃𝑚𝑎𝑥 was obtained from measurements over a range of reduced velocities (e.g., 3 ⩽ 𝑈∗ ⩽ 12) for a

fixed (𝑚∗ +𝐶𝐴)𝜁 value; the value of (𝑚∗ +𝐶𝐴)𝜁 was varied by adjusting the structural damping ratio 𝜁 , while the mass ratio 𝑚∗ was
kept constant, with assumed constant 𝐶 in the experiments. This investigation was motivated by the recent study of Han et al.
17
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P

Fig. 18. Sample time traces of the body displacement (𝑦∗), and the coefficients of the total transverse force (𝐶𝑦) and the vortex force (𝐶𝑣), together with their
SD plots, for (𝑎) 𝜖 = 1.53 at 𝑈 ∗ = 11.60, (𝑏) 𝜖 = 2.00 at 𝑈 ∗ = 10.00, and (𝑐) 𝜖 = 2.50 at 𝑈 ∗ = 8.00.

Fig. 19. Variation of the time-averaged power output coefficient 𝐶𝑃 as a function of 𝑈 ∗ for all 𝜖 cases.
18
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Fig. 20. Variation of the maximum time-averaged power coefficient (𝐶𝑃𝑚𝑎𝑥
) with 𝜖.

Fig. 21. Variation of the maximum time-averaged power coefficient (𝐶𝑃𝑚𝑎𝑥
) as a function of (𝑚∗ + 𝐶𝐴)𝜁 for all 𝜖 cases.

(2023b) showing that the maximum (time-averaged) power coefficient in VIV of circular cylinders is governed by the mass-damping
parameter (𝑚∗ +𝐶𝐴)𝜁 . It is evident from Fig. 21 that the peak value of 𝐶𝑃𝑚𝑎𝑥 increases with 𝜖, affirming the trends obtained in cases
with nearly constant values of (𝑚∗ + 𝐶𝐴)𝜁 , as shown in Fig. 20.

Of particular interest, the cases of 𝜖 = 2.00 and 2.50 show notable robustness with high-performance 𝐶𝑃𝑚𝑎𝑥 values remaining
table over the range of (𝑚∗ + 𝐶𝐴)𝜁 values, i.e., 0.12 < (𝑚∗ + 𝐶𝐴)𝜁 < 0.52 for 𝜖 = 2.00 and 0.15 < (𝑚∗ + 𝐶𝐴)𝜁 < 0.35 for 𝜖 = 2.50.
ignificantly, in the case of 𝜖 = 2.50, 𝐶𝑃𝑚𝑎𝑥 is observed to increase gradually, reaching its peak value of 0.152 at (𝑚∗ + 𝐶𝐴)𝜁 = 0.33,

before a sudden reduction at a higher (𝑚∗ + 𝐶𝐴)𝜁 value. This suggests that similar to VIV of circular cylinders, there may exist an
optimal value of (𝑚∗ + 𝐶𝐴)𝜁 to achieve 𝐶𝑃𝑚𝑎𝑥 from galloping-dominated responses in spheroids.

For comparison with VIV of a sphere, Table 3 presents the peak 𝐶𝑃𝑚𝑎𝑥 values from the case of 𝜖 = 3.20 along with those from a
phere.
19
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Table 3
Comparison of the maximum average power coefficients of an oblate spheroid of 𝜖 = 3.20 and a sphere.
𝑚∗ 𝐶𝐴 𝜁 (𝑚∗ + 𝐶𝐴)𝜁 𝐶𝑃𝑚𝑎𝑥

𝑈 ∗ Re

Oblate spheroid (𝜖 = 3.20)

39.45 0.337 0.00545 0.2725 0.165 6.1 10 722.39

sphere (𝜖 = 1.00)

12.81 0.590 0.0195 0.2613 0.02 9.4 14 831.371

4. Conclusions

The present study has experimentally investigated FIV responses and implied FIV energy harvesting performance of elastically
ounted oblate spheroids with aspect ratios varying from 1.00 to 3.20. The investigations were conducted for spheroids with nearly

onstant mass-damping (𝑚∗ +𝐶𝐴)𝜁 values, which varied in the range of 0.25–0.27 over the reduced velocity range 3.0 ⩽ 𝑈∗ ⩽ 12.0,
corresponding to Reynolds numbers 4730 ≤ 𝑅𝑒 ≤ 20 120. Furthermore, the study evaluated the FIV energy harvesting performance
of the spheroids as a function of (𝑚∗ + 𝐶𝐴)𝜁 .

The findings showed that the aspect ratio 𝜖 strongly influences the FIV response of the tested spheroids. For the baseline sphere
case, the body vibration is characterized by a pure VIV response, encompassing Mode I over the range of 5.0 ≲ 𝑈∗ ≲ 6.6, Mode II
beyond 𝑈∗ > 11, and a transition region situated in between these two modes. As the sphere is deformed to 𝜖 = 1.53, following VIV
modes – Mode-I and Mode-II – the body vibration becomes desynchronized over the range of 9.2 ⩽ 𝑈∗ ⩽ 10.2, before recovering
into a galloping-dominated mode, denoted by G-I, for 𝑈∗ > 10.2. With further body deformation to 𝜖 = 2.00, the body vibration
predominantly exhibits three significant regimes: Mode I, Mode II, and G-I, with smooth transitions observed between them. As 𝜖
is increased to 2.5, in addition to the three significant regimes observed in the case of 𝜖 = 2.00, a new regime associated with a
VIV-Galloping response mode, denoted by V-I, is encountered for 𝑈∗ > 10.0. Notably, in comparison to G-I mode, V-I mode displays
a much weaker second harmonic (𝑓 ∗ ≃ 2) in both 𝑓 ∗

𝐶𝑦
and 𝑓 ∗

𝐶𝑣
, and a lower growth rate of 𝐴∗

10 with 𝑈∗. The maximum vibration
amplitude of all tested 𝜖 cases is observed to be 𝐴∗

10 = 2.17 at 𝑈∗ = 12.0 in the V-I mode response of 𝜖 = 2.50. With the most significant
body formation in the present study, 𝜖 = 3.20, the spheroid surprisingly exhibits a large-amplitude vibration response with Mode-I
vortex shedding over the range 4.9 ⩽ 𝑈∗ ⩽ 7.0, before transitioning to a VIV-dominated regime V-II between 7 ⩽ 𝑈∗ ⩽ 9. The
maximum amplitude in this V-II regime observed is 𝐴∗

10 = 1.70, an increase of 143% compared to the peak 𝐴∗
10 value observed in

Mode-II for 𝜖 = 1.53.
Furthermore, planar PIV measurements have unveiled significant changes in the wake structure as 𝜖 increased from the sphere

case. It has been observed that during the galloping-dominated regime, a greater number of coherent vortical structures were shed
per oscillation cycle compared to the VIV-dominated regimes. This observation is correlated with high-order harmonic frequency
components in the fluid forces, similar to the phenomena observed in previous studies of D-section or square cylinders undergoing
galloping oscillations.

The investigation of the FIV energy harvesting performance of the tested spheroids showed that the peak power output coefficient
tends to increase with 𝜖. The evaluations revealed a maximum time-averaged power coefficient of 𝐶𝑃𝑚𝑎𝑥 = 0.165 was achieved in the

-I mode response of 𝜖 = 3.20. This value was approximately 660% higher than that observed in VIV of spheres. This suggests that
IV energy harvesting from galloping-dominated responses of oblate spheroids holds significant practical potential. Additionally,
he study of 𝐶𝑃𝑚𝑎𝑥 with varying mass-damping (𝑚∗ +𝐶𝐴)𝜁 values suggests that, similar to VIV of circular cylinders, there may exist

an optimal value of (𝑚∗ + 𝐶𝐴)𝜁 to achieve 𝐶𝑃𝑚𝑎𝑥 from galloping-dominated responses in spheroids.
The findings highlight the distinctive nature of FIV responses in 3D oblate spheroids compared to 2D bluff bodies like elliptical,

-section, and square cylinders. Therefore, performing a quasi-steady instability analysis is recommended to gain deeper insights into
he underlying mechanisms governing the FIV responses of 3D oblate spheroids. Additionally, further research to comprehensively
nderstand the 3D flow structures associated with various response modes in FIV of 3D oblate spheroids would be of great interest.
n closing, note that additional experiments for 𝜖 = 3.20 indicated some sensitivity (not shown in the present study) in ranges of
.6 ≲ 𝑈∗ < 6 and 7.8 ≲ 𝑈∗ < 9.6, near two transitions in the amplitude response. Therefore, further investigations are warranted to
ssess the sensitivity of the FIV responses of the spheroids, particularly for high 𝜖, under various experimental conditions, including
nitial flow conditions (to investigate hysteresis effects), Reynolds number, mass ratio, and damping ratio.
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