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1 Abstract

Our work initiates the study of flows resulting from the combination of oscillatory translation
and rotation of a circular cylinder. A direct numerical simulation approach has been em-
ployed in which a spectral element spatial discretization was used to solve the two-dimensional
incompressible Navier—Stokes equations in an accelerating reference frame attached to the
cylinder. Cylinder spin was imposed by use of time-varying velocity boundary conditions at
the cylinder wall. The simulation results to be presented were conducted with a Reynolds
number of 200, based on the cylinder diameter and the RMS translational velocity, and with
a constant Keulegan—Carpenter number of 7, corresponding to a peak-to-peak translation
amplitude of one cylinder diameter. In addition, the spin amplitude was set so that the peak
cylinder tangential velocity matched the peak translational velocity. Even with these restric-
tions, a wide variety of flows was observed as the phase angle between cylinder translational
and spin oscillations was changed.

2 Introduction

Flow separation produced by oscillatory flow normal to the axis of a cylindrical bluff body
(Williamson 1985) or equivalently the oscillatory translation of the bluff body in quiescent
fluid is known to result in a variety of different vortex shedding modes, dependent on the
Reynolds and Keulegan—Carpenter (KC) numbers. For steady flow past a circular cylinder, it
has also been shown that the imposition of an oscillatory rotational motion about the cylinder
axis is able to bring about substantial changes to the wake (Tokumaru & Dimotakis 1991),
again depending on the Reynolds number, the rotational equivalent of the KC number and
additionally the Strouhal number of the oscillation. The work of Tokumaru & Dimotakis
suggests that control exerted on the wake by the rotational oscillation is greatest when the
frequency of oscillation is approximately the same as the Strouhal frequency for the un--
forced wake. No published investigation has yet addressed the combined effects of oscillatory
translation and rotation.

On the other hand it is known that the propulsion mechanism used by fish and some other
animals depends on a flapping motion combined with a phase-locked twisting (carangiform
motion, see Ch. 11, Lighthill 1986). The resulting flow forms a wake which moves normal to
the flap direction and, correspondingly, pressure forces are exerted on the flapping fin which
provide the animal with thrust. It occurred to us that the important feature of the fin’s
motion is the control of vorticity creation and release by the Kutta condition at the trailing
edge and that an analogous control over the vorticity shed by a cylinder in translational
oscillation might be exerted by imparting an oscillatory spin to the cylinder.
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Figure 1: Spectral element mesh used for calculations.

p 4 6 8 10
C, 7.630 7.622 7.620 7.620

Table 1: p-Convergence results for the translating cylinder, where p is the order of tensor-
product GLL Lagrange interpolant shape function employed in each spectral element.

We have carried out an exploratory investigation of combined oscillatory translation and
rotation of a circular cylinder using two-dimensional numerical simulations. Assuming sim-
ple harmonic motions for both translation and rotation, the problem has five dimensionless
parameters: the KC number, a Reynolds number, the ratio of translation and rotation fre-
quencies, the ratio of peak cylinder translational and tangential velocities, and the phase
angle between the simple harmonic motions of translation and rotation. For simplicity we
have chosen the amplitude of translational motion to be 0.5D, KC = 27rA/D = ; the
translational and rotational frequencies to be the same; the peak translational and tangen-
tial velocities to be the same; the Reynolds number fixed; Re = v/2r AfD/v = 200, where A
is the amplitude of translational motion, f its frequency and D the cylinder diameter. The
only varied parameter was the phase angle between the two motions ().

3 Method

Simulations were carried out using a spectral element spatial discretization to solve the
two-dimensional incompressible Navier—Stokes equations in an accelerating reference frame
attached to the cylinder, as previously described in Blackburn & Henderson (1996). Cylinder
spin was imposed by use of time-varying boundary conditions at the cylinder wall. For all
the results described here, solutions were obtained in a square domain of size 20D x 20D,
with the 144-element mesh shown in figure 1.

In order to ease requirements on mesh size, periodic boundaries were used on the mesh
exterior, so the simulations can also be taken to represent those for a periodic array of circular
cylinders, each with translation and spin. Convergence results for the peak coeflicient of lift
are presented in table 1 (C; was computed using the cylinder’s RMS velocity and diameter).
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These show that the results were effectively converged with 8th-order tensor-product Gauss-
Legendre-Lobatto (GLL) shape functions. However, 10th order shape functions have been
used for the computation of all the results to be presented.

4 Vorticity production

The contour plots which follow are of the single non-zero vorticity component: this was
computed in post-processing from the primitive variable simulation results via collocation
differentiation. The contours are shown in a fixed reference frame. For a two-dimensional
flow of Newtonian incompressible fluid the equation for the vorticity source strength at solid
walls in an inertial reference frame reads (Morton 1984)

—vn-Vw=-nx(VP+a), (1)

where w is the vorticity vector, P = p/p is the kinematic pressure, 7 is a unit wall-normal
vector, a is the wall acceleration and all terms are evaluated at the wall. This equation
expresses the idea that vorticity must diffuse away from a solid boundary at the same rate that
it is produced by local conditions. When the cylinder motion consists only of translational
oscillation, the integral of the vorticity flux around the periphery of the cylinder must be zero
at every instant. When the cylinder has also an oscillatory rotation at the same frequency
as the translation, the net vorticity flux integrated over one motion cycle is zero, but the
instantaneous requirement must be relaxed.

5 Translational oscillation

Figure 2 shows vorticity contours for the case where the cylinder executes only translational
oscillation (in the vertical direction, as for all the simulations), after sufficient simulation
time had elapsed for the results to reach a periodic condition. The cylinder is shown in its
uppermost position (y/D = 0.5), as indicated by the cross-hairs in the figure, which are
located at the centre of the cylinder in its rest position. Contours of positive (anticlockwise)
vorticity are shown in black, negative vorticity in grey. The vorticity contours are drawn
only to an arbitrary maximum magnitude, so that the regions of highest magnitude vorticity
are not marked. Figure 2 a shows a global view of the whole computational domain while 2 b
shows a 2D x 2D subset.

In figure 2 b there are two detached ‘starting’ vortices below the cylinder, with unmarked
cores in the shape of eyes. These vortices were produced during the upwards motion which has
just completed, and at the time shown the vortices are surrounded by closed streamline loops.
Immediately adjacent to the surface of the cylinder are thin layers of negative vorticity (on
the left side) and positive vorticity (on the right). At the instant shown the cylinder has its
maximum downward acceleration and the vorticity at the cylinder surface has resulted largely
from the time-integrated effect of acceleration term, m x a in (1), although the top/bottom
asymmetry shows also the influence of the pressure gradient term.

6 Combined translational and rotational oscillation

In order to obtain the results in this section, the cylinder was provided with oscillatory motion
in addition to translation. The cylinder translation is described by y(¢) = A; cos(2n ft), while
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Figure 2: Vorticity contours for the cylinder in oscillatory translation (no spin), at the time
when the cylinder is at its highest point in the motion cycle. a; global view, b; close up.

the rotation is given by 6(t) = Ag cos(27 ft+¢), with positive angles taken in the anticlockwise
sense. Figure 3 displays contours of vorticity at an elapsed dimensionless time ¢ f = 45.75 for
eight values of phase angle ¢ starting at 0°, increasing in increments of 22.5°. Owing to the
physical symmetry of the problem, phase angles greater than 180° give rise to flow patterns
that are 180° rotations of those in the range 0-180°.

The variation of phase angle produces a wide variety of different flow configurations. For
¢ = 45°, 67.5° and 90° it can be seen that vortex pairs have left the computational domain,
but re-entered on the opposite side as a result of the periodic domain boundaries. Perhaps
the two most intriguing results are the jet flow that arises when ¢ = 0° and the double-jet
‘butterfly’ flow for ¢ = 157.5°.

The jet flow produced when ¢ = 0° is normal to the axis of cylinder translation and thus
it corresponds to the propulsive jet produced by carangiform motion, and in fact the phase
relationship between translation and rotation in this case is the same as for carangiform
motion. The production of the jet is consistent with the fact that a time-mean force is
exerted on the cylinder in the negative-z direction: Cy = —0.159, where the velocity used in
calculating Cy is the RMS cylinder velocity.

Figure 4 shows a close-up view of vorticity contours at four instants in half a cycle of
cylinder motion, starting at the uppermost position, which also has the greatest angular
displacement, as indicated by the radial line on the cylinder. It is notable that the most
active area of vorticity production appears to be the left surface of the cylinder, which is
to be expected from the surface-tangential acceleration production term n x @ in (1), since
this is always larger in magnitude on the left side of the cylinder for the case ¢ = 0°. It is
interesting that this subsequently leads to a vorticity transport to the right of the cylinder,
an effect which is apparently due to interaction between the sequence of different shear layers
that are produced as the cylinder spins and translates.

7 Conclusions

It has been shown that the combination of oscillatory translation and rotation of a circular
cylinder is able to produce a variety of flows, here controlled by the phase angle between the
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Figure 3: Vorticity contours at elapsed time ¢ f = 45.75 for different phase angles ¢.
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Figure 4: Vorticity contours for the cylinder in oscillatory translation and rotation for the
case ¢ = 0°. Four detail views illustrating half a motion cycle, period T

translation and spin motions. For the case where the phase angle is zero, a jet of fluid is
produced in the direction normal to the translation axis, leading to a time-mean thrust on
the cylinder. The apparent analogy to the thrusting mechanism employed by fast-swimming
fish has been noted but remains to be explored in more detail.
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