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The generation, redistribution and, importantly, conservation of vorticity and
circulation is studied for incompressible Newtonian fluids in planar and axisymmetric
geometries. A generalised formulation of the vorticity at the interface between two
fluids for both no-slip and stress-free conditions is presented. Illustrative examples are
provided for planar Couette flow, Poiseuille flow, the spin-up of a circular cylinder,
and a cylinder below a free surface. For the last example, it is shown that, although
large imbalances between positive and negative vorticity appear in the wake, the
balance is found in the vortex sheet representing the stress-free surface.
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1. Introduction
The original motivation for this article arose from the conundrum presented by the

problem of the flow past a submerged circular cylinder (Sheridan, Lin & Rockwell
1997; Reichl, Hourigan & Thompson 2005; Bozkaya et al. 2011). As the gap between
the cylinder and the free surface decreases, the vorticity strongly shed from the top
surface of the cylinder remarkably, and rapidly, disappears in the wake, leaving
vorticity of only one sign in the flow (see figure 1). From our conversations within
the fluid mechanics community, it appeared that the solution to this puzzle is not
trivial. The apparent violation of the conservation of vorticity (or, more precisely,
circulation) led us to consider the more general problem of how vorticity is generated
and diffused at interfaces, and under what conditions the corresponding circulation is
conserved. Even the simpler problem of what happens over time to vorticity when a
cylinder in an initially motionless fluid is impulsively spun-up appears, in general, to
be not obvious. As noted by Morton (1984), and still the case, the origin, transport,
conservation and behaviour near boundaries of vorticity are often poorly understood.

We therefore concluded that it could be valuable to researchers in the community to
present a clear and concise formulation of vorticity generation at interfaces, both non-
slip and stress-free. This is the subject of the first part of this article. In a second part,
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(a)

(b)

FIGURE 1. (Colour online) Vorticity field for flow past a cylinder submerged beneath a
stress-free surface for (a) G/D= 0.25 and (b) G/D= 0.125. Each image corresponds to
the same time after startup of t' 24D/U. The Reynolds number is Re= 180 (see § 4 for
notation). As the cylinder is placed closer to the free surface, the clockwise vorticity shed
from the top of the cylinder appears to vanish as it is advected downstream.

we shall consider a number of instructive examples, including the rotating cylinder,
before returning to the particular example of the submerged cylinder. For simplicity,
we restrict the discussion to two-dimensional flows.

Vorticity is one of the most important physical quantities in fluid mechanics.
Boundary layers, wakes, turbulence and many other phenomena owe their presence
to, and are essentially defined by, vorticity and vortices, which are ‘the sinews and
muscles of fluid motions’ (Küchemann 1965). The physics of a given fluid flow is
often more effectively illustrated through vorticity than velocity fields. Vorticity, ω, is
defined precisely mathematically by

ω(r, t)=∇× u(r, t), (1.1)

where u is the local velocity at a point r in space at time t. The vorticity vector
represents twice the local average of angular velocity of material lines. In particular, if
the fluid is locally in solid-body motion, the axis of rotation is given by the direction
of ω, and the angular velocity by |ω/2|.

The generation and redistribution of vorticity in a fluid flow has been discussed
by a number of authors, including Longuet-Higgins (1953, 1992, 1998), Lighthill
(1963), Batchelor (1967), Morton (1984), Lugt (1987), Ohring & Lugt (1991), Wu
(1995), Wu & Wu (1996), Lundgren & Koumoutsakos (1999) and Zhang, Shen &
Yue (1999). Rather than specifying a mechanism for its origin, Lighthill (1963) and
Batchelor (1967) provide the balance between vorticity generation and its diffusion at
a solid wall. Morton (1984) distinguishes between vorticity generation and diffusion,
i.e. he separates the accelerations at a solid boundary leading to vorticity generation
from its subsequent diffusion away from the boundary. Lundgren & Koumoutsakos
(1999) study the appearance and conservation of vorticity in the case of a free-surface
boundary. Here, we seek to generalise the description and interpretation to a range
of interfaces and boundaries.
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In primitive variables (velocity and pressure), the velocity field, and hence the
derived vorticity field, is determined through the boundary conditions on the velocity
and pressure. Taking the curl of the Navier–Stokes equation eliminates the pressure
term. However, as Morton (1984) has pointed out, the resulting Helmholtz vorticity
equation for an incompressible fluid with uniform density,

∂ω

∂t
+ (u · ∇)ω= (ω · ∇)u+ ν∇2ω, (1.2)

where ν is the kinematic viscosity, is of limited use concerning the issue of vorticity
generation, because it contains no true source term. The first term on the right is a
processing term describing the local amplification (or concentration) of vorticity by
stretching and tilting of vortex filaments. The second term on the right represents
viscous diffusion, i.e. the spreading of vorticity due to viscosity. For a homogeneous
fluid, vorticity is generated only at boundaries. Batchelor (1967) concluded that the
boundary conditions on vorticity are given, in effect, by those on velocity.

Morton (1984) sought a dynamical formulation for the generation of vorticity: he
focused on the flow next to a solid wall and concluded that vorticity is generated at
boundaries by the relative acceleration of fluid and wall. This vorticity is produced
instantaneously, either from the fluid side by tangential pressure gradients, or from
the wall side by acceleration of the boundary, and this generation is partially masked
by viscous diffusion when there is continuing production. Morton (1984) also found
that, for an impulsive change, wall stress does not produce vorticity, and that the only
means of decay or loss of circulation is by cross-diffusion and annihilation of vorticity
of opposite signs.

Lundgren & Koumoutsakos (1999) examined the case of a free surface and showed
that vorticity is conserved. That is, vorticity is not lost through the free surface, but
rather is ‘stored’ in the vortex sheet representing the free surface. This is an important
result that has often been debated in the literature, but which also needs to emerge
in our present formulation. Furthermore, enforcing the condition of zero shear stress,
they found that vorticity ‘develops’, ‘leaks’ or ‘is generated’ at a curved free surface,
along which there is a relative flow.

The aim of this article is to provide both a description of the generation of vorticity
at two-dimensional interfaces between generalised fluids (ranging from a vacuum to a
solid) and for boundary conditions at the interface ranging from stress-free to no-slip,
thus generalising the important previous works of Morton (1984) and Lundgren
& Koumoutsakos (1999). Furthermore, a number of examples are considered to
demonstrate the power of this generalised formulation, and to provide the reader with
a physical insight into the generation, redistribution and conservation of vorticity and
circulation.

2. Vorticity at the interface of two fluids
2.1. Generation of vorticity at an interface

In the present paper we study the two-dimensional flow of two Newtonian
incompressible immiscible fluids, divided by an interface, which may be unsteady.
Each fluid is assumed to have constant material properties, i.e. constant density and
viscosity.

Consider first a single such fluid in some domain in the plane, without boundaries
or interfaces. We denote by u the fluid velocity, and ω its vorticity, which is now
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FIGURE 2. The interface I with normal vector n̂ and tangential vector t̂, forming a right-
handed coordinate system. Shaded subregions A1, A2 of the region A in each fluid are
bounded by the curves C1, C′1 and C2, C′2 respectively. The outward normal vector of a
region is denoted n.

a scalar. Let A be a material region in the domain, bounded by the simple curve C.
From Stokes’ theorem, the circulation ΓA contained in A (sometimes also referred to
as the ‘total vorticity’ in A) is equal to the surface integral of the vorticity:

ΓA =
∮

C
u · ds=

∫

A
ω dA. (2.1)

Here, s is the curvilinear distance (arclength) along the contour C, and ds a (vector)
line element of this contour. From a standard application of the divergence theorem on
the vorticity transport equation, one obtains for the rate of change of the circulation
in A,

dΓA

dt
= d

dt

∫

A
ω dA=

∮

C
ν∇ω · n ds, (2.2)

where n is the outward normal. Equation (2.2) states that the total vorticity (or
circulation) of A changes only because vorticity diffuses across the boundary, the flux
into A being given by ν∇ω · n. Thus, there are no sources of vorticity.

Assume now that an interface between two fluids passes through A, as shown in
figure 2. We assume that all relevant physical quantities and all of their derivatives
have finite limits as the interface is approached in each of the fluids. The limit value
of a quantity for an approach in fluid 1 (2) is denoted by the subscript 1 (2). Only
when a quantity q is continuous across the interface is it well defined at the interface.
Otherwise, only the jump at the interface, defined as

JqK= q2 − q1, (2.3)

is single-valued.
Owing to these possible discontinuities, we cannot use the divergence theorem as

above directly on A. We may, however, approximate the parts of A in each fluid with
subregions A1 and A2, as shown in figure 2, and use (2.2) on each subregion. By
addition, one obtains

d
dt

∫

A1∪A2

ω dA=
∫

C1

ν1∇ω · n ds+
∫

C2

ν2∇ω · n ds+
∫

C′1
ν1∇ω · n ds+

∫

C′2
ν2∇ω · n ds.

(2.4)
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The contours C1, C2, C′1 and C′2 are defined in figure 2. Let σ1 denote the vorticity
flux at the interface into fluid 1 and likewise σ2 the vorticity flux out of fluid 2,

σ1 = ν1∇ω1 · n̂, σ2 = ν2∇ω2 · n̂, (2.5a,b)

where n̂ is the normal to the surface pointing into fluid 2. Now we let C′1 and C′2
approach the interface I. Then A1 ∪ A2→ A, and we get from (2.4)

d
dt

∫

A
ω dA=

∮

C
ν∇ω · n ds−

∫ b

a
Jσ K ds, (2.6)

since n→ n̂ along C′1 as C′1→ I and n→−n̂ along C′2 as C′2→ I. In the last integral
on the right, s is again the curvilinear coordinate, this time along the interface I. In
(2.6), one can think of Jσ K as the density of a source of vorticity located at the
interface. However, some care should be taken with this interpretation, since Jσ K only
measures the total flux of vorticity out of the interface and into the fluids. It does not
say anything about the values of the individual fluxes σ1 and σ2 into each fluid. Also,
Jσ K is specified in terms of the actual flow, and is in this sense a quantity that can
only be found a posteriori, after the flow field has been determined otherwise.

Further information about the vorticity source Jσ K can be found from the
momentum transport equation. Consider an interior point in the fluid and let n̂
and t̂ be unit vectors forming a right-handed coordinate system at the given point.
It follows by simple computations from the momentum transport equation and the
equation of continuity that

du
dt
· t̂=− 1

ρ
∇p · t̂+ ν∇ω · n̂, (2.7)

which links the vorticity flux to the tangential acceleration and the pressure gradient.
From kinematical considerations (see appendix A), one finds at the interface in one
fluid

du
dt
· t̂= d

dt
(u · t̂)+ κ(u · n̂)(u · t̂)− 1

2
∂

∂s
(u · n̂)2, (2.8)

where

κ = ∂n̂
∂s
· t̂ (2.9)

is the curvature of the interface, such that

σ = ν∇ω · n̂= d
dt
(u · t̂)+ 1

ρ
∇p · t̂+ κ(u · n̂)(u · t̂)− 1

2
∂

∂s
(u · n̂)2. (2.10)

This result is also obtained by Lundgren & Koumoutsakos (1999, their equation (23)),
except that here we solve for the vorticity flux and do not consider external forces
such as gravity. Applying (2.10) at the interface in each fluid, with n̂ again being the
surface normal vector pointing into fluid 2 and t̂ the tangent vector of the interface,
and subtracting, we get

Jσ K= dγ
dt
+ ∂

∂s

s
p
ρ

{
+ κ q

(u · n̂)(u · t̂)
y
, (2.11)
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where
γ = q

u · t̂
y

(2.12)

is the strength of the vortex sheet at the interface, which exists if there is a jump in
tangential velocity. The jump in the last term on the right of (2.10) is zero, since the
normal velocity is single-valued at the interface for continuity.

We emphasise that the vortex sheet that appears at the interface is a consequence
of the bookkeeping of the vorticity flux only. It is not the result of a modelling of
the vorticity distribution close to the interface. Only the Navier–Stokes equations and
continuity of the flow fields in each fluid are assumed and the analysis is completely
general, independent of Reynolds number, etc. If, however, the present approach is
to be turned into a numerical method, as discussed by Lundgren & Koumoutsakos
(1999), some modelling of the vorticity created and stored at the interface must be
introduced.

Equation (2.11) illustrates the fundamental mechanisms for generating vorticity at an
interface between viscous incompressible Newtonian fluids. The first two terms on the
right are those identified by Morton (1984) at a solid wall, but generalised here for any
fluid interface. The first term is the relative tangential acceleration between the two
fluids at the interface. The second term is the differential tangential pressure (divided
by density) gradient in the two fluids at the interface. The third term is non-zero only
when the interface is unsteady, with a non-zero normal velocity component (u · n̂ 6= 0),
and curved (κ 6= 0).

The relative acceleration or differential pressure gradient at an interface either
can be generated through the application of external forces or results from internal
pressure gradients or accelerations due to viscous shear stresses.

However, in order to generate a net amount of circulation, an external force or
torque is required. Internal stresses can result in the appearance of vorticity locally
at an interface, but this is accompanied by the appearance of the corresponding
circulation of equal magnitude and opposite sign elsewhere. This conservation is
demonstrated below.

We conclude this section by discussing the role of surface tension. It appears in
the pressure boundary condition, which expresses the continuity of normal stress at
the interface. The previous developments were independent of this boundary condition,
which is

− p1 +µ1 n̂ · D1 · n̂+ Tκ =−p2 +µ2 n̂ · D2 · n̂, (2.13)

where µ = ρν is the dynamic viscosity, D is the symmetric part of the velocity
gradient tensor and T is surface tension. After some algebra (see Lundgren &
Koumoutsakos (1999) for details) one finds

n̂ · D · n̂=−2
∂

∂s
(u · t̂)− 2κu · n̂, (2.14)

such that (2.13) can be written as

JpK=−2
s
µ
∂

∂s
(u · t̂)

{
− Tκ. (2.15)

Here we have used that Ju · n̂K= 0. Since
s

p
ρ

{
= 1
ρ2

JpK+
s

1
ρ

{
p1, (2.16)
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the pressure term in (2.11) is

∂

∂s

s
p
ρ

{
=− 2

ρ2

s
µ
∂2

∂s2
(u · t̂)

{
− 1
ρ2

∂

∂s
(Tκ)+

s
1
ρ

{
∂p1

∂s
. (2.17)

Hence, for flows that fulfil the pressure boundary condition, a variation of the product
of surface tension and curvature along the interface acts as a source of vorticity.

2.2. Conservation of vorticity/circulation
Part of the motivation for this article is the observation, in free-surface flows, that
vorticity can seem to disappear (e.g. in the wake of a circular cylinder close to a
free surface (Sheridan et al. 1997; Reichl et al. 2005)). Some authors have appeared
comfortable with the notion that the total vorticity (circulation) need not be conserved
(Rood 1994; Wu & Wu 1996), whilst others have included the vortex sheet at the
free surface for conservation of circulation (Lundgren & Koumoutsakos 1999). Here,
we demonstrate the general principle of vorticity conservation, acknowledging that the
property of conservation in a physical quantity such as vorticity or circulation provides
a powerful analytical tool.

Integrating (2.11) along the interface, we obtain
∫ b

a
Jσ K ds=

∫ b

a

dγ
dt

ds+
(s

p
ρ

{

b
−

s
p
ρ

{

a

)
+
∫ b

a
κ

q
(u · n̂)(u · t̂)

y
ds. (2.18)

Inserting (2.18) into (2.6), we get

d
dt

(∫

A
ω dA+

∫ b

a
γ ds

)
=
∮

C
ν∇ω ·n ds−

(s
p
ρ

{

b
−

s
p
ρ

{

a

)
−
∫ b

a
κ

q
(u · n̂)(u · t̂)

y
ds.

(2.19)
If all the terms on the right of (2.19) are zero, the total vorticity in the fluid region

A is constant in the sense that
∫

A
ω dA+

∫ b

a
γ ds= const. (2.20)

The second term on the left represents the circulation contained in the interface.
Consider the circuit consisting of C′1 and C′2 connected by two short segments
crossing the interface through a and b. The circulation of this circuit in the limit
where C′1 and C′2 approach the interface I is

∫ b
a γ ds. Here, γ therefore appears as

the linear circulation density of the interface. If one includes the circulation stored in
the vortex sheet at the interface in the balance, (2.20) expresses the conservation of
the total circulation in the fluid. It is easy to envisage such a situation. For example,
if the fluid domain is unbounded, so that there is no vorticity flux into A, and all
interfaces that might exist are closed (a = b) and steady, then (2.20) holds. Another
case is given by an unbounded (steady) interface, whose properties are the same in
the limits going in each direction. In § 3 we will see examples of such flows.

To reiterate, in the case of an interface or boundary with free slip, a vortex sheet
model is not imposed, but rather arises from the imposition of zero tangential shear
stress. In the case of a curved boundary with zero tangential shear stress, the condition
of solid-body rotation means that a viscous boundary layer can appear adjacent to the
vortex sheet at the interface.

The results we have obtained until now depend only on the fluids being
incompressible and evolving according to the Navier–Stokes equations. We now
examine the role played by different boundary conditions at the interface.
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2.3. No-slip interface
If the no-slip condition JuK = 0 is imposed at the interface, the expressions above
simplify significantly. The vorticity source density given by (2.11) reduces to

Jσ K= ∂

∂s

s
p
ρ

{
, (2.21)

and, if the pressure boundary condition holds, (2.17) becomes

∂

∂s

s
p
ρ

{
=−2

JµK
ρ2

∂2

∂s2
(u · t̂)− 1

ρ2

∂

∂s
(Tκ)+

s
1
ρ

{
∂p1

∂s
. (2.22)

Since γ = q
u · t̂

y = 0, there is no vorticity stored in the interface and the total
vorticity balance (2.19) becomes

d
dt

(∫

A
ω dA

)
=
∮

C
ν∇ω · n ds−

(s
p
ρ

{

b
−

s
p
ρ

{

a

)
. (2.23)

If the interface is closed, or if Jp/ρK takes the same limiting value in both directions
of an unbounded interface, the total vorticity (circulation) is conserved in the sense
that it can change only if there is a flux at the outer boundary C.

A balance of the vorticity for one fluid can be obtained as follows. If the velocity
at the interface, which is single-valued for the no-slip condition, is denoted by U, we
have from (2.10) that

σ1 = d
dt
(U · t̂)+ 1

ρ1

∂p1

∂s
+ κ(U · n̂)(U · t̂)− 1

2
∂

∂s
(U · n̂)2. (2.24)

The divergence theorem on A1 yields directly

d
dt

∫

A1

ω dA=
∫

C1

ν∇ω · n ds+
∫ b

a
σ1 ds. (2.25)

Inserting σ1 from (2.24) into (2.25), we get

d
dt

∫

A1

ω dA =
∫

C1

ν∇ω · n ds+ d
dt

∫ b

a
U · t̂ ds+

(
p1

ρ1

∣∣∣∣
b
− p1

ρ1

∣∣∣∣
a

)

+
∫ b

a
κ(U · n̂)(U · t̂) ds− 1

2

[
(U · n̂)2b − (U · n̂)2a

]
. (2.26)

Thus, vorticity flows into a fluid at a no-slip interface due to tangential acceleration
and pressure gradients along the interface, as well as from effects related to the normal
motion of the interface and its curvature.

The limit ν2→∞, in which fluid 2 is a rigid body (i.e. a solid), can be treated
within the present framework. In that case, the vorticity in fluid 2 is independent of
the position,

ω= 2Ω0, (2.27)

where Ω0 is the angular velocity of the body. Then the vorticity balance (2.23) can
be rewritten as

d
dt

(∫

A1

ω dA+ 2Ω0 Area(A2)

)
=
∮

C
ν∇ω · n ds−

(s
p
ρ

{

b
−

s
p
ρ

{

a

)
. (2.28)
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When the solid body is of finite size and entirely located within the contour C of the
control volume, the interface I is closed and (2.28) reduces to

d
dt

(∫

A1

ω dA+ 2Ω0 Area(A2)

)
=
∮

C
ν∇ω · n ds. (2.29)

2.4. Stress-free interface
At the interface of two viscous fluids, one normally imposes dynamical boundary
conditions: it is assumed that the tangential and normal stresses vary continuously
across the interface. A free surface of fluid 1 occurs when fluid 2 is unable to sustain
any tangential stress (Brøns 1994; Sarpkaya 1996). We can accommodate this situation
here by simply assuming fluid 2 to be inviscid, with ν2= 0. This implies that σ2= 0,
so that there is no vorticity flux into or out of fluid 2. However, vorticity can still be
exchanged between the interface and fluid 1 via a non-zero σ1.

From (2.10) we have for fluid 1

σ1 = d
dt
(u1 · t̂)+ 1

ρ1

∂p1

∂s
+ κ(u1 · n̂)(u1 · t̂)− 1

2
∂

∂s
(u1 · n̂)2. (2.30)

If one further imposes the pressure boundary condition, assuming that the constant
pressure in fluid 2 is p2 = 0, (2.13) becomes

p1 =µ1 n̂ · D · n̂+ Tκ =−2µ1

(
∂

∂s
(u1 · t̂)+ κu · n̂

)
+ Tκ, (2.31)

from which the pressure term in (2.30) can be rewritten as

1
ρ1

∂p1

∂s
=−2ν1

(
∂2

∂s2
(u · t̂)+ ∂

∂s
(κu · n̂)

)
+ ∂

∂s
(Tκ). (2.32)

Again we see that variation of Tκ along the interface gives rise to a production of
vorticity.

Using the divergence theorem (2.25) on A1, we get

d
dt

∫

A1

ω dA =
∫

C1

ν∇ω · n ds+ d
dt

∫ b

a
u1 · t̂ ds+

(
p1

ρ1

∣∣∣∣
b
− p1

ρ1

∣∣∣∣
a

)

+
∫ b

a
κ(u1 · n̂)(u1 · t̂) ds− 1

2

[
(u1 · n̂)2b − (u1 · n̂)2a

]
. (2.33)

In fluid 1, there is no constraint on the velocity in the limit approaching the
interface. However, from the dynamical boundary condition (zero tangential stress
at the interface), the following relation can be derived (Lundgren & Koumoutsakos
1999, their equation (11)):

ω1 = 2κu1 · t̂− 2
∂

∂s
(u1 · n̂). (2.34)

For zero normal motion of the surface, (2.34) reduces to the familiar statement that
‘surface vorticity is twice the curvature times tangential velocity’, and it follows that
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the surface is pointwise in solid-body rotation with angular velocity Ω = u1 · t̂/R,
where R= 1/κ is the radius of curvature, since

ω1 = 2
u1 · t̂

R
= 2Ω. (2.35)

In general, for a curved surface with a stress-free boundary condition, the exchange of
vorticity between the body of the fluid and the vortex sheet representing this surface is
such that the fluid at the surface is in solid-body rotation. In the case of a flat surface,
the radius of curvature is infinite and the vorticity at the surface is identically zero. It
will be seen in examples later that a curved stress-free surface can lead to active and
substantial vorticity introduction into the body of the fluid from the interface.

With (2.34), the vorticity source density (2.30) can be rewritten as

σ1 = d
dt
(u1 · t̂)+ 1

ρ1

∂p1

∂s
− 1

2
(u1 · n̂)ω1, (2.36)

and (2.33) becomes

d
dt

(∫

A1

ω dA+
∫ b

a
u1 · t̂ ds

)
=
∫

C1

ν∇ω · n ds+
(

p1

ρ1

∣∣∣∣
b
− p1

ρ1

∣∣∣∣
a

)
− 1

2

∫ b

a
κ(u1 · n̂)ω1 ds.

(2.37)
This means that vorticity is generated from a net pressure gradient in the fluid along
the surface as well as from normal motion of the surface. If the tangential velocity
at the surface is non-zero, circulation is stored there (second term in brackets on the
left).

2.5. Summary of theoretical findings
In the above formulation and discussion, and from previous analyses, there are a
number of important theoretical findings that will prove useful when analysing and
interpreting vorticity generation, diffusion and conservation in various configurations.

For a given (material) control volume, which may contain an interface between two
fluids or a boundary with a solid body or an inviscid medium, we note the following:

(a) The total circulation only varies due to vorticity flowing into or out of the outer
boundary of the control volume through viscous diffusion.

(b) Within the fluid, the magnitude of vorticity changes locally due to viscous
diffusion and advection, and cross-annihilation of opposite-signed vorticity.

(c) Vorticity may be generated at a stationary interface or boundary due to a jump
in the tangential acceleration or tangential pressure gradient. The corresponding
circulation is ‘stored’ at the interface in the form of a vortex sheet (velocity jump)
and must be included in the overall circulation balance.

(d) Normal motion of an interface leads to vorticity generation if the interface is
curved and if there is also non-zero tangential motion.

(e) At a curved stress-free boundary, the flow at the fluid surface is locally that of
solid-body rotation (with zero vorticity for a flat surface). Vorticity is exchanged
between the vortex sheet representing the interface and the fluid surface in order
to maintain this solid-body rotation.
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FIGURE 3. Integration paths (dashed lines) for the calculation of (a) the linear circulation
density in planar flows, with the paths covering a unit length in the x-direction, and (b) the
circulation for axisymmetric flows. The paths C run along the edges of a given fluid
region. The U with the same subscript are the corresponding limit values of the velocity
when approaching the relevant interface.

3. Application to planar and axisymmetric flows
We now turn to a number of examples involving different fluids, and including

no-slip and stress-free boundary conditions, in order to demonstrate the practical
application of the above formulations and concepts.

Two basic two-dimensional configurations are considered: planar flow and
axisymmetric flow. Before proceeding to the various examples, we briefly discuss
the circulation distribution in these geometries. It will be important to distinguish
between the circulation in the body of the fluid and that existing across the interfaces,
particularly for stress-free boundaries. In the following, Γi denotes the circulation in
the body of fluid i, and γij the circulation across the interface between fluids i and
j. Circulations are calculated along integration paths C according to (2.1), which are
shown in figure 3 for the two geometries: C1 for the main body of fluid (fluid 1),
C0,1 and C1,2 across the lower and upper interfaces for planar flow; and C0, C1i, C1o
and C2 along the inner and outer interfaces for axisymmetric flow.

In all of the following examples, fluid 0 is of infinite viscosity (i.e. a solid), and
the boundary condition is one of no slip: U0 = U1l or U0 = U1i. Also, in all cases,
fluid 2 remains at rest (U2= 0); it is either a fixed solid, or an inviscid fluid to which
no motion can be transferred due to the stress-free boundary condition.

For planar flow (figure 3a), the circulations (per unit length in the x direction) in
the main body of the fluid of interest (fluid 1) and at the two interfaces are given by:

planar flow circulations

dΓ1

dx
=U0 −U1u,

dγ0,1

dx
= 0,

dγ1,2

dx
=U1u,

dΓtotal

dx
=U0. (3.1)

For the axisymmetric case (figure 3b), the various circulations are given by:
axisymmetric flow circulations

Γ0 = 2πr1U0, Γ1 = 2π(r2U1o − r1U0), Γ2 = Γtotal = 0, γ0,1 = 0, γ1,2 =−2πr2U1o.
(3.2)
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3.1. Planar flows
In the planar case, there exist two limiting steady solutions admitted by the
Navier–Stokes and Helmholtz equations: plug flow (constant velocity, zero vorticity)
and uniform shear flow (constant velocity gradient normal to the flow, i.e. constant
vorticity). Any steady solution (subscript ∞) must be a combination of the two:
u∞ = Ay+ B and ω∞ =−A, where A and B are constants. These solutions are such
that no gradients in the vorticity field remain to further diffuse vorticity.

3.1.1. Impulsively started flows
We now consider flows generated by the impulsive motion of a solid no-slip wall.

The wall is planar and coincides with the x-axis. At time t= 0, the fluid is at rest and
the wall is impulsively accelerated to a linear velocity U0. We consider fluids of both
semi-infinite and finite extent, in the latter case being bounded by a steady no-slip
boundary or a no-stress boundary at y= h. The flow is assumed to remain parallel to
the wall at all times: u= u(y, t), v = 0.

Table 1 summarises the analytical solutions that can be obtained for these
configurations. In all cases, the instantaneous velocity consists of a limiting steady
flow u∞ plus a transient term uT , and likewise for the vorticity. The unbounded
planar flow is the classical solution found by Stewartson (1951). The planar bounded
solutions are easily found by Fourier series methods (Rood 1994).

The evolutions of the velocity and vorticity profiles are further illustrated by
numerically solving the velocity equation in table 1, using a standard finite-difference
approach and the appropriate boundary conditions corresponding to each case.
Second-order central differences were used for the spatial derivatives, with time
stepping based on the implicit Crank–Nicolson approach. For the case with a
semi-infinite spatial domain, the y-coordinate was transformed using a mapping based
on the tangent function, so that a uniform grid could be used in the computational
space. Typically, 101 points were used for the grid resolution in the y-direction,
noting that doubling the resolution resulted in a negligible change to the predicted
velocity field (considerably less than 1 %). Since an implicit time-stepping method
was used, there was no restriction on the time step, but again a temporal resolution
study was performed to ensure time-step independence of the final results, shown in
figure 4.

In all cases, the lower solid boundary has (infinite) tangential acceleration only at
t= 0. Since there are no tangential pressure gradients, there is no flux of vorticity into
the fluid at t> 0; all vorticity is introduced from the boundary at t= 0. The vorticity
flux into the fluid is given by σ1 = dU/dt according to (2.24). This acceleration,
and hence the vorticity, has the same sign as U0. For an impulsive acceleration,
the vorticity at the surface is singular but the net circulation generated (per unit
axial length) is just U0. The fluid being incompressible, it instantaneously adjusts
everywhere to this shearing, leading to vorticity being present at all finite distances
but with the bulk in a very thin layer at the boundary at small times. (In the case of
a compressible fluid, the outward flow of vorticity will be limited by the local speed
of sound.)
(i) Unbounded fluid

For the case of a semi-infinite fluid above an impulsively accelerated plate, all the
vorticity is generated at t= 0 at the plate, from which it subsequently diffuses away,
tending in the limit t→∞ towards a homogeneous distribution. Since there is only a
finite circulation per unit length (dΓtotal/dx=U0 according to (3.1)) to be spread over
a semi-infinite domain, the only limiting solution is the one where the vorticity at
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Planar flow

Velocity equation:
∂u
∂t
= ν ∂

2u
∂y2

Initial conditions: u(y= 0, t= 0)=U0, u(y> 0, t= 0)= 0
Transient solution: uT , ωT

Solution for t→∞: u∞ = Ay+ B, ω∞ =−A
General solution: u= u∞ + uT , ω=ω∞ +ωT

Unbounded(a)

Solid

Fluid u(y, t)

U0

x
y

A= 0, B=U0

uT =−2U0√
π

∫ s

0
e−φ

2
dφ, s= y

2
√
νt

ωT = U0√
πνt

e−s2

Solid

Solid

Fluid u(y, t)

U0

x
yh

(b) A=−U0

h
, B=U0

uT =−2U0

π

∞∑

k=1

1
k

e−λ
2
kνt sin λky, λk = πk

h

ωT = 2U0

h

∞∑

k=1

e−λ
2
kνt cos λky

Stress-free boundary

Solid

Fluid u(y, t)

U0

x
yh

(c) A= 0, B=U0

uT =−4U0

π

∞∑

k=0

1
1+ 2k

e−λ
2
kνt sin λky, λk = π(1+ 2k)

2h

ωT = 2U0

h

∞∑

k=0

e−λ
2
kνt cos λky

TABLE 1. Flow generated from rest by the impulsive motion (with velocity U0) of a flat
plate in its own plane, without tangential pressure gradients, showing schematics (left) and
analytical solutions (right): (a) unbounded fluid above; (b) fluid layer bounded above by
a stationary solid wall; and (c) fluid layer bounded above by a stress-free interface. Here,
A and B are constants.

any finite distance approaches zero. Given the no-slip condition at the plate surface,
the fluid at y= 0 must have velocity U0, and the fluid approaches a plug flow with
uniform velocity (see table 1a). The corresponding evolution of the velocity and
vorticity profiles can be seen in figure 4(a). The total vorticity (circulation) in the
entire semi-infinite domain is nevertheless conserved.
(ii) No-slip upper boundary

For a layer of fluid with a no-slip condition at its upper surface, the vorticity also
diffuses away from its initial concentration at the impulsively accelerated plate. In
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FIGURE 4. Transient velocity (left) and vorticity (right) for an impulsively accelerated flat
plate, for the three cases shown in table 1: (a) unbounded fluid; (b) fluid layer bounded by
a solid body at rest; (c) fluid layer bounded by a stress-free interface. Line types denote
different non-dimensional times τ = tU0/h (bounded) or τ = tU2

0/ν (unbounded): τ = 0.01
(dotted), τ = 0.1 (short dashed), τ = 1 (long dashed) and τ = 10 (solid). To enable a
meaningful comparison between the unbounded and bounded cases, the Reynolds number
in the latter is set to Re=U0h/ν = 1.

this case, it cannot flow into the top interface, which is unable to support a velocity
jump; all of the initially generated vorticity must remain in the body of the fluid. The
only limiting solution available is one where the vorticity is uniformly distributed and
a flow with constant shear (normal velocity gradient) is obtained (see table 1b and
figure 4b).
(iii) Stress-free upper boundary

In the case of a layer of fluid with a stress-free condition at the top, the vorticity
initially evolves similarly to the previous two cases. It again diffuses away from where
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FIGURE 5. Schematic of Poiseuille flow: (a) inlet and (b) fully developed.

it is initially generated by the plate (at y = 0), but this time the fluid at the upper
interface is free to move. The upward diffusion continues until no vorticity remains
in the body of the fluid, i.e. until a plug flow with constant velocity U0 is obtained
(see table 1c). The circulation is then entirely stored at the free surface in the form of
a vortex sheet (velocity jump). Typical instantaneous profiles are shown in figure 4(c).

In summary, very different outcomes for the final distribution of the vorticity are
obtained, depending on the upper boundary condition: zero vorticity in the body
of the fluid (i.e. plug flows) for the semi-infinite and stress-free boundary cases,
and uniform vorticity (i.e. constant velocity shear) for the no-slip boundary case. In
all configurations, all the vorticity is generated at the initial instant, and the total
circulation remains constant thereafter.

These observations may be compared with a description in terms of momentum,
which in turn does not remain constant. At the initial instant, owing to the no-slip
condition at the lower boundary, the fluid interface layer is given a non-zero velocity.
As time proceeds, momentum is continually transferred into the fluid, with new
momentum being generated in the solid due to external forcing needed to keep the
velocity of the solid constant. The momentum flux is governed by the wall shear
stress τw given by

τw =µ∂u
∂y
(y= 0, t)=−µω(y= 0, t), (3.3)

where µ is the dynamic viscosity of the fluid. It appears from table 1 that the wall
stress is never zero. However, in all cases it tends to zero as time goes to infinity.

3.1.2. Flow with a streamwise pressure gradient: Poiseuille flow
The examples considered hitherto have in common that there are no tangential

pressure gradients. For completeness, we mention a simple and familiar flow
configuration where vorticity is generated by pressure gradients: the planar Poiseuille
flow (figure 5). This example is considered in detail in Morton (1984); we shall
therefore recall only briefly the main results.

When the flow is bounded by planes at y=±h, and the constant pressure gradient
is denoted by px, the fully developed Poiseuille flow is given by a parabolic velocity
profile

u=−h2px

2µ

(
1− y2

h2

)
, (3.4)

and the vorticity is linear in profile

ω= px

µ
y. (3.5)
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The vorticity sources at the bottom and top boundaries are, according to (2.24), −px/ρ

and px/ρ, respectively. Thus amounts of vorticity that are equal in magnitude and
opposite in sense flow into the fluid due to the pressure gradient, in accordance with
the fact that the total circulation (per unit length) is zero; this can be observed in the
growing boundary layers in the inlet flow (figure 5a). There is no flux of vorticity
out of the boundaries; vorticity of opposite sign cross-annihilate continuously, leading
to the steady-state fully developed solution far downstream (figure 5b). This cross-
annihilation of vorticity provides one of the keys to understanding how vorticity can
decay in a flow, in particular in the flow past a submerged cylinder, which motivated
our discussion in the introduction.

3.2. Axisymmetric flows
In the axisymmetric configurations we consider here, the flow is generated by the
rotation of a solid circular cylinder (radius r1), with a no-slip condition at its surface
(see table 2). At t= 0, the fluid is at rest, and the wall is impulsively accelerated to
an angular velocity Ω0. Fluids of both infinite and finite extent are considered; in the
latter case, the fluid domain is bounded at radius r2 either by a stationary no-slip wall
or by a stress-free interface. The velocity field is assumed to be axisymmetric, with
an azimuthal component u(r, t). In all cases (except for the example of an expanding
cylinder), the radial velocity is zero.

Table 2 summarises the analytical solutions that can be obtained for the cases where
the radius and angular velocity of the inner cylinder remain constant after the initial
impulse. As for the planar flows, the instantaneous velocity consists of a limiting
steady solution u∞ plus a transient term uT , and likewise for the vorticity. The general
limiting solution, for which no diffusion gradients exist in the Helmholtz equation
(1.2), is a combination of a potential point-vortex flow with zero vorticity and a solid-
body rotation with uniform vorticity, i.e. u∞ = A/r + Br and ω∞ = 2B, where A and
B are constants. The circular flow in an unbounded domain (table 2a) was obtained
by Mallick (1957).

As described above for the planar geometry, we use numerical solutions of the one-
dimensional velocity equation in table 2 (with the appropriate boundary conditions)
to illustrate the evolution of the velocity and vorticity profiles in the various cases
considered in the following.

3.2.1. Unbounded flow
(i) Flow induced by a rotating cylinder

When there is no outer boundary (i.e. r2→∞), the finite vorticity generated initially
at the no-slip interface with the solid cylinder diffuses out towards infinity, with the
vorticity in the fluid at any finite radius tending to zero in the limit t→∞. The
velocity field tends to that produced by a point vortex having the same circulation
as the one contained in the rotating cylinder, with the azimuthal velocity varying
inversely with the radius (i.e. from table 2a, u∞=Ω0r2

1/r). Figures 6(a) and 7(a) show
the evolution of the velocity profiles and vorticity field after the impulsive rotation.

Note that the vorticity generated in the fluid at t = 0 is negative, even if the
cylinder rotates in the positive direction. This can immediately be understood from
the conservation of circulation. Referring to (2.28), where the unbounded fluid is fluid
1, the right-hand side is zero. Thus, the total circulation of the solid–fluid system is
constant and equal to zero, the value for t < 0. As the cylinder is accelerated to a
positive vorticity, the vorticity in the fluid must be negative. The same can be seen
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Axisymmetric flow

Velocity equation:
∂u
∂t
= ν

[
1
r
∂

∂r

(
r
∂u
∂r

)
− u

r2

]

Initial conditions: u(r= r1, t= 0)=Ω0r1, u(r> r1, t= 0)= 0
Transient solution: uT , ωT

Solution for t→∞: u∞ = A
r
+ Br, ω∞ = 2B

General solution: u= u∞ + uT , ω=ω∞ +ωT

Unbounded(a)

Fluid 
r1

Solid

u(r, t)

A=Ω0r2
1, B= 0

uT = 2r1Ω0

π

∫ ∞

0

J1(rx)Y1(r1x)− J1(r1x)Y1(rx)
x[J2

1(r1x)+Y2
1(r1x)] e−x2νt dx

ωT = 2r1Ω0

π

∫ ∞

0

J0(rx)Y1(r1x)− J1(r1x)Y0(rx)
J1(r1x)2 +Y1(r1x)2

e−x2νt dx

Solid

Fluid 

u(r, t)

r1r2
Solid

(b)

A= Ω0r2
1r2

2

r2
2 − r2

1
, B=− Ω0r2

2

r2
2 − r2

1

Fluid 
r1r2

Solid

u(r, t)

(c)

A= 0, B=Ω0

TABLE 2. Flow generated from rest by the impulsive rotation (with angular velocity Ω0) of
a circular cylinder: schematics (left) and analytical solutions (right). (a) Unbounded fluid;
(b) fluid layer bounded by a stationary solid wall; (c) fluid layer bounded by a stress-free
interface. Here, A and B are constants, and the Ji and Yi are Bessel functions of the first
and second kind, of order i.

from the vorticity flux given in (2.24). The normal vector n̂ points into the cylinder
such that n̂=−er and t̂=−eθ and hence U · t̂ will be negative.
(ii) Flow induced by a rotating and expanding cylinder

In order to observe the vorticity generation resulting from motion of a boundary
in the normal direction, a simple example (not included in table 2) of an expanding
rotating cylinder is considered now. This configuration is shown schematically
in figure 8. The cylinder initially has a radius Ri and rotates with an angular
velocity Ωi. A no-slip boundary condition is again imposed on the cylinder surface,
and the velocity field in the unbounded surrounding fluid is initially irrotational:
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FIGURE 6. Transient velocity (left) and vorticity (right) for an impulsively rotated cylinder,
for the three cases shown in table 2, with r2= 4r1 and Re= 4Ω0r2

1/ν = 1: (a) unbounded
fluid; (b) fluid layer bounded by a solid body at rest; (c) fluid layer bounded by a
stress-free interface. Line types denote different non-dimensional times τ = tΩ0/4: τ =0.01
(dotted), τ = 0.1 (short dashed), τ = 1 (long dashed), τ = 10 (solid).

u(r, t = 0)=ΩiR2
i /r. From t = 0 onwards, the cylinder radius R(t) is increased, and

a time-dependent angular velocity Ω(t) is imposed. At the cylinder surface, we have
U · t̂=−ΩR and U · n̂= dR/dt such that, according to (2.24), there is a vorticity flux
into the fluid given by

σ1 = d
dt
(U · t̂)+ κ(U · n̂)(U · t̂)=− 1

R
d
dt
(ΩR2). (3.6)

Figure 9 shows numerically calculated velocity and vorticity profiles for a linearly
growing radius of the cylinder. In figure 9(a), Ω is held constant, leading to an
increasing flux of negative vorticity into the fluid from the cylinder. Both terms
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FIGURE 7. (Colour online) Colour contours showing the evolution of the vorticity field in
the axisymmetric flow generated by the impulsive rotation of a cylinder: (a) unbounded
fluid; (b) fluid layer bounded by a solid wall. Parameters and data are the same as in
figures 6(a) and 6(b). (If viewing in greyscale please refer to figures 6(a) and 6(b) to
help interpret the colourmap.)
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FIGURE 8. Schematic of the expanding rotating cylinder.

d(U · t̂)/dt and κ(U · n̂)(U · t̂) contribute to the vorticity generation. In figure 9(b),
ΩR is constant, such that there is no tangential acceleration of the cylinder and the
vorticity is generated solely due to the normal motion of the cylinder surface. Finally,
in figure 9(c), we show the case where ΩR2 is constant. Then the two sources of
vorticity cancel each other exactly, no vorticity enters the flow, and the initial potential
flow persists, as expected from (3.6). Note that, in all cases, the total circulation of
the system (cylinder plus fluid) remains constant.

3.2.2. No-slip outer boundary
When a fixed no-slip boundary is located at a finite radius (r2 in table 2b), the

vorticity generated by the impulsive start of the cylinder at t= 0 is forced to remain
within the body of the fluid; no vorticity can flow across or reside in either the
inner or the outer no-slip interface, i.e. γ0,1= γ1,2= 0 in (3.2). Following the outward
diffusion of this vorticity, the flow tends to a combination of solid-body rotation
and potential flow in the limit t→∞, i.e. the classical Taylor–Couette solution. The
vorticity is then uniformly distributed in the fluid, with the addition of a point-vortex
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FIGURE 9. Transient velocity (left) and vorticity (right) for a linearly expanding cylinder
(figure 8), starting from potential flow, for various time evolutions Ω(t) of the rotation
rate: (a) Ω = const.; (b) ΩR = const.; (c) ΩR2 = const. Here, Ri and Ωi are the initial
radius and angular velocity of the cylinder, and the Reynolds number is Re= 4ΩiR2

i /ν= 1.
The cylinder radius grows according to R(t)=Ri(1+ατ), with α= 0.4. Line types denote
different non-dimensional times τ = tΩi/4: τ = 0.1 (dotted), τ = 1 (short dashed), τ = 5
(long dashed), τ = 10 (solid).

flow due the circulation remaining in the spinning cylinder. From (3.2), with U1o= 0,
we see that the circulation in the body of the fluid is at all times equal and opposite to
that of the cylinder. Figures 6(b) and 7(b) show the velocity and vorticity distributions
at different stages of the flow development, for the example where the outer boundary
has a radius of four times that of the cylinder (r2 = 4r1).

3.2.3. Stress-free outer boundary
(i) Forced cylinder

The configuration with a stress-free outer boundary (table 2c, figures 6c and 10 for
a case with r2 = 4r1) is somewhat unusual in terms of vorticity transport. At first, as



Vorticity generation and conservation for 2D interfaces and boundaries 83

1.0

–1.0

–0.5

0.5

0

Stress-free
boundary

Fluid

Solid

4

3

2

1

FIGURE 10. (Colour online) Colour contours showing the evolution of the vorticity field
in the axisymmetric flow generated by the impulsive rotation of a cylinder, in the presence
of a stress-free boundary. Parameters and data are the same as in figure 6(c). (If viewing
in greyscale please refer to figure 6(c) to help interpret the colourmap.)

the viscous stresses accelerate the fluid, the vorticity generated at the cylinder surface
begins to diffuse radially outwards, as in the previous cases. In the first instances, the
circulation in the fluid body and outer interface is equal and opposite to that of the
cylinder: Γ1 + γ1,2 =−2πr1U0 from (3.2).

The stress-free condition allows the fluid to accelerate at the outer interface. From
(3.2), as U1o increases, the magnitude of negative circulation in the body of the fluid,
Γ1 = 2π(r2U1o − r1U0), decreases, balanced by an increase in the magnitude of the
circulation γ1,2 in the vortex sheet at the outer interface. This is well illustrated in
the circulation summary in figure 11, where an exchange of negative vorticity between
regions 2© and 4© is observed during the time interval 0< τ < 0.1.

However, the stress-free interface forces the flow at the surface to be locally
in solid-body rotation: ω(r2) = 2U1o/r2 from (2.35). This means that, even though
negative vorticity, initially generated at the inner interface, diffuses outwards, vorticity
of the opposite sign appears simultaneously at the outer edge of the fluid. Remarkably,
the faster the outer edge rotates, due to viscous stresses diffusing the inner negative
vorticity outwards, the higher the value of this positive vorticity. No new circulation is
created in the system, since the total circulation remains fixed at zero. The generation
of positive vorticity in the outer fluid layer is therefore accompanied by an increase
of the negative circulation (velocity jump) in the stress-free interface.

The outer positive vorticity flows inwards along the vorticity gradient, gradually
cross-annihilating all of the original negative vorticity, and eventually leading to a
uniform distribution of positive vorticity, i.e. solid-body rotation, in the fluid (see
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FIGURE 11. (Colour online) Evolution of the circulation contained in the different
regions of the axisymmetric flow with a stress-free boundary shown in figures 6(c) and
10: 1© cylinder with positive circulation Γ0; 2© region with negative vorticity diffusing
outwards after the impulsive start of the cylinder; 3© region with positive vorticity
spreading inwards from the outer edge of the fluid; and 4© outer interface with negative
circulation γ1,2. All values are normalised using the cylinder circulation Γ0 = 2πr2

1Ω0. (If
viewing in greyscale please refer to figure 6(c) to help interpret the colourmap.)

figures 10 and 11). The equivalent amount of negative circulation remains residing
at the outer interface in the form of a vortex sheet. In the final asymptotic state, the
individual components of circulation have a very large magnitude, even if their sum
is always zero. It should be noted that the angular momentum of the system is not
constant, but increases in time, since the cylinder is forced to maintain a constant
rotation rate, and angular momentum is transferred to the fluid.

It is tempting to think of a stress-free interface as a passive one. However, whereas
it is indeed passive with respect to momentum transfer, it can be extremely active
in terms of vorticity, leading to an exchange of vorticity at the fluid surface with
circulation residing in the interface. We shall observe later that this is another element
to help understand the problem of the ‘disappearing’ vorticity behind a submerged
cylinder.
(ii) Unforced cylinder

A variation of the axisymmetric case with a stress-free outer boundary occurs when
the cylinder, rather than being forced to have constant angular velocity for t > 0, is
allowed to spin down under the frictional resistance of the wall shear stress at the
solid–fluid interface (at r= r1 in figure 12a), given by

τw =µr
∂

∂r

(u
r

)
. (3.7)

As in the previous example, the stress-free outer boundary and its concomitant
condition of solid-body rotation at the fluid surface determine the final flow. For
the cylinder to reach a steady state of rotation, the wall shear stress must vanish,
which means that it must be co-rotating with the fluid. The only asymptotic solution
where no further evolution takes place as a result of vorticity diffusion is the one
with solid-body rotation of the coupled cylinder–fluid system. The time-dependent
solutions in figure 12(b,c), and the vorticity maps in figure 13, obtained with the
same initial conditions as for the previous forced configuration, show that this is
indeed the case. The constant vorticity observed in the end is of course lower than
that for the forced case. As before, the total circulation of the system, including the
vortex sheet at the outer interface, remains zero at all times.
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FIGURE 12. Transient axisymmetric flow with a stress-free surface and no external forcing
after the initial impulse giving the inner cylinder the angular velocity Ωi: (a) schematic,
(b) velocity and (c) vorticity. Here, Re= 4Ωir2

1/ν = 1, r2= 4r1 and ρs/ρf = 10. Line types
denote different non-dimensional times τ = tΩi/4: τ = 0.001 (dotted), τ = 0.01 (short
dashed), τ = 0.1 (long dashed), τ = 1 (solid).
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FIGURE 13. (Colour online) Evolution of the vorticity distribution for the unforced
cylinder case. Parameters and data are the same as in figure 12(c). (If viewing in greyscale
please refer to figure 12(c) to help interpret the colourmap.)

4. Flow past a circular cylinder near a stress-free surface

We now return to our motivating example given in the introduction, and address the
question of where the ‘missing’ vorticity goes in the wake of a submerged translating
cylinder. The flow around a circular cylinder of diameter D, in horizontal motion
(velocity U) with respect to a fluid layer having a free surface, depends on three
parameters (Sheridan et al. 1997; Reichl et al. 2005): the Reynolds number Re =
UD/ν, the Froude number Fr=U/

√
gD (g is acceleration due to gravity), and the gap

ratio G/D, with G the distance between the top of the cylinder and the position of the
unperturbed surface. In the limit Fr→ 0, the fluid surface becomes a non-deformable
horizontal free-slip (stress-free) interface; we consider this case first.
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FIGURE 14. (Colour online) (a) Predicted long-time vorticity field for flow past a
submerged cylinder with a stress-free surface. (b) Horizontal velocity at the free surface.
Here, Re = 180, Fr = 0, G/D = 0.125. Prediction obtained using an in-house
spectral-element code (e.g. Leweke, Thompson & Hourigan 2004; Thompson et al. 2006;
Thompson, Leweke & Hourigan 2007; Rao et al. 2013a,b).

4.1. Flat stress-free surface
The experiments of Sheridan et al. (1997) and two-dimensional numerical simulations
of Reichl et al. (2005) have revealed an intriguing phenomenon when the translating
cylinder is moved closer towards the surface. In the case of a zero-Froude-number
flow (without surface curvature), the vorticity shed from the upper cylinder surface
rapidly disappears as it advects downstream, apparently leading to a net non-zero
circulation in the flow, as is clearly shown in figure 1. In addition, and perhaps even
more striking, figure 14(a) shows the evolution of the vorticity field corresponding
to the case shown in figure 1(b) at long times. This is quite unlike the Bénard–von
Kármán array of alternating vortices (vortex street) forming behind a cylinder in an
unbounded free stream. Here, as with the fully submerged case, no net circulation
is shed from the cylinder, because its boundary is a closed curve, so that no net
pressure gradient can exist – see (2.23). As discussed in the previous sections, vorticity
can decay as a result of cross-annihilation with opposite-signed vorticity. Part of the
observed decrease of vorticity shed on one side of the cylinder could possibly be
explained by cross-annihilation with the vorticity shed from the opposite side of the
cylinder. This would, however, still lead to the decay of equal amounts of circulation
from each side, without a net imbalance.

The other pertinent finding from the analysis was that vorticity can diffuse towards
a stress-free surface and exchange vorticity with the vortex sheet at the interface. The
significant change in velocity of the fluid at the free surface (leading to a change in
magnitude of the circulation at the interface) demonstrates that this in fact happens.
This can be seen in figure 14(b), which shows that the downstream velocity at the
free surface varies markedly from the zero upstream velocity, i.e. the missing vorticity
is stored in a velocity jump across the advecting free surface. However, vorticity is
continually shed from the upper part of the cylinder, and therefore continual addition
of storage of vorticity is required in the stress-free surface to maintain an imbalance
of vorticity in the body of the fluid. Again, this is observed and predicted: the
vorticity accumulating at the stress-free interface is continually convected away from
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FIGURE 15. Control surface for examining the vorticity balance for the flat stress-free
surface problem.

the cylinder since the fluid behind the cylinder is moving to the left more slowly
than the cylinder itself.

To investigate this case in more detail, it is instructive to examine the individual
terms in the governing equation (2.37) in combination with the arbitrarily selected
integration surface shown in figure 15. The two terms on the left are the rate of
change of the integrated vorticity in the fluid contained within the surface boundary
((d/dt)

∫
A1
ω dA) and that of the stored circulation at the interface ((d/dt)

∫ b
a u1 · t̂ ds),

which need to be considered together for vorticity conservation. The right-hand side
has three terms: (i) diffusion of vorticity through the surface boundary (excluding the
free surface) (

∫
C1
ν∇ω · n ds); (ii) the pressure difference between the ends of the

free-surface contour (p1/ρ1|b − p1/ρ1|a); and (iii) a term that is only non-zero for a
surface moving normal to itself (− 1

2

∫ b
a κ(u1 · n̂)ω1 ds). In this case, if the integration

(material) surface extends far upstream and downstream, then (i) the diffusive flux of
vorticity through the boundary is zero (since vorticity is only generated at the surface
of the cylinder), (ii) the pressure difference term is zero, and (iii) since the surface is
stationary, the third term is also zero. Hence the statement of vorticity conservation is
that the vorticity generation within the domain A together with the vorticity stored in
the vortex sheet at the interface remains a constant. Since the vorticity integral can be
reduced to line integrals along the bounding curves using Stokes’ theorem, we have

∫

A1

ω dA=
∫

Cad

u · ds+
∫

Cdc

u · ds+
∫

Ccb

u · ds+
∫

Cba

u · ds. (4.1)

Here, the first three terms are zero because the fluid far away from the cylinder
remains stationary. The final term varies with time but is equal and opposite to the
surface vortex sheet term. Hence, the rate of change of vorticity within the control
surface is exactly balanced by the rate of accumulation of vorticity within the vortex
sheet at the interface.

Thus, to recap, a closer examination of the flow predictions shows that the deficit
in vorticity present in the flow from the disappearing upper shear-layer shedding is
balanced precisely by the increase in the circulation of the vortex sheet or velocity
jump at the free surface. More generally, according to (2.36), a flux of vorticity to
the free-surface interface, in the absence of normal motion, is associated with an
acceleration of the fluid surface and/or a pressure gradient along this layer. For an
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(a) (b)

FIGURE 16. (Colour online) Predicted vorticity field for flow past a submerged cylinder
for Re= 180 and Fr = 0.2. (a) Surface vorticity for upper fluid with kinematic viscosity
ratio (νlower/νupper) of 1 and density ratio (ρlower/ρupper) of 100, for G/D= 0.4. (b) Vorticity
induced in the upper fluid layer when its viscosity is increased to enable greater viscous
transport of fluid away from the interface. In this case G/D= 0.55. (From Reichl 2001,
reproduced with permission.)

initially uniform flow relative to the cylinder, the net pressure difference and the
velocity difference at the fluid interface between far upstream and far downstream is
zero; therefore, although local vorticity variations can occur and vorticity of one sign
seems to ‘disappear’ into the free surface, overall the circulation is conserved.

In the two-phase predictions of Reichl (2001), where the upper layer of fluid is
originally co-moving with the lower layer, the numerical interface between the lower
and upper fluids is not precisely sharp – this allows the changes in the vortex sheet to
be observed more vividly, as in figure 16(a) for (effectively) a stress-free surface. In
the case where the upper layer of fluid is more viscous but much lower density, and
therefore no longer strictly stress-free, the changes in velocity at the interface induced
by the shed vortices manifests as diffusing regions of vorticity (see figure 16b). The
vortex structures in the lower layer of fluid shed from the cylinder induce vorticity at
the surface interface of opposite sign. For a stress-free surface that has no curvature,
the vorticity at the fluid surface is maintained at zero through exchange of vorticity
with the interface. However, it will be seen that non-zero surface vorticity appears
and can separate into the fluid as the Froude number increases and sufficiently high
surface curvature forms.

4.2. Stress-free surface with curvature
In the case where the stress-free surface is allowed to curve (non-zero Froude number,
see figure 17), additional introduction of vorticity into the body of the fluid, balanced
by opposite-sign vorticity in the surface vortex sheet, can lead to even more rapid
‘disappearance’ of vorticity.

The high-speed low-pressure fluid that flows through the gap between the cylinder
and the stress-free surface induces circulation at the stress-free interface of sign
opposite to that in the separating shear layer. The surface also deflects downwards
towards the low-pressure region before curving up towards its original height
downstream. Where the stress-free surface curves, the fluid at the surface is compelled
to be in solid-body rotation; the resultant vorticity diffuses into the fluid and then
separates into the flow from the curved surface further downstream, leading to rapid
cross-annihilation of the vorticity shed from the top of the cylinder (see figure 17b).
(See also Ohring & Lugt (1991) for a related study of the interaction of a vortex
pair with a free surface, for which similar behaviours are observed).
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FIGURE 17. (Colour online) Predicted vorticity field for flow past a submerged cylinder
when the surface is able to distort; Re = 180, Fr = 0.2, G/D = 0.3. (a) Evolved flow
after a long time (t' 24D/U). (b) Vorticity field close to startup (1t= 0.3D/U after the
surface is allowed to distort), showing the constraint imposed there on the vorticity by the
surface curvature. (c) The vorticity along the surface, with negative and positive curvature
of the surface clearly associated with negative and positive surface vorticity as specified
by (2.35). Again, predictions obtained using an in-house spectral-element code verified on
many related problems (e.g. Thompson et al. 2006, 2007; Rao et al. 2013a,b; Leweke
et al. 2004).

We return finally to the two original studies of Sheridan et al. (1997) and Reichl
et al. (2005): the observed and predicted flows for a submerged cylinder in the case
of a higher Froude number of 0.6, and similar submerged depths (but differences
in Reynolds number) are shown in figure 18. In this case, the curvature of the
stress-free surface is even greater and significant amounts of vorticity are exchanged
at the curved surface with the vortex sheet at the interface to enforce the flow to
be locally in solid-body rotation. Upstream of the cylinder, the stress-free interface
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FIGURE 18. (Colour online) Flow around a submerged cylinder for Fr= 0.6. (a) Velocity
and (b) vorticity fields from experiments by Sheridan et al. (1997) with G/D = 0.31
at Re = O(104). (c) Velocity and (d) vorticity fields from two-dimensional simulations
by Reichl et al. (2005) for G/D = 0.25 and Re = 180. (All results reproduced with
permission.)

begins to curve downwards in a clockwise direction. The solid-body rotation at
the fluid surface therefore results in negative vorticity (blue online), which diffuses
to form a boundary layer as it flows along the surface. The change in circulation
in the interface as the fluid is accelerated through the gap is of the opposite sign
(red online). At the interface above the back section of the cylinder, the stress-free
interface changes curvature to anticlockwise, with a much smaller radius of curvature.
More intense vorticity of positive sign (red online) now appears at the fluid surface
to maintain local solid-body rotation. This positive vorticity cannot continue to follow
the sharp surface curvature and separates strongly, forming a jet that penetrates deep
into the fluid. The negative (blue online) vorticity shed from the upper surface of
the cylinder is squeezed between two layers of opposite-sign vorticity and is rapidly
cross-annihilated. Downstream at the fluid interface, negative (blue online) vorticity
is stored that provides the balance of vorticity to that in the body of the fluid.

5. Conclusions

Vorticity is an important physical quantity in fluid mechanics; it pinpoints the parts
of the flow that are often most active in providing fluctuating forces, generating noise
and constituting turbulence. Its mathematical definition as the curl of the velocity
is simple enough. However, the generation and storage of vorticity at interfaces and
boundaries, its transport and decay, and its conservation, are more complex. We have
presented here a generalised formulation of the generation, transport and conservation
of vorticity and circulation at interfaces between fluids and at boundaries; stark
differences are found between no-slip boundaries and stress-free interfaces. Generation
of vorticity at an interface or boundary is due to relative acceleration of the fluid(s)
or a relative pressure gradient.

The constancy of net vorticity is found in many cases even where the linear or
angular momentum of the system is not constant. For example, whenever external
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forcing at interfaces is applied only at an instant or for a finite time, the vorticity
in the system thereafter is constant even though the linear or angular momentum may
continue to vary. This property, and the limited number of final vorticity field states in
planar and axisymmetric flows, allows one to determine the final flow, for which no
gradients of vorticity can exist. In the case of a planar flow, the limiting flow must
be one of uniform vorticity. For an axisymmetric flow, the limiting flow must be a
potential flow and/or solid-body rotation. To determine which state will be selected,
the condition on the vorticity at the interfaces and/or boundaries are considered: a
planar stress-free boundary supports only zero vorticity in the fluid, whereas a no-
slip boundary can support non-zero vorticity there; for an axisymmetric stress-free
boundary, the vorticity at the fluid surface is set by the tangential velocity and the
local boundary/interface curvature, whereas the no-slip boundary/interface can support
variable vorticity (but no velocity jump).

The vorticity in the body of a fluid can be exchanged with that at a stress-free
interface or boundary and be stored as a vortex sheet (velocity jump). This storage
is not possible at a no-slip boundary. Furthermore, tangential fluid motion induced
at a curved stress-free boundary results in the appearance of (solid-body rotation)
vorticity at the fluid surface, and a balance of opposite-sign vorticity in the interface
or boundary vortex sheet. In all cases, vorticity is conserved in the system.

The generation, transport and conservation of vorticity has been demonstrated by a
number of examples, including the case of the flow past a cylinder beneath a stress-
free surface; the apparent loss in the fluid body of vorticity of one sign shed from
the cylinder is precisely balanced by the change in vorticity stored in the interface
vortex sheet. Where there is surface curvature, significant amounts of vorticity can
form at the fluid surface and in certain cases separate into the flow, leading to rapid
cross-annihilation of vorticity shed from the cylinder.
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Appendix A. Proof of (2.8)
We have

du
dt
· t̂= d

dt
(u · t̂)− u ·

dt̂
dt
. (A 1)

Using the orthogonality of n̂ and t̂, the last term on the right can be rewritten as

u ·
dt̂
dt
= [(u · n̂)n̂+ (u · t̂)t̂] ·

[(
dt̂
dt
· n̂
)

n̂+
(

dt̂
dt
· t̂
)

t̂
]

= (u · n̂)
(

dt̂
dt
· n̂
)
+ (u · t̂)

(
dt̂
dt
· t̂
)
. (A 2)

Since
dt̂
dt
· t̂= 1

2
d
dt
|t̂|2 = 0, (A 3)

we have

u ·
dt̂
dt
= (u · n̂)

(
dt̂
dt
· n̂
)
. (A 4)
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The computation of dt̂/dt proceeds as follows. Let the interface, which is a material
line, be parameterized as x(s), where s is the arclength, and let the given point at time
t be x(0), such that t̂= x′(0). At time t+1t, the interface can be parameterized as

x(s)+ u[x(s)]1t. (A 5)

A tangent to this curve at the material point previously located at x(0) is found, to
first order in 1t, as

˜̂t= x′(0)+∇u · x′(0)1t= t̂+∇u · t̂1t= t̂+ ∂u
∂s
1t. (A 6)

Note that ˜̂t may not have unit length, since s is not the arclength for the parameterization
(A 5). The length N of ˜̂t can be expressed, to first order in 1t, as

N = 1+N11t, (A 7)

with N1 = t̂ · ∂u/∂s. This yields, again to first order in 1t,

t̂(t+1t)= 1
N
˜̂t= 1

1+N11t

(
t̂+ ∂u

∂s
1t
)
= t̂+

(
∂u
∂s
−N1 t̂

)
1t, (A 8)

such that
dt̂
dt
= ∂u
∂s
−N1 t̂ (A 9)

and
dt̂
dt
· n̂= ∂u

∂s
· n̂. (A 10)

This can be expanded further to give

∂u
∂s
· n̂ = ∂

∂s
(u · n̂)− ∂n̂

∂s
· u= ∂

∂s
(u · n̂)−

[(
∂n̂
∂s
· n̂
)

n̂+
(
∂n̂
∂s
· t̂
)

t̂
]
· u

= ∂

∂s
(u · n̂)−

(
∂n̂
∂s
· t̂
)
(u · t̂)= ∂

∂s
(u · n̂)− κu · t̂, (A 11)

where κ is the curvature of the interface,

κ = ∂n̂
∂s
· t̂=− ∂ t̂

∂s
· n̂. (A 12)

Combining (A 1), (A 4), (A 10) and (A 11), we finally obtain

du
dt
· t̂ = d

dt
(u · t̂)+ (u · n̂)

[
κu · t̂− ∂

∂s
(u · n̂)

]

= d
dt
(u · t̂)+ κ(u · n̂)(u · t̂)− 1

2
∂

∂s
(u · n̂)2. (A 13)
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