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Abstract

A freely-oscillating, elastically-mounted cylinder has two or three different response branches, where the third r
branch is characterised by high amplitude oscillations and occurs at low values of the mass-damping parameter.
a cylinder undergoing forced transverse oscillations in a free stream flow exhibits two different wake states, with an a
third state at high oscillation amplitudes. In this paper the characteristic lift properties and patterns of near wake vorticit
forced wake states are compared with those of the free response branches. The forced oscillations are shown to repl
features of the freely oscillating case. However, these results also show that there are some important aspects to b
before forced oscillations can be used to predict flow-induced motion.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

Vortex-induced vibrations typically occur when flow past a body induces a wake whose natural frequency approa
natural structural frequency of the body. The vortex-induced motion and the wake of the oscillating body are intrinsica
dependent; thus the relationship between these two factors is complicated and difficult to determine. This paper con
case of a rigid cylindrical body oscillating transverse to the flow, however many of the results are relevant to non-cy
bluff bodies.

The early study by Feng [1] showed that an elastically-mounted freely-oscillating cylinder exhibits a range of re
depending on a number of parameters including the flow velocityU , the non-dimensional massm∗, the non-dimensiona
dampingζ , and the natural frequency of the cylinder and its supporting structurefN . A number of studies, including the rece
investigation of Govardhan and Williamson [2], have examined the changes in the response in terms of the vorticity
of the near wake and the lift forces on the cylinder. An approach to further understanding the fluid–structure interact
control the motion of the body, allowing the response of the wake to the motion to be examined in isolation. The res
the cylinder wake to forced motion has been extensively studied and there is a considerable body of literature desc
structure of the near wake and the forces on the cylinder, [3–5].

The relationship between the forced and freely oscillating cases, in particular the potential of the forced results to
insight into the the more complicated freely oscillating case, is of significant interest. If the forced motion captures the “e
features” of the flow-induced motion the results of the forced oscillations can be used to predict the motion of an ela
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mounted body. Historically, the relevance of forced oscillation experiments to a wide range of engineering problems was
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predicated on the assumption that the flow-induced motion could be adequately represented by sinusoidal oscillations
at a constant oscillation amplitude and frequency. However, the links between the forced and freely oscillating cases
been conclusively established. The prediction of flow-induced motion using the results of forced oscillation experime
considered by Staubli [6]; otherwise, this problem has received relatively little attention. In this paper results of experim
both forced and freely oscillating cylinders will be presented. The two cases are compared using characteristic wake
and force properties, and the implications for the prediction of flow-induced motion are discussed.

Flow-induced motion occurs over a range of normalised free-stream velocities,U∗ = U/fND, typically within the region
where the natural Kármán frequency of the stationary cylinder wakefo is close tofN . As U∗ is varied the response of th
cylinder, in particular the amplitude of oscillation,A/D, varies significantly. The forced oscillations involve a different,
generally analogous, set of parameters. The forced cylinder oscillations are typically at a constantA/D while the frequency of
forced oscillation,fe, is varied about the point wherefe/fo equals unity. The relationship between the independent varia
for the forced and free experiments is determined by assuming that the frequency of the forced oscillations is equival
oscillation frequency of the free motion. ThusU∗ varies inversely withfe/fo.

2. Experimental method

In this paper results are presented from two different sets of experiments. The forced oscillation experiments were p
in a free-surface water channel at Lehigh University, while the experiments on the elastically-mounted cylinder were co
in the Cornell ONR Water Channel. The two sets of experiments were not specifically designed to investigate the rel
between forced and freely oscillating bodies. However, the experiments traverse very similar regions of parameter s
this fact, along with the similarity of the results, forms the basis of our comparison. For the forced oscillations the cylin
mounted horizontally and oscillated transverse to the free-stream with a purely sinusoidal motion, such that its vertica
was given by:

y(t) = Asin(2πfet). (1)

During each set of experiments the amplitude of oscillation was held constant, while the frequency was varied
0.74< fe/fo < 1.27. These experiments were conducted at a number of oscillation amplitudes:A/D = 0.25, 0.4, 0.5 and 0.6
In the hydroelastic experiments the cylinder was mounted vertically beneath air bearings located above the channe
section. The air bearings allow the cylinder to move transverse to the free-stream such that its motion is directly ana
the forced motion. When the motion of the elastically-mounted cylinder is synchronised with the wake the flow-induced
is sinusoidal in nature, and is to a good approximation described by equation 1. For the forced experimentsRe = UD/ν = 2300
to 9100, while for the elastically-mounted caseRe varied between 3000 and 3700. The experimental techniques and fac
are described in more detail in [7,2]. As discussed by [2], and subsequently by [5,7], the total fluid force on the os
cylinder can be considered as having two components: the vortex force, due to the movement of vortex structures in
and the apparent mass force generated by the displacement of fluid as the body accelerates. For a cylinder oscillating
to the free-stream the lift force on the cylinder can be written as:

CL(t) = CL vortex(t) + CL am(t), (2)

whereCL(t), CL vortex(t) andCL am(t) are the time varying total, vortex and apparent mass lift coefficients respective
general, a good approximation for the total lift force or the vortex force in the synchronization regime is given by a sin
function. Govardhan and Williamson [2] introduced the concept of representing the vortex force in terms of the fo
expression:

CL vortex(t) = CL vortexsin(2πfet + φL vortex), (3)

where they definedCL vortex as the vortex force coefficient, andφL vortex as the phase of the vortex force with respect to
cylinder’s displacementy(t). The vortex force was then shown to be a key parameter in relating vortex dynamic mo
induced fluid forces. The classical expression for the total force is given by:

CL(t) = CL sin(2πfet + φL), (4)

whereCL andφL are the amplitude and phase of the total lift coefficient respectively. If the total and vortex lift force
accurately represented by Eqs. (4) and (3) then the normalised energy transfer from the fluid to the cylinder is approxim

CE ≈ π
A

D
CL sin(φL) ≈ π

A

D
CL vortexsin(φL vortex). (5)
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3. Forced wake states – response at low oscillation amplitudes
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When the cylinder is forced to oscillate at relatively low amplitudes two different wake states are observed. These t
states, the “low-” and “high-frequency” states, have characteristic wake structures and force properties, as described
The transition between these two states corresponds to a “jump” in both the amplitude and phase of the total and
forces on the cylinder. In Fig. 1 characteristic wake structures for the low- and high-frequency states are shown usin
averaged and mean vorticity fields. The slight asymmetry in the mean fields can be attributed to the fact that they were c
using images from only four and two complete oscillation cycles for the low- and high-frequency states respectively. Th
averaged images at the top of the oscillation cycle shown in Fig. 1(a&b)(i) reveal the difference in the timing of vortex sh
the low-frequency wake is about to shed a negative vortex structure into the near wake, whilst at the same phase p
high-frequency wake a positive vortex is about to be shed. The change in the phase of vortex shedding at the transitio
these two states has been observed over a wide range of oscillation and flow parameters for cylindrical [7], and non-c
bluff bodies [9].

The low-frequency wake forms long attached shear layers and typically two counter-rotating vortex pairs (define
“2P mode” from the forced vibration experiments of Williamson and Roshko [4]) are shed per oscillation cycle. Howe
the relatively small oscillation amplitude ofA/D = 0.25, shown in Fig. 1(a(i)), the shorter attached shear layers result i
formation of only a single vortex structure from each shear layer (2S). For frequencies above the jump the high-frequen
shown in Fig. 1(b(i)), is clearly different from the low-frequency wake: the attached vorticity wraps tightly around the b
the cylinder and, over the full range ofA/D considered, the mode of vortex shedding was 2S. Thus, as discussed in [

Fig. 1. Vorticity fields for forced oscillations atA/D = 0.25: (a) low-frequency state and (b) high-frequency state. The upper images are
averaged fields at the top of the oscillation cycle, the lower images are mean vorticity fields calculated over a number of complete o
cycles.
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smallest values ofA/D. At low oscillation amplitudes the mode of vortex shedding for both the low- and high-frequency w
is 2S, however the mean vorticity fields, shown in Fig. 1 (a(ii)) and ((b)ii) atA/D = 0.25, are clearly different. Behind the ma
shear layer the mean low-frequency wake has small lobes of oppositely signed vorticity, whilst the mean high-frequen
is similar to that of a stationary cylinder shown by [10]. These differences can be attributed to the change in the phase
shedding, which alters the relative position of vorticity throughout the oscillation cycle.

4. Free response branches – response at high mass-damping

The amplitude response of an elastically-mounted cylinder within the synchronisation region is shown in Fig.
experimental data at both low values of mass-damping, Khalak and Williamson [11], and high mass damping values,
The elastically-mounted cylinder displays a number of distinctly different states or response branches that, as describ
13,2], exhibit characteristic force properties, oscillation amplitudes and wake structures. For cases with relatively hig
damping there are two branches of amplitude response: the “initial” and “lower” branches. AsU∗ increases from zero th
first response branch encountered is the initial branch, while the lower branch is found at higherU∗. As U∗ varies inversely
with fe/fo, in terms of parameter space the lower branch corresponds to the forced low-frequency state and the initia
corresponds to the high-frequency state. Interpretations of hydrogen bubble visualizations by Khalak and Williamson
and subsequent proof, employing measurements of vorticity for the first time on this problem by Govardhan and William
showed that the vortex shedding mode for the lower branch was generally 2P, while for the initial branch the mode o
shedding was 2S. These results are consistent with the corresponding low- and high-frequency states described abov
the map of wake modes produced by Williamson and Roshko [4]. Additionally, the transition between the lower an
branches corresponds to a jump inφL of similar magnitude and direction to the jump observed between the low- and
frequency states for the forced case.

Fig. 2. The amplitude response branches for a freely oscillating elastically-mounted cylinder plotted againstU∗ , whereU∗ varies inversely
with fe/fo . Two cases are shown lowm∗ζ (Khalak and Williamson [11]) and highm∗ζ (Feng [1]).
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Fig. 3. Vorticity fields showing (a) the three response branches of the freely oscillating cylinder at lowm∗ and (b) the corresponding force
oscillation wake states atA/D = 0.5. (i) The lower branch and low-frequency state occur at lowfe/fo values, (ii) the upper branch an
intermediate state are observed asfe/fo approaches unity while (iii) the initial branch and high-frequency state occur at higher values offe/fo .
(fe/fo varies inversely withU∗ .)

5. Free response branches – response at low mass-damping

The experiments of [12,13] showed that for low values of mass-damping the elastically-mounted cylinder exhibits
“upper” response branch. As shown in Fig. 2, the upper response branch corresponds to large amplitudes of oscilla
(A/D)max typically greater than 0.7) and is found atU∗ between those at which the initial and lower branches are obse
The wake structures corresponding to the lower, upper and initial branches are shown in Fig. 3(a) for a low-m∗ζ value of 0.013.
At this mass-damping value the amplitude of the cylinder’s response is relatively large and the upper and lower br
shown atA/D = 0.81 and 0.6 respectively. As discussed above, the vortex shedding mode for the lower and initial bran
2P and 2S respectively. The mode of vortex shedding for the upper branch is similar to that of the lower branch. How
shown in Fig. 3(a(ii)), the second vortex in each pairing is significantly weaker than the first, although it is clear from th
of Govardhan and Williamson [2] that the vortex formation is again a 2P mode. Importantly, the phase of large scal
shedding for the upper and lower branches appears to be almost identical, while between the upper and initial bran
is a clear difference in the vortex shedding phase. The total and vortex lift phases for the three response branches
as a function ofU∗ in Fig. 4(a). Flow-induced motion requires positive energy transfer from the fluid to the cylinder; fo
elastically-mounted cylinder 0◦ < (φL andφL vortex) < 180◦ . For all three of the response branches at low-m∗, the values of
φL andφL vortex are close to either 0◦ or 180◦. As the system moves between the three branches there is a jump of almos◦
in bothφL andφL vortex. However, the jump inφL occurs at the transition between the lower and upper branches, where
jump inφL vortex occurs at the transition between the upper and initial branches. Relating these changes to the struct
near wake we observe that the downward jump inφL vortex corresponds to a change in both the mode, from 2P to 2S, and p
of vortex shedding. The jump inφL does not correspond to a significant change in the phase of vortex shedding, althoug
is a noticeable change in the distribution of vorticity as the second vortex in each pair becomes weaker than the first. A
transitions there is an abrupt change in the response amplitude.

6. Forced wake states – response at high oscillation amplitudes

The results for the freely oscillating cylinder at low-m∗ suggest that there might be a third forced wake state between the
and high-frequency states. Although previous investigations have considered large amplitude forced oscillations this th
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Fig. 4. Total and vortex phases for (a) the free response branches at lowm∗ζ values and (b) the corresponding forced wake states atA/D = 0.6.
Note in (a) the phases are plotted against decreasingU∗ .

state was only recently identified, [5]. This third wake state is called the “intermediate” state and was observed at o
amplitudes ofA/D = 0.5 and 0.6. Characteristic near wake vorticity fields for the three wake states atA/D = 0.5, are shown
in Fig. 3(b). The characteristic features of the low- and high-frequency wakes in Fig. 3(b((i) and (iii))) are very similar t
found at lower oscillation amplitudes, where the intermediate state is not observed. AsA/D increases the length of the attach
shear layers increases. This is particularly evident in the low-frequency wakes and, as illustrated by comparing Fig
and 3(b(i)), can result in a change in the low-frequency mode of vortex shedding. However, the phase of vortex sheddi
low- and high-frequency states does not vary significantly asA/D increases.

The intermediate state is clearly different from both the low-and high-frequency states. Comparing the intermed
low-frequency states the phase of vortex shedding appears similar, but the attached shear layers of the intermediat
much shorter and more tightly formed, resulting in the formation of a 2S wake. Comparing the intermediate and high-fr
wakes it is clear that the general mode of vortex shedding is in both cases 2S. However, the phase of vortex sheddi
different and, for the same oscillation amplitude, the intermediate wake downstream of the cylinder is much wider. Exa
of the total and vortex lift phases in Fig. 4(b) shows why the presence of the intermediate state has only recently been i
As for the elastically-mounted cylinder there is a large jump in bothφL andφL vortex, with the jumps occurring at differen
transition points. The jump inφL occurs at the transition between the low-frequency and intermediate states, while th
in φL vortex occurs in between the intermediate and high-frequency states. Whereas for the elastically-mounted cyl
existence of the upper branch is indicated by a significantly larger response amplitude, when the cylinder is forced to
at a constantA/D the existence of the intermediate branch is not so clearly identified. In fact, it is not until both the to
vortex phases are simultaneously evaluated and compared, preferably in conjunction with the structures in the near
the existence of the intermediate state becomes apparent.

7. Comparison between forced and free oscillations and conclusions

In this section the properties of the low-frequency, intermediate and high-frequency states are compared with the
the lower, upper and initial branches respectively. Fig. 4 shows a strong similarity in the variation of the total and vo
phases for the forced and freely oscillating cylinders and in both cases the jump inφL vortex corresponds to the jump in th
phase of vortex shedding. This is physically significant as the vortex force is representative of the force due to the mov
vortex structures in the wake. The wake structures in Fig. 3 also show a very strong correlation between the phase r
near wake structures for the corresponding forced wake states and free response branches. The results shown in Figs
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Fig. 5. Mean vorticity fields for the three wake regimes for (a) forced oscillations atA/D = 0.5 and (b) the freely oscillating cylinder.
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Fig. 6. (a) The response obtained by [13] for the initial and lower branches of a freely oscillating case (m∗ = 1.19 and 8.63,Re = 3500–10 000)
are compared with the energy transfer for the forced oscillations for (b) the high-frequency state atA/D = 0.25 and (c) the low-frequency sta
at A/D = 0.6.

conjunction with those at lower forced oscillation amplitudes and higher-m∗ζ , indicate that the forced wake states corresp
to the free response branches as summarised below:

Low-Frequency State ⇐⇒ Lower Branch,

Intermediate State ⇐⇒ Upper Branch,

High-Frequency State ⇐⇒ Initial Branch.

The relationship between the forced wake states and free response branches is further supported by the simila
mean vorticity fields. In Fig. 5 the mean vorticity fields for the three forced regimes are compared with the correspondi
for the freely oscillating cylinder. The mean fields for each of the regimes are clearly different and there is a strong s
between the mean fields for the corresponding forced and free regimes.

The mean vorticity fields for the low-frequency state and the lower branch correspond to shedding modes that
oscillation amplitudes are clearly 2P. The mean wakes have significant regions of vorticity which have crossed the ce
of the wake, which is indicative of the strength of the vorticity in the long shear layers extending across the base of the
The small lobes of oppositely signed vorticity downstream of the main shear layer and close to the wake centreline are
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wide bands of positive and negative vorticity angling away from the centreline of the wake and small lobes of oppositel
vorticity close to the wake centreline. The distributions of the mean vorticity for both the forced and freely oscillating ca
very similar despite the differences inA/D, and the fact that the vortex shedding mode for the upper branch is weakly 2P,
the intermediate wake is 2S. The mode of vortex shedding for the high-frequency and initial branch wakes is 2S and
vorticity fields are very narrow. Interestingly, the mean fields for the low-frequency state, intermediate state, lower bra
upper branch all exhibit small lobes of oppositely signed vorticity near the wake centreline and all have a similar phase
scale vortex shedding. The vortex shedding phase for both the high-frequency state and the initial branch is distinctly
and this small lobe of vorticity is not present.

The forced purely sinusoidal oscillations appear to reproduce the different wake structures and lift phases obser
freely oscillating cylinder. This indicates that the forced oscillations are simulating many of the important features of th
induced motion. The variation ofφL andφL vortex presented in Fig. 4 are remarkably similar. However, many of the valu
φL andφL vortex for the forced oscillations are outside the region of positive energy transfer, 0◦ < (φL andφL vortex) < 180◦ ,
and therefore predict that flow-induced motion would in fact not occur.

Fig. 6 shows a comparison of the energy transfer for forced oscillations with the response of a freely oscillating c
where by definition the energy transfer for the free case must be positive. The amplitude response of the freely o
cylinder plotted against(U∗/f ∗)Sto in Fig. 6(a) shows a good collapse for both the initial and lower branches. In Fig.
and (c) the energy transfer for the forced oscillations are also plotted as a function of(U∗/f ∗)Sto at A/D = 0.25 and 0.6
respectively. For values of(U∗/f ∗)Sto between 1.19 and 1.29 the energy transfer coefficient for the low-frequency st
A/D = 0.6 andRe = 2300 is negative. However, Fig. 6(a) shows that for values of(U∗/f ∗)Sto between 1.1 and 1.6 lowe
branch flow-induced vibrations occur atA/D = 0.6 for a similar Reynolds number ofRe = 3700. Similarly, for the free
initial branch at(U∗/f ∗)Sto of just below 1 free oscillations occur atA/D = 0.25. However, the high-frequency state forc
oscillations at this amplitude and similar values of(U∗/f ∗)Sto result in negative energy transfer.

These results show that although the forced purely sinusoidal oscillations replicate many features of the flow-induce
they can result in negative energy transfer for flow and oscillation parameters where free oscillations are known to
these cases, the forced sinusoidal motion cannot predict the flow-induced motion and therefore, the sinusoidal motion
simulate all the key components of the flow-induced motion. The experimental results presented here were obtain
separate facilities. Further work using a co-ordinated approach, in particular careful matching ofRe andA/D, is clearly needed
to reconcile the difference in the sign of the energy transfer with the good agreement between the flow fields in the fo
freely oscillating cases.
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